forked from CeeZh/LLoVi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
142 lines (121 loc) · 5.08 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from util import save_json, load_json, save_pkl, load_pkl, makedir, parse_args
from torch.utils.data import Dataset
import pandas as pd
import pdb
from pprint import pprint
class BaseDataset(Dataset):
def __init__(self, args, quids_to_exclude=None, num_examples_to_run=-1):
'''
num_examples_to_run < 0: run all
'''
self.args = args
self.narrations = self.get_descriptions() # uid --> list of str or uid --> str
self.anno = self.get_anno()
self.durations = load_json(args.duration_path) # uid --> float
data = self.build()
data = self.filter(data, quids_to_exclude, num_examples_to_run)
self.data = data
def set_ukey(self, name):
self.ukey = name
def filter(self, data, quids_to_exclude, num_examples_to_run):
if quids_to_exclude is not None:
data = [el for el in data if el[self.ukey] not in quids_to_exclude]
if num_examples_to_run >= 0:
data = data[:num_examples_to_run]
return data
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
class EgoSchemaDataset(BaseDataset):
def __init__(self, args, quids_to_exclude=None, num_examples_to_run=-1):
self.set_ukey('uid')
super().__init__(args, quids_to_exclude=quids_to_exclude, num_examples_to_run=num_examples_to_run)
def get_descriptions(self):
narrations = load_json(self.args.data_path)
return narrations
def format_narration(self, narr):
if isinstance(narr, list):
narr = '. '.join(narr)
return narr
def get_anno(self):
anno = load_json(self.args.anno_path) # uid --> {question, option 0, option 1, option 2, option 3, option 4, truth (optional)}
return anno
def build(self):
data = []
for uid, item in self.anno.items():
if uid not in self.narrations:
continue
narration = self.format_narration(self.narrations[uid])
question = item['question']
choices = [item['option 0'], item['option 1'], item['option 2'], item['option 3'], item['option 4']]
truth = item['truth'] if 'truth' in item else -1
duration = int(self.durations[uid])
data.append({
'uid': uid,
'narration': narration,
'question': question,
'optionA': choices[0],
'optionB': choices[1],
'optionC': choices[2],
'optionD': choices[3],
'optionE': choices[4],
'truth': truth,
'duration': duration,
})
return data
class NextDataset(BaseDataset):
def __init__(self, args, quids_to_exclude=None, num_examples_to_run=-1):
self.set_ukey('quid')
super().__init__(args, quids_to_exclude=quids_to_exclude, num_examples_to_run=num_examples_to_run)
def get_descriptions(self):
narrations = load_json(self.args.data_path)
return narrations
def format_narration(self, narr):
if isinstance(narr, list):
caption_every = int(1/self.args.fps)
narr = '.\n'.join([f'{int(i*caption_every)}: {cap}' for i, cap in enumerate(narr[::caption_every])])
return narr
def get_anno(self):
return pd.read_csv(self.args.anno_path) # video,frame_count,width,height,question,answer,qid,type,a0,a1,a2,a3,a4
def build(self):
data = []
for row in self.anno.iterrows():
if isinstance(row, tuple):
row = row[-1] # remove table index
uid = str(row['video'])
if uid not in self.narrations:
continue
question, truth = row['question'], row['answer']
qid, q_type = row['qid'], row['type']
choices = [row['a0'], row['a1'], row['a2'], row['a3'], row['a4']]
quid = f'{uid}_{qid}'
narration = self.format_narration(self.narrations[uid])
duration = int(self.durations[uid])
data.append({
'quid': quid,
'uid': uid,
'qid': qid,
'q_type': q_type,
'narration': narration,
'question': question,
'optionA': choices[0],
'optionB': choices[1],
'optionC': choices[2],
'optionD': choices[3],
'optionE': choices[4],
'truth': truth,
'duration': duration,
})
return data
def get_dataset(args, quids_to_exclude=None, num_examples_to_run=-1):
if args.dataset == 'egoschema':
return EgoSchemaDataset(args, quids_to_exclude=quids_to_exclude, num_examples_to_run=num_examples_to_run)
else:
return NextDataset(args, quids_to_exclude=quids_to_exclude, num_examples_to_run=num_examples_to_run)
if __name__ == '__main__':
args = parse_args()
dataset = get_dataset(args, num_examples_to_run=args.num_examples_to_run)
print(len(dataset))
# for data in dataset:
# pprint(data)