forked from CeeZh/LLoVi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
116 lines (103 loc) · 3.64 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import openai
from openai import OpenAI
from transformers import AutoTokenizer
import torch
import transformers
from prompts import identity
import pdb
from pprint import pprint
def get_model(args):
model_name, temperature = args.model, args.temperature
if 'gpt' in model_name:
model = GPT(args.api_key, model_name, temperature)
return model
elif 'Llama' in model_name:
return LLaMA(model_name, temperature)
class Model(object):
def __init__(self):
self.post_process_fn = identity
def set_post_process_fn(self, post_process_fn):
self.post_process_fn = post_process_fn
class GPT(Model):
def __init__(self, api_key, model_name, temperature):
super().__init__()
self.model_name = model_name
self.temperature = temperature
self.client = OpenAI(api_key=api_key)
def get_response(self, **kwargs):
try:
res = self.client.chat.completions.create(**kwargs)
return res
except openai.APIConnectionError as e:
print('APIConnectionError')
time.sleep(30)
return self.get_response(**kwargs)
except openai.APIConnectionError as err:
print('APIConnectionError')
time.sleep(30)
return self.get_response(**kwargs)
except openai.RateLimitError as e:
print('RateLimitError')
time.sleep(10)
return self.get_response(**kwargs)
except openai.APITimeoutError as e:
print('APITimeoutError')
time.sleep(30)
return self.get_response(**kwargs)
except openai.BadRequestError as e:
print('BadRequestError')
kwargs['model'] = 'gpt-3.5-turbo-16k'
return self.get_response(**kwargs)
def forward(self, head, prompts):
messages = [
{"role": "system", "content": head}
]
info = {}
for i, prompt in enumerate(prompts):
messages.append(
{"role": "user", "content": prompt}
)
response = self.get_response(
model=self.model_name,
messages=messages,
temperature=self.temperature,
)
messages.append(
{"role": "assistant", "content": response.choices[0].message.content}
)
info = dict(response.usage) # completion_tokens, prompt_tokens, total_tokens
info['response'] = messages[-1]["content"]
info['message'] = messages
return self.post_process_fn(info['response']), info
class LLaMA(Model):
def __init__(self, model_name, temperature):
super().__init__()
self.model_name = model_name
self.temperature = temperature
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = "[PAD]"
tokenizer.padding_side = "left"
self.tokenizer = tokenizer
self.pipeline = transformers.pipeline(
"text-generation",
model=model_name,
torch_dtype=torch.float16,
device_map="auto",
tokenizer=tokenizer,
temperature=temperature
)
def forward(self, head, prompts):
prompt = prompts[0]
sequences = self.pipeline(
prompt,
do_sample=False,
top_k=1,
num_return_sequences=1,
eos_token_id=self.tokenizer.eos_token_id,
)
response = sequences[0]['generated_text'] # str
info = {
'message': prompt,
'response': response
}
return self.post_process_fn(info['response']), info