-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathmain_cifar.py
309 lines (242 loc) · 11.4 KB
/
main_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
from __future__ import absolute_import
# system lib
import os
import time
import sys
import argparse
# numerical libs
import random
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
from torchvision import datasets, transforms
# models
from thop import profile
from util import AverageMeter, ProgressMeter, accuracy, parse_gpus
from checkpoint import save_checkpoint, load_checkpoint
from networks.cifar import create_net
def adjust_learning_rate(optimizer, epoch, warmup=False):
"""Adjust the learning rate"""
if epoch <= 81:
lr = 0.01 if warmup and epoch == 0 else args.base_lr
elif epoch <= 122:
lr = args.base_lr * 0.1
else:
lr = args.base_lr * 0.01
for param_group in optimizer.param_groups:
param_group["lr"] = lr
def train(net, optimizer, epoch, data_loader, args):
learning_rate = optimizer.param_groups[0]["lr"]
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4f')
top1 = AverageMeter('Accuracy', ':4.2f')
progress = ProgressMeter(
len(data_loader),
[batch_time, data_time, losses, top1],
prefix="Epoch (Train LR {:6.4f}): [{}] ".format(learning_rate, epoch))
net.train()
tic = time.time()
for batch_idx, (data, target) in enumerate(data_loader):
data, target = data.to(args.device, non_blocking=True), target.to(args.device, non_blocking=True)
data_time.update(time.time() - tic)
optimizer.zero_grad()
output = net(data)
loss = F.cross_entropy(output, target)
loss.backward()
optimizer.step()
acc = accuracy(output, target)
losses.update(loss.item(), data.size(0))
top1.update(acc[0].item(), data.size(0))
batch_time.update(time.time() - tic)
tic = time.time()
if (batch_idx+1) % args.disp_iter == 0 or (batch_idx+1) == len(data_loader):
epoch_msg = progress.get_message(batch_idx+1)
print(epoch_msg)
args.log_file.write(epoch_msg + "\n")
def validate(net, epoch, data_loader, args):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4f')
top1 = AverageMeter('Accuracy', ':4.2f')
progress = ProgressMeter(
len(data_loader),
[batch_time, data_time, losses, top1],
prefix="Epoch (Valid LR {:6.4f}): [{}] ".format(0, epoch))
net.eval()
with torch.no_grad():
tic = time.time()
for batch_idx, (data, target) in enumerate(data_loader):
data, target = data.to(args.device, non_blocking=True), target.to(args.device, non_blocking=True)
data_time.update(time.time() - tic)
output = net(data)
loss = F.cross_entropy(output, target)
acc = accuracy(output, target)
losses.update(loss.item(), data.size(0))
top1.update(acc[0].item(), data.size(0))
batch_time.update(time.time() - tic)
tic = time.time()
if (batch_idx+1) % args.disp_iter == 0 or (batch_idx+1) == len(data_loader):
epoch_msg = progress.get_message(batch_idx+1)
print(epoch_msg)
args.log_file.write(epoch_msg + "\n")
print('-------- Mean Accuracy {top1.avg:.3f} --------'.format(top1=top1))
return top1.avg
def main(args):
if len(args.gpu_ids) > 0:
assert(torch.cuda.is_available())
cudnn.benchmark = True
kwargs = {"num_workers": args.workers, "pin_memory": True}
args.device = torch.device("cuda:{}".format(args.gpu_ids[0]))
else:
kwargs = {}
args.device = torch.device("cpu")
normlizer = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
print("Building dataset: " + args.dataset)
if args.dataset == "cifar10":
args.num_class = 10
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR10(args.dataset_dir, train=True, download=True,
transform=transforms.Compose([
transforms.Pad(4),
transforms.RandomCrop(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normlizer])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10(args.dataset_dir, train=False, transform=transforms.Compose([
transforms.ToTensor(),
normlizer])),
batch_size=100, shuffle=False, **kwargs)
elif args.dataset == "cifar100":
args.num_class = 100
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR100(args.dataset_dir, train=True, download=True,
transform=transforms.Compose([
transforms.Pad(4),
transforms.RandomCrop(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normlizer])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR100(args.dataset_dir, train=False, transform=transforms.Compose([
transforms.ToTensor(),
normlizer])),
batch_size=100, shuffle=False, **kwargs)
net = create_net(args)
print(net)
optimizer = optim.SGD(net.parameters(), lr=args.base_lr, momentum=args.beta1, weight_decay=args.weight_decay)
if args.resume:
net, optimizer, best_acc, start_epoch = load_checkpoint(args, net, optimizer)
else:
start_epoch = 0
best_acc = 0
x = torch.randn(1, 3, 32, 32)
flops, params = profile(net, inputs=(x,))
print("Number of params: %.6fM" % (params / 1e6))
print("Number of FLOPs: %.6fG" % (flops / 1e9))
args.log_file.write("Network - " + args.arch + "\n")
args.log_file.write("Attention Module - " + args.attention_type + "\n")
args.log_file.write("Params - %.6fM" % (params / 1e6) + "\n")
args.log_file.write("FLOPs - %.6fG" % (flops / 1e9) + "\n")
args.log_file.write("--------------------------------------------------" + "\n")
if len(args.gpu_ids) > 0:
net.to(args.gpu_ids[0])
net = torch.nn.DataParallel(net, args.gpu_ids) # multi-GPUs
for epoch in range(start_epoch, args.num_epoch):
# if args.wrn:
# adjust_learning_rate_wrn(optimizer, epoch, args.warmup)
# else:
adjust_learning_rate(optimizer, epoch, args.warmup)
train(net, optimizer, epoch, train_loader, args)
epoch_acc = validate(net, epoch, test_loader, args)
is_best = epoch_acc > best_acc
best_acc = max(epoch_acc, best_acc)
save_checkpoint({
"epoch": epoch + 1,
"arch": args.arch,
"state_dict": net.module.cpu().state_dict(),
"best_acc": best_acc,
"optimizer" : optimizer.state_dict(),
}, is_best, epoch, save_path=args.ckpt)
net.to(args.device)
args.log_file.write("--------------------------------------------------" + "\n")
args.log_file.write("best accuracy %4.2f" % best_acc)
print("Job Done!")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="CIFAR baseline")
# Model settings
parser.add_argument("--arch", type=str, default="resnet18",
help="network architecture (default: resnet18)")
parser.add_argument("--num_base_filters", type=int, default=16,
help="network base filer numbers (default: 16)")
parser.add_argument("--expansion", type=float, default=1,
help="expansion factor for the mid-layer in resnet-like")
parser.add_argument("--block_type", type=str, default="basic",
help="building block for network, e.g., basic or bottlenect")
parser.add_argument("--attention_type", type=str, default="none",
help="attention type in building block (possible choices none | se | cbam | simam )")
parser.add_argument("--attention_param", type=float, default=4,
help="attention parameter (reduction in CBAM and SE, e_lambda in simam)")
# Dataset settings
parser.add_argument("--dataset", type=str, default="cifar10",
help="training dataset (default: cifar10)")
parser.add_argument("--dataset_dir", type=str, default="data",
help="data set path (default: data)")
parser.add_argument("--workers", default=16, type=int,
help="number of data loading works")
# Optimizion settings
parser.add_argument("--gpu_ids", default="0",
help="gpus to use, e.g. 0-3 or 0,1,2,3")
parser.add_argument("--batch_size", type=int, default=128,
help="batch size for training and validation (default: 128)")
parser.add_argument("--num_epoch", type=int, default=164,
help="number of epochs to train (default: 164)")
parser.add_argument("--resume", default="", type=str,
help="path to checkpoint for continous training (default: none)")
parser.add_argument("--optim", default="SGD",
help="optimizer")
parser.add_argument("--base_lr", type=float, default=0.1,
help="learning rate (default: 0.1)")
parser.add_argument("--beta1", default=0.9, type=float,
help="momentum for sgd, beta1 for adam")
parser.add_argument("--weight_decay", type=float, default=5e-4,
help="SGD weight decay (default: 5e-4)")
parser.add_argument("--warmup", action="store_true",
help="warmup for deeper network")
parser.add_argument("--wrn", action="store_true",
help="wider resnet for training")
# Misc
parser.add_argument("--seed", type=int, default=1,
help="random seed (default: 1)")
parser.add_argument("--disp_iter", type=int, default=100,
help="frequence to display training status (default: 100)")
parser.add_argument("--ckpt", default="./ckpts/",
help="folder to output checkpoints")
args = parser.parse_args()
args.gpu_ids = parse_gpus(args.gpu_ids)
args.ckpt += args.dataset
args.ckpt += "-" + args.arch
args.ckpt += "-" + args.block_type
if args.attention_type.lower() != "none":
args.ckpt += "-" + args.attention_type
if args.attention_type.lower() != "none":
args.ckpt += "-param" + str(args.attention_param)
args.ckpt += "-nfilters" + str(args.num_base_filters)
args.ckpt += "-expansion" + str(args.expansion)
args.ckpt += "-baselr" + str(args.base_lr)
args.ckpt += "-rseed" + str(args.seed)
for key, val in vars(args).items():
print("{:16} {}".format(key, val))
if not os.path.isdir(args.ckpt):
os.makedirs(args.ckpt)
# write to file
args.log_file = open(os.path.join(args.ckpt, "log_file.txt"), mode="w")
random.seed(args.seed)
torch.manual_seed(args.seed)
main(args)
args.log_file.close()