forked from spytensor/prepare_detection_dataset
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcsv2voc.py
120 lines (112 loc) · 4.38 KB
/
csv2voc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os
import numpy as np
import codecs
import pandas as pd
import json
from glob import glob
import cv2
import shutil
from sklearn.model_selection import train_test_split
from IPython import embed
#1.标签路径
csv_file = "../csv/train_labels.csv"
saved_path = "./VOCdevkit/VOC2007/" #保存路径
image_save_path = "./JPEGImages/"
image_raw_parh = "../csv/images/"
#2.创建要求文件夹
if not os.path.exists(saved_path + "Annotations"):
os.makedirs(saved_path + "Annotations")
if not os.path.exists(saved_path + "JPEGImages/"):
os.makedirs(saved_path + "JPEGImages/")
if not os.path.exists(saved_path + "ImageSets/Main/"):
os.makedirs(saved_path + "ImageSets/Main/")
#3.获取待处理文件
total_csv_annotations = {}
annotations = pd.read_csv(csv_file,header=None).values
for annotation in annotations:
key = annotation[0].split(os.sep)[-1]
value = np.array([annotation[1:]])
if key in total_csv_annotations.keys():
total_csv_annotations[key] = np.concatenate((total_csv_annotations[key],value),axis=0)
else:
total_csv_annotations[key] = value
#4.读取标注信息并写入 xml
for filename,label in total_csv_annotations.items():
#embed()
height, width, channels = cv2.imread(image_raw_parh + filename).shape
#embed()
with codecs.open(saved_path + "Annotations/"+filename.replace(".jpg",".xml"),"w","utf-8") as xml:
xml.write('<annotation>\n')
xml.write('\t<folder>' + 'UAV_data' + '</folder>\n')
xml.write('\t<filename>' + filename + '</filename>\n')
xml.write('\t<source>\n')
xml.write('\t\t<database>The UAV autolanding</database>\n')
xml.write('\t\t<annotation>UAV AutoLanding</annotation>\n')
xml.write('\t\t<image>flickr</image>\n')
xml.write('\t\t<flickrid>NULL</flickrid>\n')
xml.write('\t</source>\n')
xml.write('\t<owner>\n')
xml.write('\t\t<flickrid>NULL</flickrid>\n')
xml.write('\t\t<name>ChaojieZhu</name>\n')
xml.write('\t</owner>\n')
xml.write('\t<size>\n')
xml.write('\t\t<width>'+ str(width) + '</width>\n')
xml.write('\t\t<height>'+ str(height) + '</height>\n')
xml.write('\t\t<depth>' + str(channels) + '</depth>\n')
xml.write('\t</size>\n')
xml.write('\t\t<segmented>0</segmented>\n')
if isinstance(label,float):
## 空白
xml.write('</annotation>')
continue
for label_detail in label:
labels = label_detail
#embed()
xmin = int(labels[0])
ymin = int(labels[1])
xmax = int(labels[2])
ymax = int(labels[3])
label_ = labels[-1]
if xmax <= xmin:
pass
elif ymax <= ymin:
pass
else:
xml.write('\t<object>\n')
xml.write('\t\t<name>'+label_+'</name>\n')
xml.write('\t\t<pose>Unspecified</pose>\n')
xml.write('\t\t<truncated>1</truncated>\n')
xml.write('\t\t<difficult>0</difficult>\n')
xml.write('\t\t<bndbox>\n')
xml.write('\t\t\t<xmin>' + str(xmin) + '</xmin>\n')
xml.write('\t\t\t<ymin>' + str(ymin) + '</ymin>\n')
xml.write('\t\t\t<xmax>' + str(xmax) + '</xmax>\n')
xml.write('\t\t\t<ymax>' + str(ymax) + '</ymax>\n')
xml.write('\t\t</bndbox>\n')
xml.write('\t</object>\n')
print(filename,xmin,ymin,xmax,ymax,labels)
xml.write('</annotation>')
#6.split files for txt
txtsavepath = saved_path + "ImageSets/Main/"
ftrainval = open(txtsavepath+'/trainval.txt', 'w')
ftest = open(txtsavepath+'/test.txt', 'w')
ftrain = open(txtsavepath+'/train.txt', 'w')
fval = open(txtsavepath+'/val.txt', 'w')
total_files = glob(saved_path+"./Annotations/*.xml")
total_files = [i.split("/")[-1].split(".xml")[0] for i in total_files]
#test_filepath = ""
for file in total_files:
ftrainval.write(file + "\n")
# move images to voc JPEGImages folder
for image in glob(image_raw_parh+"/*.jpg"):
shutil.copy(image,saved_path+image_save_path)
train_files,val_files = train_test_split(total_files,test_size=0.15,random_state=42)
for file in train_files:
ftrain.write(file + "\n")
#val
for file in val_files:
fval.write(file + "\n")
ftrainval.close()
ftrain.close()
fval.close()
#ftest.close()