-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpca.py
153 lines (108 loc) · 4.03 KB
/
pca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Importing the libraries
import matplotlib.pyplot as plt
import pandas as pd
from sklearn import metrics
from sklearn.metrics import confusion_matrix
# Importing the dataset
dataset = pd.read_csv('data.csv')
X = dataset.iloc[:, 2:32].values
y = dataset.iloc[:, 1].values
#categorical data
from sklearn.preprocessing import LabelEncoder
labelencoder_y = LabelEncoder()
y = labelencoder_y.fit_transform(y)
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
# Applying PCA
from sklearn.decomposition import PCA
pca = PCA(n_components =None)
X_train = pca.fit_transform(X_train)
X_test = pca.transform(X_test)
#logistic regression
from sklearn.linear_model import LogisticRegression
classifier=LogisticRegression()
classifier.fit(X_train,y_train)
y_pred=classifier.predict(X_test)
accuracy_lr=metrics.accuracy_score(y_test,y_pred)
print("Logistic Regression:",accuracy_lr)
#Making the Confusion Matrix
cm=confusion_matrix(y_test,y_pred)
print(cm)
#knn classifier(using eucledian distance)
from sklearn.neighbors import KNeighborsClassifier
classifier_knn=KNeighborsClassifier(n_neighbors=5,metric='minkowski', p=2)
classifier_knn.fit(X_train,y_train)
y_pred_knn=classifier_knn.predict(X_test)
accuracy_knn=metrics.accuracy_score(y_test,y_pred_knn)
print("KNN Classifier:",accuracy_knn)
cm=confusion_matrix(y_test,y_pred_knn)
print(cm)
# Fitting Decision Tree Classification to the Training set
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier(criterion = 'entropy')
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
accuracy_dt=metrics.accuracy_score(y_test,y_pred)
print("Decision Tree:",accuracy_dt)
# Making the Confusion Matrix
cm = confusion_matrix(y_test, y_pred)
print(cm)
# Fitting SVM to the Training set
from sklearn.svm import SVC
classifier = SVC(kernel = 'linear')
classifier.fit(X_train, y_train)
# Predicting the Test set results
y_pred = classifier.predict(X_test)
accuracy_svm=metrics.accuracy_score(y_test,y_pred)
print("SVM:",accuracy_svm)
# Making the Confusion Matrix
cm = confusion_matrix(y_test, y_pred)
print(cm)
# Fitting Kernel SVM to the Training set
from sklearn.svm import SVC
classifier = SVC(kernel = 'rbf', random_state = 0)
classifier.fit(X_train, y_train)
# Predicting the Test set results
y_pred = classifier.predict(X_test)
accuracy_ksvm=metrics.accuracy_score(y_test,y_pred)
print("Kernel SVM:",accuracy_ksvm)
# Making the Confusion Matrix
cm = confusion_matrix(y_test, y_pred)
print(cm)
# Fitting Naive Bayes to the Training set
from sklearn.naive_bayes import GaussianNB
classifier = GaussianNB()
classifier.fit(X_train, y_train)
# Predicting the Test set results
y_pred = classifier.predict(X_test)
accuracy_nb=metrics.accuracy_score(y_test,y_pred)
print("Naive Bayes:",accuracy_nb)
# Making the Confusion Matrix
cm = confusion_matrix(y_test, y_pred)
print(cm)
# Fitting Random Forest Classification to the Training set
from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators = 10, criterion = 'entropy', random_state = 0)
classifier.fit(X_train, y_train)
# Predicting the Test set results
y_pred = classifier.predict(X_test)
accuracy_rf=metrics.accuracy_score(y_test,y_pred)
print("Random Forest",accuracy_rf)
# Making the Confusion Matrix
cm = confusion_matrix(y_test, y_pred)
print(cm)
acc=[accuracy_lr,accuracy_knn,accuracy_dt,accuracy_nb,accuracy_svm,accuracy_ksvm,accuracy_rf]
plt.hist(acc)
plt.show()
ab=[0,1,2,3,4,5,6]
plt.scatter(ab, acc, color = 'red')
plt.title('Accuracy plot')
plt.xlabel('Classifiers: 0:lr,1:knn,2:dt,3:nb,4:svm,5:ksvm,6:rf')
plt.ylabel('Accuracy')
plt.show()