forked from kellenf/TSP_collection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGA.py
executable file
·284 lines (253 loc) · 9.49 KB
/
GA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import random
import math
import numpy as np
import matplotlib.pyplot as plt
class GA(object):
def __init__(self, num_city, num_total, iteration, data):
self.num_city = num_city
self.num_total = num_total
self.scores = []
self.iteration = iteration
self.location = data
self.ga_choose_ratio = 0.2
self.mutate_ratio = 0.05
# fruits中存每一个个体是下标的list
self.dis_mat = self.compute_dis_mat(num_city, data)
self.fruits = self.greedy_init(self.dis_mat,num_total,num_city)
# 显示初始化后的最佳路径
scores = self.compute_adp(self.fruits)
sort_index = np.argsort(-scores)
init_best = self.fruits[sort_index[0]]
init_best = self.location[init_best]
# 存储每个iteration的结果,画出收敛图
self.iter_x = [0]
self.iter_y = [1. / scores[sort_index[0]]]
def random_init(self, num_total, num_city):
tmp = [x for x in range(num_city)]
result = []
for i in range(num_total):
random.shuffle(tmp)
result.append(tmp.copy())
return result
def greedy_init(self, dis_mat, num_total, num_city):
start_index = 0
result = []
for i in range(num_total):
rest = [x for x in range(0, num_city)]
# 所有起始点都已经生成了
if start_index >= num_city:
start_index = np.random.randint(0, num_city)
result.append(result[start_index].copy())
continue
current = start_index
rest.remove(current)
# 找到一条最近邻路径
result_one = [current]
while len(rest) != 0:
tmp_min = math.inf
tmp_choose = -1
for x in rest:
if dis_mat[current][x] < tmp_min:
tmp_min = dis_mat[current][x]
tmp_choose = x
current = tmp_choose
result_one.append(tmp_choose)
rest.remove(tmp_choose)
result.append(result_one)
start_index += 1
return result
# 计算不同城市之间的距离
def compute_dis_mat(self, num_city, location):
dis_mat = np.zeros((num_city, num_city))
for i in range(num_city):
for j in range(num_city):
if i == j:
dis_mat[i][j] = np.inf
continue
a = location[i]
b = location[j]
tmp = np.sqrt(sum([(x[0] - x[1]) ** 2 for x in zip(a, b)]))
dis_mat[i][j] = tmp
return dis_mat
# 计算路径长度
def compute_pathlen(self, path, dis_mat):
try:
a = path[0]
b = path[-1]
except:
import pdb
pdb.set_trace()
result = dis_mat[a][b]
for i in range(len(path) - 1):
a = path[i]
b = path[i + 1]
result += dis_mat[a][b]
return result
# 计算种群适应度
def compute_adp(self, fruits):
adp = []
for fruit in fruits:
if isinstance(fruit, int):
import pdb
pdb.set_trace()
length = self.compute_pathlen(fruit, self.dis_mat)
adp.append(1.0 / length)
return np.array(adp)
def swap_part(self, list1, list2):
index = len(list1)
list = list1 + list2
list = list[::-1]
return list[:index], list[index:]
def ga_cross(self, x, y):
len_ = len(x)
assert len(x) == len(y)
path_list = [t for t in range(len_)]
order = list(random.sample(path_list, 2))
order.sort()
start, end = order
# 找到冲突点并存下他们的下标,x中存储的是y中的下标,y中存储x与它冲突的下标
tmp = x[start:end]
x_conflict_index = []
for sub in tmp:
index = y.index(sub)
if not (index >= start and index < end):
x_conflict_index.append(index)
y_confict_index = []
tmp = y[start:end]
for sub in tmp:
index = x.index(sub)
if not (index >= start and index < end):
y_confict_index.append(index)
assert len(x_conflict_index) == len(y_confict_index)
# 交叉
tmp = x[start:end].copy()
x[start:end] = y[start:end]
y[start:end] = tmp
# 解决冲突
for index in range(len(x_conflict_index)):
i = x_conflict_index[index]
j = y_confict_index[index]
y[i], x[j] = x[j], y[i]
assert len(set(x)) == len_ and len(set(y)) == len_
return list(x), list(y)
def ga_parent(self, scores, ga_choose_ratio):
sort_index = np.argsort(-scores).copy()
sort_index = sort_index[0:int(ga_choose_ratio * len(sort_index))]
parents = []
parents_score = []
for index in sort_index:
parents.append(self.fruits[index])
parents_score.append(scores[index])
return parents, parents_score
def ga_choose(self, genes_score, genes_choose):
sum_score = sum(genes_score)
score_ratio = [sub * 1.0 / sum_score for sub in genes_score]
rand1 = np.random.rand()
rand2 = np.random.rand()
for i, sub in enumerate(score_ratio):
if rand1 >= 0:
rand1 -= sub
if rand1 < 0:
index1 = i
if rand2 >= 0:
rand2 -= sub
if rand2 < 0:
index2 = i
if rand1 < 0 and rand2 < 0:
break
return list(genes_choose[index1]), list(genes_choose[index2])
def ga_mutate(self, gene):
path_list = [t for t in range(len(gene))]
order = list(random.sample(path_list, 2))
start, end = min(order), max(order)
tmp = gene[start:end]
# np.random.shuffle(tmp)
tmp = tmp[::-1]
gene[start:end] = tmp
return list(gene)
def ga(self):
# 获得优质父代
scores = self.compute_adp(self.fruits)
# 选择部分优秀个体作为父代候选集合
parents, parents_score = self.ga_parent(scores, self.ga_choose_ratio)
tmp_best_one = parents[0]
tmp_best_score = parents_score[0]
# 新的种群fruits
fruits = parents.copy()
# 生成新的种群
while len(fruits) < self.num_total:
# 轮盘赌方式对父代进行选择
gene_x, gene_y = self.ga_choose(parents_score, parents)
# 交叉
gene_x_new, gene_y_new = self.ga_cross(gene_x, gene_y)
# 变异
if np.random.rand() < self.mutate_ratio:
gene_x_new = self.ga_mutate(gene_x_new)
if np.random.rand() < self.mutate_ratio:
gene_y_new = self.ga_mutate(gene_y_new)
x_adp = 1. / self.compute_pathlen(gene_x_new, self.dis_mat)
y_adp = 1. / self.compute_pathlen(gene_y_new, self.dis_mat)
# 将适应度高的放入种群中
if x_adp > y_adp and (not gene_x_new in fruits):
fruits.append(gene_x_new)
elif x_adp <= y_adp and (not gene_y_new in fruits):
fruits.append(gene_y_new)
self.fruits = fruits
return tmp_best_one, tmp_best_score
def run(self):
BEST_LIST = None
best_score = -math.inf
self.best_record = []
for i in range(1, self.iteration + 1):
tmp_best_one, tmp_best_score = self.ga()
self.iter_x.append(i)
self.iter_y.append(1. / tmp_best_score)
if tmp_best_score > best_score:
best_score = tmp_best_score
BEST_LIST = tmp_best_one
self.best_record.append(1./best_score)
print(i,1./best_score)
print(1./best_score)
return self.location[BEST_LIST], 1. / best_score
# 读取数据
def read_tsp(path):
lines = open(path, 'r').readlines()
assert 'NODE_COORD_SECTION\n' in lines
index = lines.index('NODE_COORD_SECTION\n')
data = lines[index + 1:-1]
tmp = []
for line in data:
line = line.strip().split(' ')
if line[0] == 'EOF':
continue
tmpline = []
for x in line:
if x == '':
continue
else:
tmpline.append(float(x))
if tmpline == []:
continue
tmp.append(tmpline)
data = tmp
return data
data = read_tsp('data/st70.tsp')
data = np.array(data)
data = data[:, 1:]
Best, Best_path = math.inf, None
model = GA(num_city=data.shape[0], num_total=25, iteration=500, data=data.copy())
path, path_len = model.run()
if path_len < Best:
Best = path_len
Best_path = path
# 加上一行因为会回到起点
fig, axs = plt.subplots(2, 1, sharex=False, sharey=False)
axs[0].scatter(Best_path[:, 0], Best_path[:,1])
Best_path = np.vstack([Best_path, Best_path[0]])
axs[0].plot(Best_path[:, 0], Best_path[:, 1])
axs[0].set_title('规划结果')
iterations = range(model.iteration)
best_record = model.best_record
axs[1].plot(iterations, best_record)
axs[1].set_title('收敛曲线')
plt.show()