forked from HirokiNakahara/GUINNESS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunction_integer_conv2d.py
346 lines (277 loc) · 12.6 KB
/
function_integer_conv2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import numpy
from six import moves
from chainer import cuda
from chainer import function
from chainer.utils import conv
from chainer.utils import type_check
def _kern():
return cuda.elementwise(
'T x', 'T y',
'y = x >= 0 ? 1 : -1',
'binarize')
def _as_mat(x):
if x.ndim == 2:
return x
return x.reshape(len(x), -1)
if cuda.cudnn_enabled:
cudnn = cuda.cudnn
libcudnn = cuda.cudnn.cudnn
_cudnn_version = libcudnn.getVersion()
_fwd_pref = libcudnn.CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT
if _cudnn_version >= 4000:
_bwd_filter_pref = \
libcudnn.CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT
_bwd_data_pref = \
libcudnn.CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT
def _check_cudnn_acceptable_type(x_dtype, W_dtype):
return x_dtype == W_dtype and (
_cudnn_version >= 3000 or x_dtype != numpy.float16)
def _pair(x):
if hasattr(x, '__getitem__'):
return x
return x, x
class IntegerConv2DFunction(function.Function):
def __init__(self, stride=1, pad=0, use_cudnn=True, cover_all=False):
self.sy, self.sx = _pair(stride)
self.ph, self.pw = _pair(pad)
self.use_cudnn = use_cudnn
self.cover_all = cover_all
def check_type_forward(self, in_types):
n_in = in_types.size()
type_check.expect(2 <= n_in, n_in <= 3)
x_type = in_types[0]
w_type = in_types[1]
type_check.expect(
x_type.dtype.kind == 'f',
w_type.dtype.kind == 'f',
x_type.ndim == 4,
w_type.ndim == 4,
x_type.shape[1] == w_type.shape[1],
)
if n_in.eval() == 3:
b_type = in_types[2]
type_check.expect(
b_type.dtype == x_type.dtype,
b_type.ndim == 1,
b_type.shape[0] == w_type.shape[0],
)
def forward_cpu(self, inputs):
x, W = inputs[:2]
b = inputs[2] if len(inputs) == 3 else None
kh, kw = W.shape[2:]
self.col = conv.im2col_cpu(
x, kh, kw, self.sy, self.sx, self.ph, self.pw,
cover_all=self.cover_all)
Wb = numpy.where(W>=0,1,-1).astype(W.dtype, copy=False)
y = numpy.tensordot(
self.col, Wb, ((1, 2, 3), (1, 2, 3))).astype(x.dtype, copy=False)
if b is not None:
y += b
return numpy.rollaxis(y, 3, 1),
def forward_gpu(self, inputs):
x, W = inputs[:2]
b = inputs[2] if len(inputs) == 3 else None
out_c, _, kh, kw = W.shape
n, c, h, w = x.shape
out_h = conv.get_conv_outsize(h, kh, self.sy, self.ph,
cover_all=self.cover_all)
out_w = conv.get_conv_outsize(w, kw, self.sx, self.pw,
cover_all=self.cover_all)
y = cuda.cupy.empty((n, out_c, out_h, out_w), dtype=x.dtype)
if (self.cover_all and cuda.cudnn_enabled and self.use_cudnn and
_check_cudnn_acceptable_type(x.dtype, W.dtype)):
x = cuda.cupy.ascontiguousarray(x)
W = cuda.cupy.ascontiguousarray(W)
if b is not None:
b = cuda.cupy.ascontiguousarray(b)
handle = cudnn.get_handle()
x_desc = cudnn.create_tensor_descriptor(x)
y_desc = cudnn.create_tensor_descriptor(y)
self.filter_desc = cudnn.create_filter_descriptor(W)
self.conv_desc = cudnn.create_convolution_descriptor(
(self.ph, self.pw), (self.sy, self.sx))
if b is not None:
self.bias_desc = cudnn.create_tensor_descriptor(
b[None, :, None, None])
workspace_size = cuda.get_max_workspace_size()
workspace = cuda.cupy.empty((workspace_size,), dtype='b')
algo = libcudnn.getConvolutionForwardAlgorithm(
handle, x_desc.value, self.filter_desc.value,
self.conv_desc.value, y_desc.value, _fwd_pref,
workspace_size)
oz_dtype = 'd' if x.dtype == 'd' else 'f'
one = numpy.array(1, dtype=oz_dtype).ctypes
zero = numpy.array(0, dtype=oz_dtype).ctypes
libcudnn.convolutionForward(
handle, one.data, x_desc.value, x.data.ptr,
self.filter_desc.value, W.data.ptr, self.conv_desc.value,
algo, workspace.data.ptr, workspace_size, zero.data,
y_desc.value, y.data.ptr)
# TODO(beam2d): Support unshared bias
if b is not None:
cudnn.add_tensor(
handle, one.data, self.bias_desc.value, b.data.ptr,
one.data, y_desc.value, y.data.ptr)
else:
# Implementation using im2col
Xb = x
self.col = conv.im2col_gpu(
Xb, kh, kw, self.sy, self.sx, self.ph, self.pw,
cover_all=self.cover_all)
W_mat = W.reshape(out_c, -1)
col_mats = self.col.reshape(n, -1, out_h * out_w)
Wb_mat = _kern()(W_mat)
y_mats = y.reshape(n, out_c, -1)
# TODO(beam2d): Use streams or batch gemm
for i in moves.range(n):
y_mats[i] = Wb_mat.dot(col_mats[i])
# TODO(beam2d): Support unshared bias
if b is not None:
y += b[:, None, None]
return y,
def backward_cpu(self, inputs, grad_outputs):
x, W = inputs[:2]
b = inputs[2] if len(inputs) == 3 else None
gy = grad_outputs[0]
h, w = x.shape[2:]
gW = numpy.tensordot(
gy, self.col, ((0, 2, 3), (0, 4, 5))).astype(W.dtype, copy=False)
Wb = numpy.where(W>=0,1,-1).astype(W.dtype, copy=False)
gcol = numpy.tensordot(Wb, gy, (0, 1)).astype(x.dtype, copy=False)
gcol = numpy.rollaxis(gcol, 3)
gx = conv.col2im_cpu(gcol, self.sy, self.sx, self.ph, self.pw, h, w)
if b is None:
return gx, gW
else:
gb = gy.sum(axis=(0, 2, 3))
return gx, gW, gb
def backward_gpu(self, inputs, grad_outputs):
x, W = inputs[:2]
b = inputs[2] if len(inputs) == 3 else None
gy = grad_outputs[0]
_, out_c, out_h, out_w = gy.shape
n, c, h, w = x.shape
kh, kw = W.shape[2:]
gW = cuda.cupy.empty_like(W)
if (self.cover_all and cuda.cudnn_enabled and self.use_cudnn and
_check_cudnn_acceptable_type(x.dtype, W.dtype)):
x = cuda.cupy.ascontiguousarray(x)
W = cuda.cupy.ascontiguousarray(W)
gy = cuda.cupy.ascontiguousarray(gy)
handle = cudnn.get_handle()
x_desc = cudnn.create_tensor_descriptor(x)
gy_desc = cudnn.create_tensor_descriptor(gy)
oz_dtype = 'd' if x.dtype == 'd' else 'f'
one = numpy.array(1, dtype=oz_dtype).ctypes
zero = numpy.array(0, dtype=oz_dtype).ctypes
gx = cuda.cupy.empty_like(x)
if _cudnn_version >= 4000:
workspace_size = cuda.get_max_workspace_size()
workspace = cuda.cupy.empty((workspace_size,), dtype='b')
algo = libcudnn.getConvolutionBackwardFilterAlgorithm(
handle, x_desc.value, gy_desc.value,
self.conv_desc.value, self.filter_desc.value,
_bwd_filter_pref, workspace_size)
libcudnn.convolutionBackwardFilter_v3(
handle, one.data, x_desc.value, x.data.ptr,
gy_desc.value, gy.data.ptr, self.conv_desc.value,
algo, workspace.data.ptr, workspace_size,
zero.data, self.filter_desc.value, gW.data.ptr)
algo = libcudnn.getConvolutionBackwardDataAlgorithm(
handle, self.filter_desc.value, gy_desc.value,
self.conv_desc.value, x_desc.value, _bwd_data_pref,
workspace_size)
libcudnn.convolutionBackwardData_v3(
handle, one.data, self.filter_desc.value, W.data.ptr,
gy_desc.value, gy.data.ptr, self.conv_desc.value,
algo, workspace.data.ptr, workspace_size,
zero.data, x_desc.value, gx.data.ptr)
else:
libcudnn.convolutionBackwardFilter_v2(
handle, one.data, x_desc.value, x.data.ptr,
gy_desc.value, gy.data.ptr, self.conv_desc.value,
zero.data, self.filter_desc.value, gW.data.ptr)
libcudnn.convolutionBackwardData_v2(
handle, one.data, self.filter_desc.value, W.data.ptr,
gy_desc.value, gy.data.ptr, self.conv_desc.value,
zero.data, x_desc.value, gx.data.ptr)
if b is not None:
gb = cuda.cupy.empty_like(b)
libcudnn.convolutionBackwardBias(
handle, one.data, gy_desc.value, gy.data.ptr,
zero.data, self.bias_desc.value, gb.data.ptr)
else:
gW_mat = gW.reshape(out_c, c * kh * kw)
col_mats = self.col.reshape(n, c * kh * kw, out_h * out_w)
gy_mats = gy.reshape(n, out_c, out_h * out_w)
# TODO(beam2d): Use streams or batch gemm
gW_mat[...] = 0
for i in moves.range(n):
gW_mat += cuda.cupy.dot(gy_mats[i], col_mats[i].T)
W_mat = W.reshape(out_c, -1)
Wb_mat = _kern()(W_mat)
gcol = cuda.cupy.empty_like(self.col)
gcol_mats = gcol.reshape(n, c * kh * kw, out_h * out_w)
for i in moves.range(n):
gcol_mats[i] = cuda.cupy.dot(Wb_mat.T, gy_mats[i])
gx = conv.col2im_gpu(
gcol, self.sy, self.sx, self.ph, self.pw, h, w)
if b is not None:
gb = gy.sum(axis=(0, 2, 3))
if b is None:
return gx, gW
else:
return gx, gW, gb
def func_convolution_2d(x, W, b=None, stride=1, pad=0, use_cudnn=True,
cover_all=False):
"""Two-dimensional convolution function.
This is an implementation of two-dimensional convolution in ConvNets.
It takes three variables: the input image ``x``, the filter weight ``W``,
and the bias vector ``b``.
Notation: here is a notation for dimensionalities.
- :math:`n` is the batch size.
- :math:`c_I` and :math:`c_O` are the number of the input and output,
respectively.
- :math:`h` and :math:`w` are the height and width of the input image,
respectively.
- :math:`k_H` and :math:`k_W` are the height and width of the filters,
respectively.
Args:
x (~chainer.Variable): Input variable of shape :math:`(n, c_I, h, w)`.
W (~chainer.Variable): Weight variable of shape
:math:`(c_O, c_I, k_H, k_W)`.
b (~chainer.Variable): Bias variable of length :math:`c_O` (optional).
stride (int or pair of ints): Stride of filter applications.
``stride=s`` and ``stride=(s, s)`` are equivalent.
pad (int or pair of ints): Spatial padding width for input arrays.
``pad=p`` and ``pad=(p, p)`` are equivalent.
use_cudnn (bool): If ``True``, then this function uses cuDNN if
available.
cover_all (bool): If True, all spatial locations are convoluted into
some output pixels. It may make the output size larger.
Returns:
~chainer.Variable: Output variable.
The two-dimensional convolution function is defined as follows.
Then the ``Convolution2D`` function computes correlations between filters
and patches of size :math:`(k_H, k_W)` in ``x``.
Note that correlation here is equivalent to the inner product between
expanded vectors.
Patches are extracted at positions shifted by multiples of ``stride`` from
the first position ``-pad`` for each spatial axis.
The right-most (or bottom-most) patches do not run over the padded spatial
size.
Let :math:`(s_Y, s_X)` be the stride of filter application, and
:math:`(p_H, p_W)` the spatial padding size. Then, the output size
:math:`(h_O, w_O)` is determined by the following equations:
.. math::
h_O &= (h + 2p_H - k_H) / s_Y + 1,\\\\
w_O &= (w + 2p_W - k_W) / s_X + 1.
If the bias vector is given, then it is added to all spatial locations of
the output of convolution.
.. seealso:: :class:`Convolution2D`
"""
func = IntegerConv2DFunction(stride, pad, use_cudnn, cover_all)
if b is None:
return func(x, W)
else:
return func(x, W, b)