-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMeasurePSFres_new.py
1113 lines (909 loc) · 43.1 KB
/
MeasurePSFres_new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# coding: utf-8
# In[1]:
#! /usr/bin/env python
# Run PSFEx for a set of exposures, including making any necessarily input files.
# It also logs errors into a psf blacklist file.
# Functions stolen from:
# https://github.com/rmjarvis/DESWL/blob/master/psf/run_piff.py
# Probably lots of extraneous parameters and flags as well...
get_ipython().system('jupyter nbconvert --to script MeasurePSFres_new.ipynb')
from __future__ import print_function
import os
import sys
import shutil
import logging
import datetime
import traceback
import numpy as np
import copy
import glob
import time
import fitsio
#import pixmappy
import pandas
import galsim
import galsim.des
import piff
import ngmix
from astropy.io import fits
import wget
from astropy.wcs import WCS
from ngmix import priors, joint_prior
import random
import pylab as P
import matplotlib
#matplotlib.use('Agg') # needs to be done before import pyplot
import matplotlib.pyplot as plt
# In[2]:
# Don't skip columns in describe output (default is 20, which is a bit too small)
pandas.options.display.max_columns = 200
# Define the parameters for the blacklist
# AC note: a lot of these settings are not really used for the deep fields
# currently...!
# How many stars are too few or too many?
FEW_STARS = 25
MANY_STARS_FRAC = 0.3
# How high is a high FWHM? 3.6 arcsec / 0.26 arcsec/pixel = 13.8 pixels
#HIGH_FWHM = 13.8
HIGH_FWHM = 3.6 # (We switched to measuring this in arcsec)
NSIG_T_OUTLIER = 4 # How many sigma for a chip to be an outlier in <T>.
# Not copying flag vals for blacklist and psf catalog...
rng = galsim.BaseDeviate(1234)
MAX_CENTROID_SHIFT = 1.0
NOT_USED = 1
BAD_MEASUREMENT = 2
CENTROID_SHIFT = 4
OUTLIER = 8
FAILURE = 32
RESERVED = 64
NOT_STAR = 128
BLACK_FLAG_FACTOR = 512 # blacklist flags are this times the original exposure blacklist flag
# blacklist flags go up to 64,
# Not copying array to convert ccdnum to detpos (this may or may not
# be important)
# In[3]:
#put the stars data into a dataframe
def read_psfex_stars(star_file, cat_file, logger): #combination of read findstars and read_image_header in MJ script
"""Read the PSFEx star selection
"""
print(star_file)
if not os.path.exists(star_file):
return None
#dat = fits.open(star_file)
#print(dat[2].columns)
#dat = fits.open(cat_file)
#print(dat[2].columns)
# Read the output and make a DataFrome with the contents
data = fitsio.read(star_file, ext=2)
data = data.astype(data.dtype.newbyteorder('='))
print("TESTING")
flags_psf = data['FLAGS_PSF']
source_id = data['SOURCE_NUMBER']
x_im = data['X_IMAGE']
y_im = data['Y_IMAGE']
df = pandas.DataFrame(data={'SOURCE_NUMBER':source_id, 'X_IMAGE':x_im,
'Y_IMAGE':y_im, 'FLAGS_PSF':flags_psf})
print(df)
ntot = len(df)
nstars = df['FLAGS_PSF'].sum()
print(' found %d stars',ntot,nstars)
logger.info(' found %d stars',nstars)
#is_star = df['FLAGS_PSF'] == 1
#print
#print(' found %d good stars', len(is_star))
# Add on some extra information from the sextractor catalog
sdata = fitsio.read(cat_file, 2)
#print(data['X_IMAGE'])
#print(sdata['X_IMAGE'])
assert len(data) == len(sdata)
#print("magaper")
#print(sdata['MAG_APER'])
#print(sdata['MAG_APER'].shape)
df['mag_aper'] = sdata['MAG_APER'][:,8]
df['flux_radius'] = sdata['FLUX_RADIUS']
#df['mag_auto'] = sdata['MAG_AUTO']
#df = df[df.FLAGS_PSF == 0] #this line doesn't work!!!!!!!
#print(' found %d good stars', len(df))
plt.scatter(sdata['MAG_APER'][:,8], sdata['FLUX_RADIUS'],c='blue',label='FLAGS_PSF!=0 : %d' % (len(sdata['FLUX_RADIUS'])), marker='.',s=4) # , colormap='viridis')
plt.scatter(sdata['MAG_APER'][np.where(data['FLAGS_PSF'] == 0),8], sdata['FLUX_RADIUS'][np.where(data['FLAGS_PSF'] == 0)],c='red',label='FLAGS_PSF==0 :%d' % (len(sdata['FLUX_RADIUS'][np.where(data['FLAGS_PSF'] == 0)])), marker='.',s=4) # , colormap='viridis')
#plt.scatter(sdata['MAG_AUTO'], sdata['FLUX_RADIUS'],c='blue',label='FLAGS_PSF!=0 : %d' % (len(sdata['FLUX_RADIUS'])), marker='.',s=4) # , colormap='viridis')
#plt.scatter(sdata['MAG_AUTO'][np.where(data['FLAGS_PSF'] == 0)], sdata['FLUX_RADIUS'][np.where(data['FLAGS_PSF'] == 0)],c='red',label='FLAGS_PSF==0 :%d' % (len(sdata['FLUX_RADIUS'][np.where(data['FLAGS_PSF'] == 0)])), marker='.',s=4) # , colormap='viridis')
#plt.scatter(df['mag_aper'], df['flux_radius'], c='red',label='FLAGS_PSF==0', marker='.',s=4) # , colormap='viridis')
plt.xlim((10,28))
plt.ylim(0,10)
#axs2[i].legend(sexstar['FLAGS_PSF'])
plt.ylabel('FLUX_RADIUS')
plt.xlabel('MAG_APER[:,8]')
#plt.xlabel('MAG_AUTO')
plt.title('%s'% band)
plt.legend()
plt.show()
return df
# In[4]:
#this is just a dublicate from the end in order to test why my mag_apers for "good" galaxies were higher than expected
"""
# Change locations to yours
cdir = '/global/cscratch1/sd/aamon/DEEP/UVista'
cdir2= '/global/cscratch1/sd/amichoi/UltraVISTA'
#band = "J" #H, Ks, Y
bands=["J" ]#, "H", "Ks", "Y"]
for band in bands:
print(band)
pf = '%s/psf/UVISTA_%s_21_01_16_psfcat.psf' % (cdir2, band) # PSFEx image
sf= '%s/psf/UVISTA_%s_21_01_16_psfex-starlist.fits' % (cdir2, band) #list of stars made from Sextractor and PSFEx
cf = '%s/cat/UVISTA_%s_21_01_16_psfcat.fits' % (cdir2, band) #the output from extractor
im_f = '%s/UVISTA_%s_21_01_16_allpaw_skysub_015_dr3_rc_v5.fits' % (cdir, band) #VIDEO_H_10_34.31_-4.80.cleaned.fits
wt_f = '%s/UVISTA_%s_21_01_16_allpaw_skysub_015_dr3_rc_v5.weight.fits'%(cdir, band)
full_image = galsim.fits.read(im_f, hdu=0)
wcs = full_image.wcs
hdu = 0
f = fitsio.FITS(im_f)
header_list = f[hdu].read_header_list()
header_list = [ d for d in header_list if 'CONTINUE' not in d['name'] ]
h = fitsio.FITSHDR(header_list)
#print(h)
fwhm = h['PSF_FWHM']
magzp = 30.0
mmlogging_level = logging.INFO
logger = logging.getLogger('size_residual')
df = read_psfex_stars(sf, cf, magzp, logger)
"""
# In[4]:
def make_ngmix_prior(T, pixel_scale):
# centroid is 1 pixel gaussian in each direction
cen_prior=priors.CenPrior(0.0, 0.0, pixel_scale, pixel_scale)
#print("1 ", cen_prior)
# g is Bernstein & Armstrong prior with sigma = 0.1
gprior=priors.GPriorBA(0.1)
#print("2 ", gprior)
#print("2b ", T)
#print(priors.LogNormal(T, 0.2))
# T is log normal with width 0.2
Tprior=priors.LogNormal(T, 0.2)
#print("3 ", Tprior)
# flux is the only uninformative prior
Fprior=priors.FlatPrior(-10.0, 1.e10)
#print("4 ", Fprior)
prior=joint_prior.PriorSimpleSep(cen_prior, gprior, Tprior, Fprior)
return prior
def ngmix_fit(im, wt, fwhm, x, y, logger, psfflag):
flag = 0
dx, dy, g1, g2, flux = 0., 0., 0., 0., 0.
T_guess = (fwhm / 2.35482)**2 * 2.
T = T_guess
#print('fwhm = %s, T_guess = %s'%(fwhm, T_guess))
if psfflag==0:
#hsm_dx,hsm_dy,hsm_g1,hsm_g2,hsm_T,hsm_flux,hsm_flag = hsm(im, None, logger)
#logger.info('hsm: %s, %s, %s, %s, %s, %s, %s',hsm_dx,hsm_dy,hsm_g1,hsm_g2,hsm_T,hsm_flux,hsm_flag)
#if hsm_flag != 0:
#print('hsm: ',g1,g2,T,flux,hsm_flag)
#print('Bad hsm measurement. Reverting to g=(0,0) and T=T_guess = %s'%(T_guess))
#T = T_guess
#elif np.abs(np.log(T/T_guess)) > 0.5:
#print('hsm: ',g1,g2,T,flux,hsm_flag)
#print('T = %s is not near T_guess = %s. Reverting to T_guess'%(T,T_guess))
#T = T_guess
#print("before wcs.local")
#print(im.wcs.local)
#print("before im.center")
#print(im.true_center)
#print("this line ", im.wcs.local(im.true_center))
wcs = im.wcs.local(im.true_center)
#print(wcs)
try:
#print("going to make prior", T,wcs.minLinearScale())
prior = make_ngmix_prior(T, wcs.minLinearScale())
#print("prior", prior)
if galsim.__version__ >= '1.5.1':
cen = im.true_center - im.origin
else:
cen = im.trueCenter() - im.origin()
jac = ngmix.Jacobian(wcs=wcs, x=cen.x + x - int(x+0.5), y=cen.y + y - int(y+0.5))
if wt is None:
obs = ngmix.Observation(image=im.array, jacobian=jac)
else:
obs = ngmix.Observation(image=im.array, weight=wt.array, jacobian=jac)
lm_pars = {'maxfev':4000}
runner=ngmix.bootstrap.PSFRunner(obs, 'gauss', T, lm_pars, prior=prior)
runner.go(ntry=3)
ngmix_flag = runner.fitter.get_result()['flags']
gmix = runner.fitter.get_gmix()
except Exception as e:
logger.info(e)
logger.info(' *** Bad measurement (caught exception). Mask this one.')
print(' *** Bad measurement (caught exception). Mask this one.')
flag |= BAD_MEASUREMENT
return dx,dy,g1,g2,T,flux,flag
if ngmix_flag != 0:
logger.info(' *** Bad measurement (ngmix flag = %d). Mask this one.',ngmix_flag)
flag |= BAD_MEASUREMENT
print(' *** Bad measurement (ngmix flag = %d). Mask this one.',ngmix_flag)
dx, dy = gmix.get_cen()
if dx**2 + dy**2 > MAX_CENTROID_SHIFT**2:
logger.info(' *** Centroid shifted by %f,%f in ngmix. Mask this one.',dx,dy)
flag |= CENTROID_SHIFT
print(' *** Centroid shifted by %f,%f in ngmix. Mask this one.',dx,dy)
g1, g2, T = gmix.get_g1g2T()
if abs(g1) > 0.5 or abs(g2) > 0.5:
logger.info(' *** Bad shape measurement (%f,%f). Mask this one.',g1,g2)
flag |= BAD_MEASUREMENT
flux = gmix.get_flux() / wcs.pixelArea() # flux is in ADU. Should ~ match sum of pixels
#logger.info('ngmix: %s %s %s %s %s %s %s',dx,dy,g1,g2,T,flux,flag)
return dx, dy, g1, g2, T, flux, flag
#measure_star_shapes(df,im_f,noweight=False,wcs=wcs,use_ngmix=True, fwhm=FWHM,logger=logger)
# In[5]:
def hsm(im, wt, logger):
#print('im stats: ',im.array.min(),im.array.max(),im.array.mean(),np.median(im.array))
#print('wt = ',wt)
#if wt:
#print('im stats: ',wt.array.min(),wt.array.max(),wt.array.mean(),np.median(wt.array))
flag = 0
try:
shape_data = im.FindAdaptiveMom(weight=wt, strict=False)
#print('shape_data = ',shape_data)
except Exception as e:
logger.info(e)
logger.info(' *** Bad measurement (caught exception). Mask this one.')
flag |= BAD_MEASUREMENT
if shape_data.moments_status != 0:
logger.info('status = %s',shape_data.moments_status)
logger.info(' *** Bad measurement (hsm status). Mask this one.')
flag |= BAD_MEASUREMENT
if galsim.__version__ >= '1.5.1':
dx = shape_data.moments_centroid.x - im.true_center.x
dy = shape_data.moments_centroid.y - im.true_center.y
else:
dx = shape_data.moments_centroid.x - im.trueCenter().x
dy = shape_data.moments_centroid.y - im.trueCenter().y
#print('dx, dy = ',dx,dy)
if dx**2 + dy**2 > MAX_CENTROID_SHIFT**2:
logger.info(' *** Centroid shifted by %f,%f in hsm. Mask this one.',dx,dy)
flag |= CENTROID_SHIFT
flux = shape_data.moments_amp
#print('flux = ',flux)
# Account for the image wcs
if im.wcs.isPixelScale():
g1 = shape_data.observed_shape.g1
g2 = shape_data.observed_shape.g2
T = 2 * shape_data.moments_sigma**2 * im.scale**2
#print('simple shape = ',g1,g2,T)
else:
e1 = shape_data.observed_shape.e1
e2 = shape_data.observed_shape.e2
s = shape_data.moments_sigma
#print('simple shape = ',e1,e2,s)
if galsim.__version__ >= '1.5.1':
jac = im.wcs.jacobian(im.true_center)
else:
jac = im.wcs.jacobian(im.trueCenter())
M = np.matrix( [[ 1 + e1, e2 ], [ e2, 1 - e1 ]] ) * s*s
J = jac.getMatrix()
M = J * M * J.T
e1 = (M[0,0] - M[1,1]) / (M[0,0] + M[1,1])
e2 = (2.*M[0,1]) / (M[0,0] + M[1,1])
T = M[0,0] + M[1,1]
shear = galsim.Shear(e1=e1, e2=e2)
g1 = shear.g1
g2 = shear.g2
#print('distorted shape = ',g1,g2,T)
return dx, dy, g1, g2, T, flux, flag
# In[6]:
#"Measure shapes of the raw stellar images at each location.
def measure_star_shapes(df, image_file, weight_file,noweight, wcs, use_ngmix, fwhm, logger):
logger.info('Read in stars in file: %s',image_file)
ind = df.index[df['FLAGS_PSF'] == 0]
logger.info('ind = %s',ind)
n_psf = len(ind)
logger.info('n_psf = %s',n_psf)
df['obs_dx'] = [ -999. ] * len(df)
df['obs_dy'] = [ -999. ] * len(df)
df['obs_e1'] = [ -999. ] * len(df)
df['obs_e2'] = [ -999. ] * len(df)
df['obs_T'] = [ -999. ] * len(df)
df['obs_flux'] = [ -999. ] * len(df)
df['obs_flag'] = [ NOT_STAR ] * len(df)
df.loc[ind, 'obs_flag'] = 0
if 'reserve' in df:
#print("finding reserve but I want to ignore this")
df.loc[df['reserve'], 'obs_flag'] |= RESERVED
df.loc[~df['use'] & ~df['reserve'], 'obs_flag'] |= NOT_USED
#else:
#df.loc[~df['use'], 'obs_flag'] |= NOT_USED
#df['ra'] = sdata['ALPHAWIN_J2000']
#df['dec'] = sdata['DELTAWIN_J2000']
#INSTEAD I'LL USE THE WCS AND THE X,Y TO GET RA AND DEC
full_image = galsim.fits.read(image_file, hdu=0)
w = WCS(image_file)
xall = df['X_IMAGE']
yall = df['Y_IMAGE']
#print(xall,yall)
world = w.wcs_pix2world(xall,yall,1)
#print(world)
#print(world[0])
df['ra'] = world[0]
df['dec'] = world[1]
if wcs is not None:
full_image.wcs = wcs
if not noweight:
#print("want weights! ", weight_file)
#weight_file = image_file.replace(".fits", ".weight.fits")
full_weight = galsim.fits.read(weight_file, hdu=0)
full_weight.array[full_weight.array < 0] = 0.
stamp_size = 48
for i in ind:
x = df['X_IMAGE'].iloc[i]
y = df['Y_IMAGE'].iloc[i]
#print('Measure shape for star at ',x,y)
b = galsim.BoundsI(int(x)-stamp_size/2, int(x)+stamp_size/2,
int(y)-stamp_size/2, int(y)+stamp_size/2)
b = b & full_image.bounds
im = full_image[b]
if noweight:
wt = None
else:
wt = full_weight[b]
if use_ngmix:
#print("using ngmix")
#print(df['FLAGS_PSF'][i])
dx, dy, e1, e2, T, flux, flag = ngmix_fit(im, wt, fwhm, x, y, logger,df['FLAGS_PSF'][i])
else:
dx, dy, e1, e2, T, flux, flag = hsm(im, wt, logger)
#dx, dy, e1, e2, T, flux, flag = hsm(im, wt, logger)
#print(dx, dy, e1, e2, T, flux, flag)
#logger.info('ngmix measurement: (%f,%f,%f,%f,%f,%f).',dx,dy,e1,e2,T,flux)
if np.any(np.isnan([dx,dy,e1,e2,T,flux])):
logger.info(' *** NaN detected (%f,%f,%f,%f,%f,%f).',dx,dy,e1,e2,T,flux)
flag |= BAD_MEASUREMENT
else:
df.loc[i, 'obs_dx'] = dx
df.loc[i, 'obs_dy'] = dy
df.loc[i, 'obs_e1'] = e1
df.loc[i, 'obs_e2'] = e2
df.loc[i, 'obs_T'] = T
df.loc[i, 'obs_flux'] = flux
df.loc[i, 'obs_flag'] |= flag
logger.info('final obs_flag = %s',df['obs_flag'][ind].values)
#print('df[ind] = ',df.loc[ind].describe())
#flag_outliers(df, ind, 'obs', 4., logger) # This needs to be ported...
# Any stars that weren't measurable here, don't use for PSF fitting.
df.loc[df['obs_flag']!=0, 'use'] = False
# In[7]:
def measure_psfex_shapes(df, psfex_file, image_file, weight_file, noweight, wcs, use_ngmix, fwhm, logger):
"""Measure shapes of the PSFEx solution at each location.
"""
logger.info('Read in PSFEx file: %s',psfex_file)
ind = df.index[df['FLAGS_PSF'] == 0]
logger.info('ind = %s',ind)
n_psf = len(ind)
logger.info('n_psf = %s',n_psf)
df['psfex_dx'] = [ -999. ] * len(df)
df['psfex_dy'] = [ -999. ] * len(df)
df['psfex_e1'] = [ -999. ] * len(df)
df['psfex_e2'] = [ -999. ] * len(df)
df['psfex_T'] = [ -999. ] * len(df)
df['psfex_flux'] = [ -999. ] * len(df)
df['psfex_flag'] = [ NOT_STAR ] * len(df)
df.loc[ind, 'psfex_flag'] = 0
if 'reserve' in df:
df.loc[df['reserve'], 'psfex_flag'] |= RESERVED
#df.loc[~df['use'], 'psfex_flag'] |= NOT_USED
try:
psf = galsim.des.DES_PSFEx(psfex_file, image_file)
except Exception as e:
logger.info('Caught %s',e)
df.loc[ind, 'psfex_flag'] = FAILURE
return
full_image = galsim.fits.read(image_file, hdu=0)
if wcs is not None:
full_image.wcs = wcs
if not noweight:
#print("want weights! ", weight_file)
#weight_file = image_file.replace(".fits", ".weight.fits")
full_weight = galsim.fits.read(weight_file, hdu=0)
full_weight.array[full_weight.array < 0] = 0.
stamp_size = 48
for i in ind:
x = df['X_IMAGE'].iloc[i]
y = df['Y_IMAGE'].iloc[i]
#print('Measure PSFEx model shape at ',x,y)
image_pos = galsim.PositionD(x,y)
psf_i = psf.getPSF(image_pos)
b = galsim.BoundsI(int(x)-stamp_size/2, int(x)+stamp_size/2,
int(y)-stamp_size/2, int(y)+stamp_size/2)
b = b & full_image.bounds
im = full_image[b]
im = psf_i.drawImage(image=im, method='no_pixel')
im *= df['obs_flux'].iloc[i]
if noweight:
wt = None
else:
wt = full_weight[b]
var = wt.copy()
var.invertSelf()
im.addNoise(galsim.VariableGaussianNoise(rng, var))
if use_ngmix:
dx, dy, e1, e2, T, flux, flag = ngmix_fit(im, wt, fwhm, x, y, logger, df['FLAGS_PSF'][i])
else:
dx, dy, e1, e2, T, flux, flag = hsm(im, wt, logger)
#dx, dy, e1, e2, T, flux, flag = hsm(im, wt, logger)
if np.any(np.isnan([dx,dy,e1,e2,T,flux])):
logger.info(' *** NaN detected (%f,%f,%f,%f,%f,%f).',dx,dy,e1,e2,T,flux)
flag |= BAD_MEASUREMENT
else:
df.loc[i, 'psfex_dx'] = dx
df.loc[i, 'psfex_dy'] = dy
df.loc[i, 'psfex_e1'] = e1
df.loc[i, 'psfex_e2'] = e2
df.loc[i, 'psfex_T'] = T
df.loc[i, 'psfex_flux'] = flux
df.loc[i, 'psfex_flag'] |= flag
#print('final psfex_flag = %s',df['psfex_flag'][ind].values)
logger.info('final psfex_flag = %s',df['psfex_flag'][ind].values)
#print('df[ind] = ',df.loc[ind].describe())
#flag_outliers(df, ind, 'psfex', 4., logger)
# In[8]:
#not working
def wget( url, file):
full_file = os.path.join(url,file)
print(full_file)
if not os.path.isfile(full_file):
# Sometimes this fails with an "http protocol error, bad status line".
# Maybe from too many requests at once or something. So we retry up to 5 times.
nattempts = 5
cmd = 'wget -q --no-check-certificate %s'%(full_file)
for attempt in range(1,nattempts+1):
if os.path.exists(full_file):
break
return full_file
# In[8]:
#want psf vs mag- brighter vs fatte6
def bin_by_mag(m, dT, dTfrac, min_mused, band, name):
min_mag = min(m) #13.5
max_mag = max(m) #21
#print("min and max mag: ", min_mag, max_mag)
mag_bins = np.linspace(min_mag,max_mag,21)
#print('mag_bins = ',mag_bins)
index = np.digitize(m, mag_bins)
#print('len(index) = ',len(index))
bin_dT = [dT[index == i].mean() for i in range(1, len(mag_bins))]
#print('bin_dT = ',bin_dT)
bin_dTfrac = [dTfrac[index == i].mean() for i in range(1, len(mag_bins))]
bin_dT_err = [ np.sqrt(dT[index == i].var() / len(dT[index == i])) for i in range(1, len(mag_bins)) ]
bin_dTfrac_err = [ np.sqrt(dTfrac[index == i].var() / len(dTfrac[index == i])) for i in range(1, len(mag_bins)) ]
for i in range(1, len(mag_bins)):
print('len(index) = ',len(dT[index == i]))
"""
bin_dT_err=np.zeros(len(mag_bins)-1)
for i in range(1, len(mag_bins)):
if len(dT[index == i])==0:
bin_dT_err[i] =0
else:
bin_dT_err[i] = np.sqrt(dT[index == i].var() / len(dT[index == i]))
print(bin_dT)
print(bin_dT_err)
#bin_dT_err = [ np.sqrt(dT[index == i].var() / len(dT[index == i])) for i in range(1, len(mag_bins)) if len(dT[index == i])>0 ]
#bin_dTfrac_err = [ np.sqrt(dTfrac[index == i].var() / len(dTfrac[index == i])) for i in range(1, len(mag_bins)) if len(dT[index == i])>0 ]
for i in range(1, len(mag_bins)):
print(i)
print(len(dT[index == i]))
#if len(dT[index == i])==0:
print(bin_dT_err[i])
"""
# Fix up nans
for i in range(1,len(mag_bins)):
if i not in index:
bin_dT[i-1] = 0.
bin_dTfrac[i-1] = 0.
bin_dT_err[i-1] = 0.
bin_dTfrac_err[i-1] = 0.
fig, axes = plt.subplots(2,1, sharex=True)
ax = axes[0]
ax.set_ylim(-0.02,0.02)
ax.plot([min_mag,max_mag], [0,0], color='black')
ax.plot([min_mused,min_mused],[-1,1], color='Grey')
ax.plot([19,19],[-1,1], color='Grey')
#ax.fill( [min_mag,min_mag,min_mused,min_mused], [-1,1,1,-1], fill=True, color='Grey',alpha=0.3)
ax.fill( [18.3,18.3,max_mag,max_mag], [0.003,-0.001,-0.001,0.003], fill=True, color='grey',alpha=0.3)
t_line = ax.errorbar(mag_bins[:-1], bin_dT, yerr=bin_dT_err, color='darkturquoise', fmt='o')
#ax.axhline(y=0.003, linewidth=4, color='grey')
#ax.legend([t_line], [r'$\delta T$'])
ax.set_ylabel(r'$(T_{\rm PSF} - T_{\rm model}) \quad({\rm arcsec}^2)$', fontsize='x-large')
ax = axes[1]
ax.set_ylim(-0.05,0.05)
ax.plot([min_mag,max_mag], [0,0], color='black')
ax.plot([min_mused,min_mused],[-1,1], color='Grey')
ax.plot([19,19],[-1,1], color='Grey')
#ax.fill( [min_mag,min_mag,min_mused,min_mused], [-1,1,1,-1], fill=True, color='Grey',alpha=0.3)
t_line = ax.errorbar(mag_bins[:-1], bin_dTfrac, yerr=bin_dTfrac_err, color='darkturquoise', fmt='o')
#ax.legend([t_line], [r'$\delta T$'])
ax.set_ylabel(r'$(T_{\rm PSF} - T_{\rm model})/ T_{\rm PSF}$', fontsize='x-large')
ax.set_xlim(min_mag,max_mag)
ax.set_xlabel('%s-magnitude'% (band), fontsize='x-large')
fig.set_size_inches(7.0,10.0)
plt.tight_layout()
name='dpsf_%s_%s_DEEP.pdf' % (name,band)
#plt.savefig(name)
plt.show()
# In[10]:
def stickplot(x, y, xcomp, ycomp, colour, whisker_scale, labelpresent, xtickspresent, ytickspresent, clbupperlim, title=''):
#P.figure(figsize=(16,12))
#ax = P.subplot(111)
xsize=6
ysize=10
#fig, ax = plt.subplots()
fig, axes = plt.subplots(2,1, sharex=True,figsize=(xsize, ysize))
ax = axes[0]
color_ax1 = fig.add_axes([0.4/xsize, 10.0/ysize, 1.7/xsize, 0.05/ysize])
#color_ax2 = fig.add_axes([2.2/xsize, 10.0/ysize, 1.7/xsize, 0.05/ysize])
ax.set_axis_bgcolor('white')
print("check on count: ", len(x))
theta = np.arctan2(ycomp, xcomp) / 2. #np.arctan(y,x) gives the arc tangent of y/x
e = np.hypot(xcomp,ycomp) #magnitude of g cmpnts
u = np.cos(theta) * e
v = np.sin(theta) * e
print(min(e))
print(max(e))
norm = P.mpl.colors.Normalize(min(colour), max(colour)) # set the color scale to a uniform value
#with warnings.catch_warnings():
# warnings.simplefilter('ignore')
Q1 = ax.quiver(x, y, u, v, e, cmap='jet', pivot='middle',
headwidth=0, headlength=0, headaxislength=0, norm=norm,
width=0.004, scale=whisker_scale, clim=[0,clbupperlim])
scalepercent=whisker_scale * 0.01
#cbar = fig.colorbar(Q1, cax=ax , orientation='horizontal')
#cbar.set_ticklabels(['0.00','0.02','0.04','0.06','0.08','0.10','0.12'])
#cbar.ax.tick_params(labelsize=7, pad=6)
#P.xlim([(min(ra) - 0.1),(max(ra) + 0.1)])
#P.ylim([(min(dec) - 0.1),(max(dec) + 0.1)])
P.xlim([(min(x) - 0.1),(max(x) + 0.1)])
P.ylim([(min(y) - 0.1),(max(y) + 0.1)])
ax.text(0.1, 0.88, title, transform=ax.transAxes,
fontsize='x-small', ha='left', va='bottom', weight='bold',)
# RN: I'm going to comment out the color bar here
#clb = P.colorbar(Q1, ax = axis)
#clb.ax.tick_params(labelsize=8)
#clb.set_label('Size (= moments[1] + moments[2])')
#clb.label.set_fontsize(9)
print("here")
#ax.tick_params(axis='both', which='major', labelsize=8)
ax.set_xlabel('RA')
ax.set_ylabel('Dec')
print("here")
#fig.set_size_inches(7.0,10.0)
#plt.tight_layout()
plt.show()
print("here")
# In[11]:
def randomly_cull(array,percenttocut):
numobjs=len(array)
print(numobjs)
numtocut=(percenttocut/100.)*np.float(numobjs)
numtokeep=np.float(numobjs)-numtocut
print(numtokeep)
keep=[random.randint(0,(numobjs-1)) for i in range(0,np.int(numtokeep))]
# print keep
return keep
# In[13]:
#UVISTA
# Change locations
cdir = '/global/cscratch1/sd/aamon/DEEP/UVista'
cdir2= '/global/cscratch1/sd/amichoi/DR4_UltraVISTA' #DR4
cdir3 = '/global/cscratch1/sd/itrharri/UltraVISTA_DR4/'
import warnings
bands=["J"] #,"H", "Ks", "Y"]#, "Y","Z"] #"J" , "H"]
#names=["2_52.92_-27.71", "6_52.59_-27.62", "11_52.26_-27.34", "16_52.15_-28.13" ]#, "5_52.59_-29.05" ]
#names=["19_11_18"] # FOR UVISTA DR4 ["21_01_16"] FOR UVISTA DR3
names=["01_02"]
#string="015_dr4_rc_v2" #FOR UVISTA DR4 AND 015_dr3_rc_v5 for UVISTA DR3
#names=["6_36.71_-4.46"] #XMM
#names=["11_9.44_-43.70","12_9.69_-44.87","13_9.97_-43.05","14_9.95_-44.31","15_9.95_-44.77","1_9.16_-44.04","2_8.90_-44.50","3_8.91_-44.68","4_8.91_-43.79"] #Elais
#names=["7_35.48_-4.54",8_35.02_-4.73","10_35.57_-4.91","14_36.62_-5.20","14_36.62_-5.38", 16_35.02_-5.46","4_36.07_-4.09","6_36.80_-4.64","9_37.08_-4.83"] #XMM J H
#names=["10_35.66_-4.91","15_36.44_-5.38","_5_34.03_-4.99"] #XMM Ks
#names=["11_9.46_-43.51","10_9.46_-43.24","12_9.49_-44.96","14_9.73_-43.24", "6_9.22_-44.40"] #Elais Ks Z
#names=["10_9.43_-44.40","12_9.49_-44.96","14_9.73_-43.24", "6_9.22_-44.40"] #Elais Y
i=0
for band in bands:
for name in names:
print(band, name)
#pf = '%s/psf/CURRENTSIZE_SAT10000_SNR3000/UVISTA_%s_%s_allpaw_skysub_%s_psfcat.psf' % (cdir2, band , name,string) # PSFEx image
#sf= '%s/psf/CURRENTSIZE_SAT10000_SNR3000/UVISTA_%s_%s_allpaw_skysub_%s_psfex-starlist.fits' % (cdir2, band, name,string) #list of stars made from Sextractor and PSFEx
#cf = '%s/cat/CURRENTSIZE_SAT10000_SNR3000/UVISTA_%s_%s_allpaw_skysub_%s_psfcat.fits' % (cdir2, band, name,string) #the output from extractor
#im_f = '%s/UVISTA_%s_%s_allpaw_skysub_%s.fits' % (cdir2, band, name,string) #VIDEO_H_10_34.31_-4.80.cleaned.fits
#wt_f = '%s/UVISTA_%s_%s_allpaw_skysub_%s.weight.fits' %(cdir2, band, name,string)
###pf = '%s/psf/UVISTA_%s_%s_allpaw_skysub_%s_psfcat.psf' % (cdir3, band , name,string) # PSFEx image
###sf= '%s/psf/UVISTA_%s_%s_allpaw_skysub_%s_psfex-starlist.fits' % (cdir3, band, name,string) #list of stars made from Sextractor and PSFEx
###cf = '%s/cat/UVISTA_%s_%s_allpaw_skysub_%s_psfcat.fits' % (cdir3, band, name,string) #the output from extractor
#im_f = '%s/UVISTA_%s_%s_allpaw_skysub_%s.fits' % (cdir2, band, name,string) #VIDEO_H_10_34.31_-4.80.cleaned.fits
wt_f = '%s/UV_%s_%s_%s.weight.fits' %(cdir2, band, name,string)
###
pf = '%s/psf/UV_%s_%s_psfcat.psf' % (cdir3, band , name) # PSFEx image
sf= '%s/psf/UV_%s_%s_psfex-starlist.fits' % (cdir3, band, name) #list of stars made from Sextractor and PSFEx
cf = '%s/cat/UV_%s_%s_psfcat.fits' % (cdir3, band, name) #the output from extractor
im_f = '%s/UV_%s_%s.cleaned.fits' % (cdir2, band, name) #VIDEO_H_10_34.31_-4.80.cleaned.fits
wt_f = '%s/UV_%s_%s.weight.fits' %(cdir2, band, name)
print(sf,cf)
#dat = fits.open(sf)
#print(dat[2].columns)
full_image = galsim.fits.read(im_f, hdu=0)
wcs = full_image.wcs
f = fitsio.FITS(im_f)
hdu=0
header_list = f[hdu].read_header_list()
header_list = [ d for d in header_list if 'CONTINUE' not in d['name'] ]
h = fitsio.FITSHDR(header_list)
#print(h)
FWHM = h['PSF_FWHM'] # this is for UV - video doesn't have fwhm in image header!
magzp = 30.0
mmlogging_level = logging.INFO
logger = logging.getLogger('size_residual')
# Read in some useful values, such as position
df = read_psfex_stars(sf, cf, logger)
#print(df)
# Measure the hsm shapes on the stars in the actual image
#ind = df.index[df['FLAGS_PSF'] == 0]
measure_star_shapes(
df,im_f,wt_f, noweight=False,wcs=wcs,use_ngmix=True, fwhm=FWHM,logger=logger)
# Measure
#print(list(df))
measure_psfex_shapes(
df,pf,im_f, wt_f,noweight=False,wcs=wcs,use_ngmix=True, fwhm=FWHM, logger=logger)
#print(list(df))
print("All objs: ", len(df))
df = df[df.FLAGS_PSF == 0]
print("Flag-good objs (PSF==0) : ", len(df))
####################################################
#CUTS
good = (df['psfex_T'].values!=-999)&(df['obs_T'].values!=-999)
df=df[good]
print("Good shape objs: ", len(df))
####################################################
#PLOT
def compute_res(d):
de1 = d['obs_e1']-d[prefix+'_e1']
de2 = d['obs_e2']-d[prefix+'_e2']
dt = (d['obs_T']-d[prefix+'_T'])
dtfrac = dt/d['obs_T']
print('mean dt = ',np.mean(dt))
return dtfrac, dt , de1, de2
prefix="psfex"
fracsizeres, sizeres, e1res, e2res=compute_res(df)
df['fracsizeres'], df['sizeres'], df['e1res'], df['e2res'] = compute_res(df)
"""
if i==0:
dfold=df
print(len(df1))
else: # i>0:
dfnew=df
df = pandas.concat([dfold, dfnew])
dfold=df
print(len(df))
i+=1"""
# Plotting the distribution of residuals
plt.hist(df['sizeres'], 30)
plt.xlabel('T_res = PSF - obs', fontsize='x-large')
plt.ylabel('Num good objects',fontsize='x-large')
plt.title('%s'% band)
#plt.savefig('UltraVISTA_J_resid.png',bbox_inches='tight')
plt.figure(figsize=(12,12))
plt.show()
fig, ax = plt.subplots()
hb=ax.hexbin(df['mag_aper'],df['sizeres'] ,bins='log')#, marker='.', facecolors='lightblue', color='blue',alpha=0.2)
cb = fig.colorbar(hb, ax=ax)
cb.set_label('log10(N)')
plt.xlabel('%s mag_aper' %(band), fontsize='x-large')
plt.ylabel('T_res', fontsize='x-large')
plt.show()
#plt.savefig('UltraVISTA_J_resid.png',bbox_inches='tight')
#subset=randomly_cull(df,80)
#keep=randomly_cull(df,percenttocut)
#stickplot(df['ra'],df['dec'], e1res, e2res, sizeres, fracsizeres, 1, 'no', 'no', 'no',0.03)
##print("done")
bin_by_mag(df['mag_aper'], df['sizeres'], df['fracsizeres'], 16.5, band, name)
#if i==0:
#from astropy.table import vstack, Table
#print("i=0")
#final = Table.from_pandas(df)
#else:
#t = Table.from_pandas(df)
#final=vstack([final, t])
#print(len(final))
#print(t)
#fname='PSFres_VIDEO_hsm.fits' #% (band)
#t.write(fname, overwrite=True, format='ascii')
"""
- also didn't take flag_outliers function from his script, and this might
be useful(?)
"""
# In[15]:
#VIDEO
"""
cdir= '/global/cscratch1/sd/amichoi/VIDEO'
cdir2= '/global/cscratch1/sd/amichoi/VIDEO/XMM'
import warnings
import os
#band="J"
bands=["J","H", "Ks"]
print(string)
for band in bands:
string="VIDEO_%s_" % (band)
i=0
for fname in os.listdir(cdir2+'/psf'):
if fname.startswith(string) and fname.endswith('psfcat.psf'):
print(fname)
name, tmp = fname.split('_psfcat.psf', 1)
print(name)
#print(string2)
#nam, tmp = string2.split('.cleaned.fits', 1)
##print(nam)
#name=string+nam
pf = '%s/psf/%s' % (cdir2, fname) # PSFEx image
print(pf)
sf= '%s/psf/%s_psfex-starlist.fits' % (cdir2, name) #list of stars made from Sextractor and PSFEx
print(sf)
cf = '%s/cat/%s_psfcat.fits' % (cdir2, name) #the output from extractor
print(cf)
im_f = '%s/%s.cleaned.fits' % (cdir, name) #VIDEO_H_10_34.31_-4.80.cleaned.fits
wt_f = '%s/%s.weight.fits'%(cdir, name)
#get wcs and fwhm from image file
dat = fitsio.read(sf, ext=2)
FWHM = np.mean(dat['FWHM_PSF']) #video doesn't have fwhm in image header!
print('FWHM: ', FWHM)
full_image = galsim.fits.read(im_f, hdu=0)
wcs = full_image.wcs
f = fitsio.FITS(im_f)
hdu=0
header_list = f[hdu].read_header_list()
header_list = [ d for d in header_list if 'CONTINUE' not in d['name'] ]
h = fitsio.FITSHDR(header_list)
#print(h)
#FWHM = h['PSF_FWHM'] # this is for UV - video doesn't have fwhm in image header!
magzp = 30.0
mmlogging_level = logging.INFO
logger = logging.getLogger('size_residual')
# Read in some useful values, such as position
df = read_psfex_stars(sf, cf, logger)
# Measure the hsm shapes on the stars in the actual image
measure_star_shapes(
df,im_f,wt_f, noweight=False,wcs=wcs,use_ngmix=False, fwhm=FWHM,logger=logger)
# Measure
#print(list(df))
measure_psfex_shapes(
df,pf,im_f, wt_f,noweight=False,wcs=wcs,use_ngmix=False, fwhm=FWHM, logger=logger)
#print(list(df))
print("All objs: ", len(df))
df = df[df.FLAGS_PSF == 0]
print("Flag-good objs (PSF==0) : ", len(df))
####################################################
#CUTS
good = (df['psfex_T'].values!=-999)&(df['obs_T'].values!=-999)
df=df[good]
print("Good shape objs: ", len(df))
####################################################
#PLOT
def compute_res(d):
de1 = d['obs_e1']-d[prefix+'_e1']
de2 = d['obs_e2']-d[prefix+'_e2']
dt = (d['obs_T']-d[prefix+'_T'])
dtfrac = dt/d['obs_T']
print('mean dt = ',np.mean(dt))
return dtfrac, dt , de1, de2
prefix="psfex"
fracsizeres, sizeres, e1res, e2res=compute_res(df)
df['fracsizeres'], df['sizeres'], df['e1res'], df['e2res'] = compute_res(df)
if i==0:
dfold=df
#print(len(dfold))
else: # i>0:
dfnew=df
df = pandas.concat([dfold, dfnew])
dfold=df
print(len(dfold))
i+=1
from astropy.table import vstack, Table
final = Table.from_pandas(dfold)
t = Table.from_pandas(df)
final=vstack([final, t])
print(len(final))
print(t)
fname='PSFres_VIDEO_X3_hsm_%s.fits' % (band)
t.write(fname, overwrite=True, format='ascii')
# Plotting the distribution of residuals
plt.hist(df['sizeres'], 30,range=(-0.2,0.2))
plt.xlabel('T_res = PSF - obs', fontsize='x-large')
plt.ylabel('Num good objects',fontsize='x-large')
plt.title('%s'% band)
plt.xlim(-0.2,0.2)
plt.savefig('%sresid.png'% (string),bbox_inches='tight')
plt.figure(figsize=(12,12))
plt.show()
fig, ax = plt.subplots()
hb=ax.hexbin(df['mag_aper'],df['sizeres'] ,bins='log')#, marker='.', facecolors='lightblue', color='blue',alpha=0.2)
cb = fig.colorbar(hb, ax=ax)
cb.set_label('log10(N)')
plt.xlabel('%s mag_aper' %(band), fontsize='x-large')