-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path__main__.py
183 lines (145 loc) · 6.44 KB
/
__main__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import logging
import os
import random
from copy import deepcopy
import numpy as np
import torch
from common.evaluate import EvaluatorFactory
from common.train import TrainerFactory
from datasets.aapd import AAPD
from datasets.imdb import IMDB
from datasets.reuters import Reuters
from datasets.yelp2014 import Yelp2014
from datasets.custom import Custom
from models.reg_lstm.args import get_args
from models.reg_lstm.model import RegLSTM
import sys
class UnknownWordVecCache(object):
"""
Caches the first randomly generated word vector for a certain size to make it is reused.
"""
cache = {}
@classmethod
def unk(cls, tensor):
size_tup = tuple(tensor.size())
if size_tup not in cls.cache:
cls.cache[size_tup] = torch.Tensor(tensor.size())
cls.cache[size_tup].uniform_(-0.25, 0.25)
return cls.cache[size_tup]
def get_logger():
logger = logging.getLogger(__name__)
logging.getLogger().setLevel(logging.INFO)
logger.setLevel(logging.DEBUG)
ch = logging.StreamHandler(stream=sys.stdout)
ch.setLevel(logging.DEBUG)
formatter = logging.Formatter('%(levelname)s - %(message)s')
ch.setFormatter(formatter)
logger.addHandler(ch)
return logger
def evaluate_dataset(split_name, dataset_cls, model, embedding, loader, batch_size, device, is_multilabel):
saved_model_evaluator = EvaluatorFactory.get_evaluator(dataset_cls, model, embedding, loader, batch_size, device)
if hasattr(saved_model_evaluator, 'is_multilabel'):
saved_model_evaluator.is_multilabel = is_multilabel
scores, metric_names = saved_model_evaluator.get_scores()
print('Evaluation metrics for', split_name)
print(metric_names)
print(scores)
if __name__ == '__main__':
print("starting")
# Set default configuration in args.py
args = get_args()
# logger = get_logger()
# Set random seed for reproducibility
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
np.random.seed(args.seed)
random.seed(args.seed)
if not args.cuda:
args.gpu = -1
if torch.cuda.is_available() and args.cuda:
print('Note: You are using GPU for training')
torch.cuda.set_device(args.gpu)
torch.cuda.manual_seed(args.seed)
if torch.cuda.is_available() and not args.cuda:
print('Warning: Using CPU for training')
dataset_map = {
'Reuters': Reuters,
'AAPD': AAPD,
'IMDB': IMDB,
'Yelp2014': Yelp2014,
'Custom' : Custom
}
if args.dataset not in dataset_map:
raise ValueError('Unrecognized dataset')
else:
dataset_class = dataset_map[args.dataset]
train_iter, dev_iter, test_iter = dataset_class.iters(args.data_dir,
args.word_vectors_file,
args.word_vectors_dir,
batch_size=args.batch_size,
device=args.gpu,
unk_init=UnknownWordVecCache.unk)
config = deepcopy(args)
config.dataset = train_iter.dataset
# config.target_class = train_iter.dataset.NUM_CLASSES
config.target_class = args.target_classes
config.words_num = len(train_iter.dataset.TEXT_FIELD.vocab)
print('Dataset:', args.dataset)
# print('No. of target classes:', train_iter.dataset.NUM_CLASSES)
print('No. of target classes:', args.target_classes)
print('No. of train instances', len(train_iter.dataset))
print('No. of dev instances', len(dev_iter.dataset))
print('No. of test instances', len(test_iter.dataset))
if args.resume_snapshot:
if args.cuda:
model = torch.load(args.resume_snapshot, map_location=lambda storage, location: storage.cuda(args.gpu))
else:
model = torch.load(args.resume_snapshot, map_location=lambda storage, location: storage)
else:
model = RegLSTM(config)
if args.cuda:
model.cuda()
if not args.trained_model:
save_path = os.path.join(args.save_path, dataset_map[args.dataset].NAME)
os.makedirs(save_path, exist_ok=True)
parameter = filter(lambda p: p.requires_grad, model.parameters())
optimizer = torch.optim.Adam(parameter, lr=args.lr, weight_decay=args.weight_decay)
train_evaluator = EvaluatorFactory.get_evaluator(dataset_class, model, None, train_iter, args.batch_size, args.gpu)
test_evaluator = EvaluatorFactory.get_evaluator(dataset_class, model, None, test_iter, args.batch_size, args.gpu)
dev_evaluator = EvaluatorFactory.get_evaluator(dataset_class, model, None, dev_iter, args.batch_size, args.gpu)
if hasattr(train_evaluator, 'is_multilabel'):
train_evaluator.is_multilabel = dataset_class.IS_MULTILABEL
if hasattr(test_evaluator, 'is_multilabel'):
test_evaluator.is_multilabel = dataset_class.IS_MULTILABEL
if hasattr(dev_evaluator, 'is_multilabel'):
dev_evaluator.is_multilabel = dataset_class.IS_MULTILABEL
trainer_config = {
'optimizer': optimizer,
'batch_size': args.batch_size,
'log_interval': args.log_every,
'patience': args.patience,
'model_outfile': args.save_path,
# 'logger': logger,
'is_multilabel': dataset_class.IS_MULTILABEL
}
trainer = TrainerFactory.get_trainer(args.dataset, model, None, train_iter, trainer_config, train_evaluator, test_evaluator, dev_evaluator)
if not args.trained_model:
trainer.train(args.epochs)
else:
if args.cuda:
model = torch.load(args.trained_model, map_location=lambda storage, location: storage.cuda(args.gpu))
else:
model = torch.load(args.trained_model, map_location=lambda storage, location: storage)
model = torch.load(trainer.snapshot_path)
if model.beta_ema > 0:
old_params = model.get_params()
model.load_ema_params()
# Calculate dev and test metrics
evaluate_dataset('dev', dataset_class, model, None, dev_iter, args.batch_size,
is_multilabel=dataset_class.IS_MULTILABEL,
device=args.gpu)
evaluate_dataset('test', dataset_class, model, None, test_iter, args.batch_size,
is_multilabel=dataset_class.IS_MULTILABEL,
device=args.gpu)
if model.beta_ema > 0:
model.load_params(old_params)