-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2_crossval_dog_extra_test5.sh
45 lines (36 loc) · 1.89 KB
/
2_crossval_dog_extra_test5.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#!/bin/sh
#SBATCH --job-name=multithread # create a short name for your job
#SBATCH --nodes=1 # Number of nodes for the cores
#SBATCH --ntasks=1 # total number of tasks across all nodes
#SBATCH --cpus-per-task=N # cpu-cores per task
#SBATCH --mem-per-cpu=64G # memory per cpu-core
#SBATCH -t 0-10:00 # Runtime in D-HH:MM format
#SBATCH -p sapphire # Partition to submit to
#SBATCH --mem=20000 # Memory pool for all CPUs
#SBATCH -o /n/holyscratch01/davis_lab/Everyone/VarKode_expansion/datasets/dog_breeds/extra/output/2_dog_crossval.%A.out
#SBATCH -e /n/holyscratch01/davis_lab/Everyone/VarKode_expansion/datasets/dog_breeds/extra/output/2_dog_crossval.%A.err # File to which standard err will be written
module load python
source activate varKoder
cd /n/holyscratch01/davis_lab/Everyone/VarKode_expansion/datasets/dog_breeds/extra/try5
echo ARCHITECTURE vit_large_patch32_224, equal weight
#list all samples
export samples=$(find ./images_dogs_extra -name '*.png' -exec basename {} \; | cut -d \+ -f 1 | cut -d @ -f 1 | sort | uniq )
for sample in $samples
do
echo START TRAINING $sample
varKoder train --overwrite --single-label -b 64 -r 0.05 -c vit_large_patch32_224 -z 0 -e 20 -V $sample images_dogs_extra vit_train_${sample}
varKoder train --overwrite --pretrained-model vit_train_${sample}/trained_model.pkl -b 64 -r 0.005 -c vit_large_patch32_224 -z 10 -e 0 -V $sample images_dogs_extra vit_train_${sample}
echo END TRAINING $sample
mkdir -p vit_query_${sample}
cd vit_query_${sample}
ln -s ../images_dogs_extra/${sample}@* ./
cd ..
echo START QUERY $sample
varKoder query --overwrite --include-probs -v --model vit_train_${sample}/trained_model.pkl -I vit_query_${sample} vit_results/${sample}/
echo ELAPSED QUERY $sample
mv vit_train_${sample}/input_data.csv vit_results/${sample}/
rm -r vit_train_${sample} vit_query_${sample}
done
cd ..
echo DONE
exit