diff --git a/python/abess/bess_base.py b/python/abess/bess_base.py index 805ed632..ec4ddcd7 100644 --- a/python/abess/bess_base.py +++ b/python/abess/bess_base.py @@ -51,8 +51,8 @@ class bess_base(BaseEstimator): The full name of each option: - 'aic': Akaike information criterion - 'bic': Bayesian information criterion - - 'gic': Generalized information criterion. It refers to "special information criterion" in Zhu, Junxian, et al. "A polynomial algorithm for best-subset selection problem." Proceedings of the National Academy of Sciences (2020). - - 'ebic': Extended Bayesian information criterion + - 'gic': Generalized information criterion (see [2-4]). It refers to "special information criterion" in [1]. + - 'ebic': Extended Bayesian information criterion [5] - 'loss': Loss value ic_coef : float, optional, default=1.0 @@ -127,10 +127,11 @@ class bess_base(BaseEstimator): References ---------- - - Junxian Zhu, Canhong Wen, Jin Zhu, Heping Zhang, and Xueqin Wang. - A polynomial algorithm for best-subset selection problem. - Proceedings of the National Academy of Sciences, - 117(52):33117-33123, 2020. + - [1] Zhu, J., Wen, C., Zhu, J., Zhang, H., & Wang, X. (2020). A polynomial algorithm for best-subset selection problem. Proceedings of the National Academy of Sciences, 117(52), 33117-33123. + - [2] Tang, B., Zhu, J., Zhu, J., Wang, X., & Zhang, H. (2023). A Consistent and Scalable Algorithm for Best Subset Selection in Single Index Models. arXiv preprint arXiv:2309.06230. + - [3] Zhu, J., Zhu, J., Tang, B., Chen, X., Lin, H., & Wang, X. (2023). Best-subset selection in generalized linear models: A fast and consistent algorithm via splicing technique. arXiv preprint arXiv:2308.00251. + - [4] Zhang, Y., Zhu, J., Zhu, J., & Wang, X. (2023). A splicing approach to best subset of groups selection. INFORMS Journal on Computing, 35(1), 104-119. + - [5] Chen, J., & Chen, Z. (2008). Extended Bayesian information criteria for model selection with large model spaces. Biometrika, 95(3), 759-771. """ # attributes