Skip to content

Latest commit

 

History

History
96 lines (71 loc) · 3.29 KB

INSTALL.md

File metadata and controls

96 lines (71 loc) · 3.29 KB

Installation

We recommend using a virtual environment (Anaconda, virtualenv) to to control package visibility. For a detailed list of requirements, see environment.yml.

Requirements

  • Python ≥3.6
  • tensorflow(-gpu) ≥1.8.0
  • keras ≥2.1.6
  • pydot (download via conda install pydot)
  • graphviz (download via conda install python-graphviz)

MedSegPy supports both TensorFlow 1 and 2. For gpu tensorflow versions, compatible cuda drivers and toolkits must be installed. If you do not have a gpu or you are using tensorflow>=2.0, replace the tensorflow-gpu package with tensorflow. More instructions about TensorFlow cuda compatibility and installation can be found here.

Install these requirements prior to installing MedSegPy.

Build MedSegPy from Source

python -m pip install 'git+https://github.com/ad12/MedSegPy.git'
# (add --user if you don't have permission)

# Or, to install it from a local clone (recommended):
git clone https://github.com/ad12/MedSegPy.git
cd MedSegPy && python -m pip install -e .

You may need to rebuild medsegpy after reinstalling TensorFlow and/or Keras.

Step-by-Step Guide

The following instructions install MedSegPy with Python 3.7, Tensorflow 2.3, and Keras 2.4 into an Anaconda environment. Note gpu use with Tensorflow 2.3 requires cuda toolkit 10.1.

# Create conda environment
conda create -n medsegpy_env python=3.7
conda activate medsegpy_env

# Install tensorflow and keras dependencies.
pip install tensorflow==2.3.1 keras==2.4.3

# Install visualization dependencies
conda install pydot python-graphviz

# Install MedSegPy
git clone https://github.com/ad12/MedSegPy.git
cd MedSegPy && python -m pip install -e .

Configuring Paths (optional)

There are two primary paths that MedSegPy uses: 1. dataset paths, the path to the directory holding the datasets, and 2. result paths, the path to the directory where results should be stored.

Builtin Dataset Paths

You can set the location for builtin datasets by export MEDSEGPY_DATASETS=/path/to/datasets. If left unset, the default is ./datasets relative to your current working directory.

Result Paths

Similarly, you can set the location for the results directory by export MEDSEGPY_RESULTS=/path/to/results. If left unset, the default is ./results relative to your current working directory.

As a shortcut, we designate the prefix "results://" in any filepath to point to a result directory of your choosing. For example, "results://exp1" will resolve to the path "<MEDSEGPY_RESULTS>/exp1".

An example of how to do this in python (i.e. without export statements) is shown below:

import os
os.environ["MEDSEGPY_DATASETS"] = "/path/to/datasets"
os.environ["MEDSEGPY_RESULTS"] = "/path/to/results"

import medsegpy.utils  # import implicitly registers prefixes
from fvcore.common.file_io import PathManager
PathManager.get_local_path("results://exp1")  # returns "/path/to/results/exp1"

You can also define your own prefixes to resolve by adding your own path handler. This is useful if you want to use the same script to run multiple projects. See fvcore's fileio for more information.