Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Attempting to get this work for circuit python. Library doesn't seem to function with simple bugs fixed. #28

Open
HourGlss opened this issue Aug 12, 2023 · 3 comments

Comments

@HourGlss
Copy link

Using adafruit_rplidar.py as:

# SPDX-FileCopyrightText: 2019 Dave Astels for Adafruit Industries
#
# SPDX-License-Identifier: MIT

"""
`adafruit_rplidar`
====================================================

Provide an interface to the Slamtech RPLidar that works in plain Python3
as well as CircuitPython/Blinka.

* Author(s): Dave Astels
* Based on https://github.com/SkoltechRobotics/rplidar by Artyom Pavlov
* and updates from https://github.com/Roboticia/RPLidar by Julien JEHL

Implementation Notes
--------------------

**Hardware:**


**Software and Dependencies:**

* Adafruit CircuitPython firmware for the supported boards:
  https://github.com/adafruit/circuitpython/releases

The Current Version does NOT support CircuitPython. Future versions will.
"""

import struct
import sys
import time
from collections import namedtuple

try:
    from typing import Tuple, Dict, Any, Optional, List, Iterator, Union
    from busio import UART
    from digitalio import DigitalInOut
except ImportError:
    pass

# pylint:disable=invalid-name,undefined-variable,global-variable-not-assigned
# pylint:disable=too-many-arguments,raise-missing-from,too-many-instance-attributes

__version__ = "0.0.0+auto.0"
__repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_RPLIDAR.git"

SYNC_BYTE = b"\xA5"
SYNC_BYTE2 = b"\x5A"

GET_INFO_BYTE = b"\x50"
GET_HEALTH_BYTE = b"\x52"

STOP_BYTE = b"\x25"
RESET_BYTE = b"\x40"

DESCRIPTOR_LEN = 7
INFO_LEN = 20
HEALTH_LEN = 3

INFO_TYPE = 4
HEALTH_TYPE = 6

# Constants & Command to start A2 motor
MAX_MOTOR_PWM = 1023
DEFAULT_MOTOR_PWM = 660
SET_PWM_BYTE = b"\xF0"

_HEALTH_STATUSES = {
    0: "Good",
    1: "Warning",
    2: "Error",
}

SCAN_TYPE_NORMAL = 0
SCAN_TYPE_FORCE = 1
SCAN_TYPE_EXPRESS = 2

_SCAN_TYPES = (
    {"byte": b"\x20", "response": 129, "size": 5},
    {"byte": b"\x21", "response": 129, "size": 5},
    {"byte": b"\x82", "response": 130, "size": 84},
)

express_packet = namedtuple("express_packet", "distance angle new_scan start_angle")


class RPLidarException(Exception):
    """Basic exception class for RPLidar"""


def _process_scan(raw: bytes) -> Tuple[bool, int, float, float]:
    """Processes input raw data and returns measurement data"""
    new_scan = bool(raw[0] & 0b1)
    inversed_new_scan = bool((raw[0] >> 1) & 0b1)
    quality = raw[0] >> 2
    if new_scan == inversed_new_scan:
        raise RPLidarException("New scan flags mismatch")
    check_bit = raw[1] & 0b1
    if check_bit != 1:
        raise RPLidarException("Check bit not equal to 1")
    angle = ((raw[1] >> 1) + (raw[2] << 7)) / 64.0
    distance = (raw[3] + (raw[4] << 8)) / 4.0
    return new_scan, quality, angle, distance


def _process_express_scan(
    data: "ExpressPacket", new_angle: float, frame: int
) -> Tuple[bool, None, float, float]:
    new_scan = (new_angle < data.start_angle) & (frame == 1)
    angle = (
        data.start_angle
        + ((new_angle - data.start_angle) % 360) / 32 * frame
        - data.angle[frame - 1]
    ) % 360
    distance = data.distance[frame - 1]
    return new_scan, None, angle, distance


class RPLidar:
    """Class for communicating with RPLidar rangefinder scanners"""

    motor_pin = None  #: DigitalInOut instance controlling the motor
    _serial_port = None  #: Serial port (or UART) instance
    port = None  #: Serial port name, e.g. /dev/ttyUSB0
    timeout = 1  #: Serial port timeout
    motor = False  #: Is motor running?
    baudrate = 115200  #: Baudrate for serial port
    scanning = False
    descriptor_size = 0
    scan_type = SCAN_TYPE_NORMAL
    express_frame = 32
    express_data = False
    express_old_data = None

    def __init__(
        self,
        motor_pin: DigitalInOut,
        port: UART,
        baudrate: int = 115200,
        timeout: float = 1,
        logging: bool = False,
    ) -> None:
        """Initialize RPLidar object for communicating with the sensor.

        Parameters

        motor_pin : digitalio.DigitalInOut
            Pin controlling the motor
        port : busio.UART or str
            Serial port instance or name of the port to which the sensor is connected
        baudrate : int, optional
            Baudrate for serial connection (the default is 115200)
        timeout : float, optional
            Serial port connection timeout in seconds (the default is 1)
        logging : bool, optional
            Whether to output logging information
        """
        self.motor_pin = motor_pin
        self.port = port
        self.baudrate = baudrate
        self.timeout = timeout
        self.motor_running = False
        self.logging = logging

        self.is_CP = not isinstance(port, str)

        if self.is_CP:
            self._serial_port = port
        else:
            global serial  # pylint: disable=global-statement
            import serial  # pylint: disable=import-outside-toplevel

        self.connect()
        self.start_motor()

    def log(self, level: str, msg: str) -> None:
        """Output the level and a message if logging is enabled."""
        if self.logging:
            sys.stdout.write("{0}: {1}\n".format(level, msg))

    def log_bytes(self, level: str, msg: str, ba: bytes) -> None:
        """Log and output a byte array in a readable way."""
        if ba is not None:
            bs = ["%02x" % b for b in ba]
            self.log(level, msg + " ".join(bs))
        elif ba is None:
            self.log(level, f"{msg} received None bytes")

    def connect(self) -> None:
        """Connects to the serial port named by the port instance var. If it was
        connected to another serial port disconnects from it first."""
        if not self.is_CP:
            if self._serial_port is not None:
                self.disconnect()
            try:
                self._serial_port = serial.Serial(
                    self.port,
                    self.baudrate,
                    parity=serial.PARITY_NONE,
                    stopbits=serial.STOPBITS_ONE,
                    timeout=self.timeout,
                )
            except serial.SerialException as err:
                raise RPLidarException(
                    "Failed to connect to the sensor " "due to: %s" % err
                )

    def disconnect(self) -> None:
        """Disconnects from the serial port"""
        if self._serial_port is None:
            return
        self._serial_port.close()

    def set_pwm(self, pwm: int) -> None:
        """Set the motor PWM"""
        assert 0 <= pwm <= MAX_MOTOR_PWM
        payload = struct.pack("<H", pwm)
        self._send_payload_cmd(SET_PWM_BYTE, payload)

    def _control_motor(self, val: bool) -> None:
        """Manipulate the motor"""
        if self.is_CP:
            self.motor_pin.value = val
        else:
            self._serial_port.dtr = not val

    def start_motor(self) -> None:
        """Starts sensor motor"""
        self.log("info", "Starting motor")
        # For A1
        self._control_motor(True)

        # For A2
        self.set_pwm(DEFAULT_MOTOR_PWM)
        self.motor_running = True

    def stop_motor(self) -> None:
        """Stops sensor motor"""
        self.log("info", "Stopping motor")
        # For A2
        self.set_pwm(0)
        time.sleep(0.001)
        # For A1
        self._control_motor(False)
        self.motor_running = False

    def _send_payload_cmd(self, cmd: bytes, payload: bytes) -> None:
        """Sends `cmd` command with `payload` to the sensor"""
        size = struct.pack("B", len(payload))
        req = SYNC_BYTE + cmd + size + payload
        checksum = 0
        for v in struct.unpack("B" * len(req), req):
            checksum ^= v
        req += struct.pack("B", checksum)
        self._serial_port.write(req)
        self.log_bytes("debug", "Command sent: ", req)

    def _send_cmd(self, cmd: bytes) -> None:
        """Sends `cmd` command to the sensor"""
        req = SYNC_BYTE + cmd
        self._serial_port.write(req)
        self.log_bytes("debug", "Command sent: ", req)

    def _read_descriptor(self) -> Tuple[int, bool, int]:
        """Reads descriptor packet"""
        descriptor = self._serial_port.read(DESCRIPTOR_LEN)
        self.log_bytes("debug", "Received descriptor:", descriptor)
        if len(descriptor) != DESCRIPTOR_LEN:
            raise RPLidarException("Descriptor length mismatch")
        if not descriptor.startswith(SYNC_BYTE + SYNC_BYTE2):
            raise RPLidarException("Incorrect descriptor starting bytes")
        is_single = descriptor[-2] == 0
        return descriptor[2], is_single, descriptor[-1]

    def _read_response(self, dsize: int) -> bytes:
        """Reads response packet with length of `dsize` bytes"""
        self.log("debug", "Trying to read response: %d bytes" % dsize)
        data = self._serial_port.read(dsize)
        self.log_bytes("debug", "Received data:", data)
        if len(data) != dsize:
            raise RPLidarException("Wrong body size")
        return data

    @property
    def info(self) -> Dict[str, Any]:
        """Get device information

        Returns

        dict
            Dictionary with the sensor information
        """
        self._send_cmd(GET_INFO_BYTE)
        dsize, is_single, dtype = self._read_descriptor()
        if dsize != INFO_LEN:
            raise RPLidarException("Wrong info reply length")
        if not is_single:
            raise RPLidarException("Not a single response mode")
        if dtype != INFO_TYPE:
            raise RPLidarException("Wrong response data type")
        raw = self._read_response(dsize)
        serialnumber_bytes = struct.unpack("B" * len(raw[4:]), raw[4:])
        serialnumber = "".join(reversed(["%02x" % b for b in serialnumber_bytes]))
        data = {
            "model": raw[0],
            "firmware": (raw[2], raw[1]),
            "hardware": raw[3],
            "serialnumber": serialnumber,
        }
        return data

    @property
    def health(self) -> Tuple[str, int]:
        """Get device health state. When the core system detects some
        potential risk that may cause hardware failure in the future,
        the returned status value will be 'Warning'. But sensor can still work
        as normal. When sensor is in the Protection Stop state, the returned
        status value will be 'Error'. In case of warning or error statuses
        non-zero error code will be returned.

        Returns

        status : str
            'Good', 'Warning' or 'Error' statuses
        error_code : int
            The related error code that caused a warning/error.
        """
        self._send_cmd(GET_HEALTH_BYTE)
        dsize, is_single, dtype = self._read_descriptor()
        if dsize != HEALTH_LEN:
            raise RPLidarException("Wrong info reply length")
        if not is_single:
            raise RPLidarException("Not a single response mode")
        if dtype != HEALTH_TYPE:
            raise RPLidarException("Wrong response data type")
        raw = self._read_response(dsize)
        status = _HEALTH_STATUSES[raw[0]]
        error_code = (raw[1] << 8) + raw[2]
        return (status, error_code)

    def clear_input(self) -> None:
        """Clears input buffer by reading all available data"""
        if self.scanning:
            raise RPLidarException("Clearing not allowed during active scanning!")
        self._serial_port.flushInput()
        self.express_frame = 32
        self.express_data = False

    def start(self, scan_type: int = SCAN_TYPE_NORMAL) -> None:
        """Start the scanning process

        Parameters

        scan_type : int, optional
            Normal, force or express; default is normal
        """
        if self.scanning:
            raise RPLidarException("Scanning already running!")
        # Start the scanning process, enable laser diode and the
        # measurement system
        status, error_code = self.health
        self.log("debug", "Health status: %s [%d]" % (status, error_code))
        if status == _HEALTH_STATUSES[2]:
            self.log(
                "warning",
                "Trying to reset sensor due to the error. "
                "Error code: %d" % (error_code),
            )
            self.reset()
            status, error_code = self.health
            if status == _HEALTH_STATUSES[2]:
                raise RPLidarException(
                    "RPLidar hardware failure. " "Error code: %d" % error_code
                )
        elif status == _HEALTH_STATUSES[1]:
            self.log(
                "warning",
                "Warning sensor status detected! " "Error code: %d" % (error_code),
            )
        cmd = _SCAN_TYPES[scan_type]["byte"]
        self.log("info", "starting scan process in %s mode" % scan_type)

        if scan_type == "express":
            self._send_payload_cmd(cmd, b"\x00\x00\x00\x00\x00")
        else:
            self._send_cmd(cmd)

        dsize, is_single, dtype = self._read_descriptor()
        if dsize != _SCAN_TYPES[scan_type]["size"]:
            raise RPLidarException("Wrong info reply length")
        if is_single:
            raise RPLidarException("Not a multiple response mode")
        if dtype != _SCAN_TYPES[scan_type]["response"]:
            raise RPLidarException("Wrong response data type")
        self.descriptor_size = dsize
        self.scan_type = scan_type
        self.scanning = True

    def stop(self) -> None:
        """Stops scanning process, disables laser diode and the measurement
        system, moves sensor to the idle state."""
        self.log("info", "Stopping scanning")
        self._send_cmd(STOP_BYTE)
        time.sleep(0.001)
        self.scanning = False
        self.clear_input()

    def reset(self) -> None:
        """Resets sensor core, reverting it to a similar state as it has
        just been powered up."""
        self.log("info", "Resetting the sensor")
        self._send_cmd(RESET_BYTE)
        time.sleep(0.002)
        self.clear_input()

    def iter_measurements(
        self, max_buf_meas: int = 500, scan_type: int = SCAN_TYPE_NORMAL
    ) -> Iterator[Tuple[bool, Optional[int], float, float]]:
        """Iterate over measurements. Note that consumer must be fast enough,
        otherwise data will be accumulated inside buffer and consumer will get
        data with increasing lag.

        Parameters

        max_buf_meas : int, optional
            Maximum number of measurements to be stored inside the buffer. Once
            number exceeds this limit buffer will be emptied out.  Default is
            500.
        scan_type : int, optional
            Normal, force or express; default is normal

        Yields

        new_scan : bool
            True if measurement belongs to a new scan
        quality : int | None
            Reflected laser pulse strength
        angle : float
            The measurement heading angle in degree unit [0, 360)
        distance : float
            Measured object distance related to the sensor's rotation center.
            In millimeter unit. Set to 0 when measurement is invalid.
        """
        self.start_motor()
        if not self.scanning:
            self.start(scan_type)

        while True:
            dsize = self.descriptor_size
            if max_buf_meas:
                data_in_buf = self._serial_port.in_waiting
                if data_in_buf > max_buf_meas * dsize:
                    self.log(
                        "warning",
                        "Too many measurements in the input buffer: %d/%d. "
                        "Clearing buffer..." % (data_in_buf // dsize, max_buf_meas),
                    )
                    self._serial_port.read(data_in_buf // dsize * dsize)
            if self.scan_type == SCAN_TYPE_NORMAL:
                raw = self._read_response(dsize)
                self.log_bytes("debug", "Received scan response: ", raw)
                yield _process_scan(raw)
            elif self.scan_type == SCAN_TYPE_EXPRESS:
                if self.express_frame == 32:
                    self.express_frame = 0
                    if not self.express_data:
                        self.log("debug", "reading first time bytes")
                        self.express_data = ExpressPacket.from_string(
                            self._read_response(dsize)
                        )

                    self.express_old_data = self.express_data
                    self.log(
                        "debug",
                        "set old_data with start_angle %f"
                        % self.express_old_data.start_angle,
                    )
                    self.express_data = ExpressPacket.from_string(
                        self._read_response(dsize)
                    )
                    self.log(
                        "debug",
                        "set new_data with start_angle %f"
                        % self.express_data.start_angle,
                    )

                self.express_frame += 1
                self.log(
                    "debug",
                    "process scan of frame %d with angle : "
                    "%f and angle new : %f"
                    % (
                        self.express_frame,
                        self.express_old_data.start_angle,
                        self.express_data.start_angle,
                    ),
                )
                yield _process_express_scan(
                    self.express_old_data,
                    self.express_data.start_angle,
                    self.express_frame,
                )

    def iter_scans(
        self, max_buf_meas: int = 500, min_len: int = 5
    ) -> List[Union[int, float]]:
        """Iterate over scans. Note that consumer must be fast enough,
        otherwise data will be accumulated inside buffer and consumer will get
        data with increasing lag.

        Parameters

        max_buf_meas : int, optional
            Maximum number of measurements to be stored inside the buffer. Once
            number exceeds this limit buffer will be emptied out. Default is
            500.
        min_len : int, optional
            Minimum number of measurements in the scan for it to be yielded.
            Default is 5.

        Yields

        scan : list
            List of the measurements. Each measurement is tuple with following
            format: (quality, angle, distance). For values description please
            refer to `iter_measurements` method's documentation.
        """
        scan = []
        iterator = self.iter_measurements(max_buf_meas)
        for new_scan, quality, angle, distance in iterator:
            if new_scan:
                if len(scan) > min_len:
                    yield scan
                scan = []
            if quality > 0 and distance > 0:
                scan.append((quality, angle, distance))


class ExpressPacket(express_packet):
    """Class representing a Express type Packet"""

    sync1 = 0xA
    sync2 = 0x5
    sign = {0: 1, 1: -1}

    @classmethod
    def from_string(cls, data: bytes) -> "ExpressPacket":
        """Decode and Instantiate the class from a string packet"""
        packet = bytearray(data)

        if (packet[0] >> 4) != cls.sync1 or (packet[1] >> 4) != cls.sync2:
            raise ValueError("try to parse corrupted data ({})".format(packet))

        checksum = 0
        for b in packet[2:]:
            checksum ^= b
        if checksum != (packet[0] & 0b00001111) + ((packet[1] & 0b00001111) << 4):
            raise ValueError("Invalid checksum ({})".format(packet))

        new_scan = packet[3] >> 7
        start_angle = (packet[2] + ((packet[3] & 0b01111111) << 8)) / 64

        d = a = ()
        for i in range(0, 80, 5):
            d += ((packet[i + 4] >> 2) + (packet[i + 5] << 6),)
            a += (
                ((packet[i + 8] & 0b00001111) + ((packet[i + 4] & 0b00000001) << 4))
                / 8
                * cls.sign[(packet[i + 4] & 0b00000010) >> 1],
            )
            d += ((packet[i + 6] >> 2) + (packet[i + 7] << 6),)
            a += (
                ((packet[i + 8] >> 4) + ((packet[i + 6] & 0b00000001) << 4))
                / 8
                * cls.sign[(packet[i + 6] & 0b00000010) >> 1],
            )
        return cls(d, a, new_scan, start_angle)

Modified the simple_example to function with circuitpython.

from math import floor
import board
import busio
import digitalio
from adafruit_rplidar import RPLidar
print("LIDAR")
uart = busio.UART(
    tx=board.TX,
    rx=board.RX,
    baudrate=115200)
motor_pin = digitalio.DigitalInOut(board.D4)
motor_pin.direction = digitalio.Direction.OUTPUT
motor_pin.value = False
lidar = RPLidar(motor_pin, port=uart, timeout=3,logging=True)

# used to scale data to fit on the screen
max_distance = 0


def process_data(data):
    print(data)


scan_data = [0] * 360

try:
    print(lidar.info)
    for scan in lidar.iter_scans():
        for _, angle, distance in scan:
            scan_data[min([359, floor(angle)])] = distance
        process_data(scan_data)

except KeyboardInterrupt:
    print("Stopping.")
lidar.stop()
lidar.disconnect()

getting error

info: Starting motor
debug: Command sent: a5 f0 02 94 02 c1
debug: Command sent: a5 50
debug: Received descriptor: received None bytes
Traceback (most recent call last):
  File "code.py", line 27, in <module>
  File "/lib/adafruit_rplidar.py", line 297, in info
  File "/lib/adafruit_rplidar.py", line 271, in _read_descriptor
TypeError: object of type 'NoneType' has no len()

Code done running.
@HourGlss
Copy link
Author

Almost working. Much better. Now I am stuck.

# SPDX-FileCopyrightText: 2019 Dave Astels for Adafruit Industries
#
# SPDX-License-Identifier: MIT


"""
`adafruit_rplidar`
====================================================

Provide an interface to the Slamtech RPLidar that works in plain Python3
as well as CircuitPython/Blinka.

* Author(s): Dave Astels
* Based on https://github.com/SkoltechRobotics/rplidar by Artyom Pavlov
* and updates from https://github.com/Roboticia/RPLidar by Julien JEHL

Implementation Notes
--------------------

**Hardware:**


**Software and Dependencies:**

* Adafruit CircuitPython firmware for the supported boards:
  https://github.com/adafruit/circuitpython/releases

The Current Version does NOT support CircuitPython. Future versions will.
"""

import struct
import sys
import time
from collections import namedtuple

try:
    from typing import Tuple, Dict, Any, Optional, List, Iterator, Union
    from busio import UART
    from digitalio import DigitalInOut
except ImportError:
    pass

# pylint:disable=invalid-name,undefined-variable,global-variable-not-assigned
# pylint:disable=too-many-arguments,raise-missing-from,too-many-instance-attributes

__version__ = "0.0.0+auto.0"
__repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_RPLIDAR.git"

SYNC_BYTE = b"\xA5"
SYNC_BYTE2 = b"\x5A"

GET_INFO_BYTE = b"\x50"
GET_HEALTH_BYTE = b"\x52"

STOP_BYTE = b"\x25"
RESET_BYTE = b"\x40"

DESCRIPTOR_LEN = 7
INFO_LEN = 20
HEALTH_LEN = 3

INFO_TYPE = 4
HEALTH_TYPE = 6

# Constants & Command to start A2 motor
MAX_MOTOR_PWM = 1023
DEFAULT_MOTOR_PWM = 660
SET_PWM_BYTE = b"\xF0"

_HEALTH_STATUSES = {
    0: "Good",
    1: "Warning",
    2: "Error",
}

SCAN_TYPE_NORMAL = 0
SCAN_TYPE_FORCE = 1
SCAN_TYPE_EXPRESS = 2

_SCAN_TYPES = (
    {"byte": b"\x20", "response": 129, "size": 5},
    {"byte": b"\x21", "response": 129, "size": 5},
    {"byte": b"\x82", "response": 130, "size": 84},
)

express_packet = namedtuple("express_packet", "distance angle new_scan start_angle")


class RPLidarException(Exception):
    """Basic exception class for RPLidar"""


def _process_scan(raw: bytes) -> Tuple[bool, int, float, float]:
    """Processes input raw data and returns measurement data"""
    new_scan = bool(raw[0] & 0b1)
    inversed_new_scan = bool((raw[0] >> 1) & 0b1)
    quality = raw[0] >> 2
    if new_scan == inversed_new_scan:
        raise RPLidarException("New scan flags mismatch")
    check_bit = raw[1] & 0b1
    if check_bit != 1:
        raise RPLidarException("Check bit not equal to 1")
    angle = ((raw[1] >> 1) + (raw[2] << 7)) / 64.0
    distance = (raw[3] + (raw[4] << 8)) / 4.0
    return new_scan, quality, angle, distance


def _process_express_scan(
        data: "ExpressPacket", new_angle: float, frame: int
) -> Tuple[bool, None, float, float]:
    new_scan = (new_angle < data.start_angle) & (frame == 1)
    angle = (
                    data.start_angle
                    + ((new_angle - data.start_angle) % 360) / 32 * frame
                    - data.angle[frame - 1]
            ) % 360
    distance = data.distance[frame - 1]
    return new_scan, None, angle, distance


class RPLidar:
    """Class for communicating with RPLidar rangefinder scanners"""

    motor_pin = None  #: DigitalInOut instance controlling the motor
    _serial_port = None  #: Serial port (or UART) instance
    port = None  #: Serial port name, e.g. /dev/ttyUSB0
    timeout = 1  #: Serial port timeout
    motor = False  #: Is motor running?
    baudrate = 115200  #: Baudrate for serial port
    scanning = False
    descriptor_size = 0
    scan_type = SCAN_TYPE_NORMAL
    express_frame = 32
    express_data = False
    express_old_data = None

    def __init__(
            self,
            motor_pin: DigitalInOut,
            port: UART,
            baudrate: int = 115200,
            timeout: float = 1,
            logging: bool = False,
    ) -> None:
        """Initialize RPLidar object for communicating with the sensor.

        Parameters

        motor_pin : digitalio.DigitalInOut
            Pin controlling the motor
        port : busio.UART or str
            Serial port instance or name of the port to which the sensor is connected
        baudrate : int, optional
            Baudrate for serial connection (the default is 115200)
        timeout : float, optional
            Serial port connection timeout in seconds (the default is 1)
        logging : bool, optional
            Whether to output logging information
        """
        self.motor_pin = motor_pin
        self.port = port
        self.baudrate = baudrate
        self.timeout = timeout
        self.motor_running = False
        self.logging = logging

        self.is_CP = not isinstance(port, str)

        if self.is_CP:
            self._serial_port = port
        else:
            global serial  # pylint: disable=global-statement
            import serial  # pylint: disable=import-outside-toplevel

        self.connect()
        self.start_motor()

    def log(self, level: str, msg: str) -> None:
        """Output the level and a message if logging is enabled."""
        if self.logging:
            sys.stdout.write("{0}: {1}\n".format(level, msg))

    def log_bytes(self, level: str, msg: str, ba: bytes) -> None:
        """Log and output a byte array in a readable way."""
        if ba is not None:
            bs = ["%02x" % b for b in ba]
            self.log(level, msg + " ".join(bs))
        elif ba is None:
            self.log(level, f"{msg}")

    def connect(self) -> None:
        self.log("debug", "connect")

        """Connects to the serial port named by the port instance var. If it was
        connected to another serial port disconnects from it first."""
        if not self.is_CP:
            if self._serial_port is not None:
                self.disconnect()
            try:
                self._serial_port = serial.Serial(
                    self.port,
                    self.baudrate,
                    parity=serial.PARITY_NONE,
                    stopbits=serial.STOPBITS_ONE,
                    timeout=self.timeout,
                )
            except serial.SerialException as err:
                raise RPLidarException(
                    "Failed to connect to the sensor " "due to: %s" % err
                )

    def disconnect(self) -> None:
        self.log("debug", "disconnect")

        """Disconnects from the serial port"""
        if self._serial_port is None:
            return
        self._serial_port.close()

    def set_pwm(self, pwm: int) -> None:
        self.log("debug", "set_pwm")

        """Set the motor PWM"""
        assert 0 <= pwm <= MAX_MOTOR_PWM
        payload = struct.pack("<H", pwm)
        self._send_payload_cmd(SET_PWM_BYTE, payload)

    def _control_motor(self, val: bool) -> None:
        self.log("debug", "_control_motor")

        """Manipulate the motor"""
        if self.is_CP:
            self.motor_pin.value = val
        else:
            self._serial_port.dtr = not val

    def start_motor(self) -> None:
        """Starts sensor motor"""
        self.log("info", "Starting motor")
        # For A1
        self._control_motor(True)

        # For A2
        self.set_pwm(DEFAULT_MOTOR_PWM)
        self.motor_running = True

    def stop_motor(self) -> None:
        self.log("debug", "stop_motor")
        """Stops sensor motor"""
        self.log("info", "Stopping motor")
        # For A2
        self.set_pwm(0)
        time.sleep(0.001)
        # For A1
        self._control_motor(False)
        self.motor_running = False

    def _send_payload_cmd(self, cmd: bytes, payload: bytes) -> None:
        """Sends `cmd` command with `payload` to the sensor"""
        size = struct.pack("B", len(payload))
        req = SYNC_BYTE + cmd + size + payload
        checksum = 0
        for v in struct.unpack("B" * len(req), req):
            checksum ^= v
        req += struct.pack("B", checksum)
        self._serial_port.write(req)
        self.log_bytes("debug", "Command sent: ", req)

    def _send_cmd(self, cmd: bytes) -> None:
        """Sends `cmd` command to the sensor"""
        req = SYNC_BYTE + cmd
        self._serial_port.write(req)
        self.log_bytes("debug", "Command sent: ", req)

    def _read_descriptor(self) -> Tuple[int, bool, int] | None:
        """Reads descriptor packet"""
        self.log("debug", "_read_descriptor")

        descriptor = self._serial_port.read(DESCRIPTOR_LEN)
        if descriptor is None:
            return None
        self.log_bytes("debug", "Received descriptor:", descriptor)
        if len(descriptor) != DESCRIPTOR_LEN:
            raise RPLidarException("Descriptor length mismatch")
        if not descriptor.startswith(SYNC_BYTE + SYNC_BYTE2):
            raise RPLidarException("Incorrect descriptor starting bytes")
        is_single = descriptor[-2] == 0
        return descriptor[2], is_single, descriptor[-1]

    def _read_response(self, dsize: int) -> bytes | None:
        """Reads response packet with length of `dsize` bytes"""
        self.log("debug", "_read_response: %d bytes" % dsize)
        data = self._serial_port.read(dsize)
        if data is not None:
            self.log_bytes("debug", "Received data:", data)
            if len(data) != dsize:
                raise RPLidarException("Wrong body size")
            return data
        return None

    @property
    def info(self) -> Dict[str, Any] | None:
        """Get device information

        Returns

        dict
            Dictionary with the sensor information
        """
        self._send_cmd(GET_INFO_BYTE)
        descriptor = self._read_descriptor()
        if descriptor is not None:
            dsize, is_single, dtype = descriptor
            if dsize != INFO_LEN:
                raise RPLidarException("Wrong info reply length")
            if not is_single:
                raise RPLidarException("Not a single response mode")
            if dtype != INFO_TYPE:
                raise RPLidarException("Wrong response data type")
            raw = self._read_response(dsize)
            serialnumber_bytes = struct.unpack("B" * len(raw[4:]), raw[4:])
            serialnumber = "".join(reversed(["%02x" % b for b in serialnumber_bytes]))
            data = {
                "model": raw[0],
                "firmware": (raw[2], raw[1]),
                "hardware": raw[3],
                "serialnumber": serialnumber,
            }
            return data
        elif descriptor is None:
            return self.info

    @property
    def health(self) -> Tuple[str, int]:
        """Get device health state. When the core system detects some
        potential risk that may cause hardware failure in the future,
        the returned status value will be 'Warning'. But sensor can still work
        as normal. When sensor is in the Protection Stop state, the returned
        status value will be 'Error'. In case of warning or error statuses
        non-zero error code will be returned.

        Returns

        status : str
            'Good', 'Warning' or 'Error' statuses
        error_code : int
            The related error code that caused a warning/error.
        """
        self._send_cmd(GET_HEALTH_BYTE)
        descriptor = self._read_descriptor()
        if descriptor is not None:
            dsize, is_single, dtype = descriptor
            if dsize != HEALTH_LEN:
                raise RPLidarException("Wrong info reply length")
            if not is_single:
                raise RPLidarException("Not a single response mode")
            if dtype != HEALTH_TYPE:
                raise RPLidarException("Wrong response data type")
            raw = self._read_response(dsize)
            status = _HEALTH_STATUSES[raw[0]]
            error_code = (raw[1] << 8) + raw[2]
            return status, error_code
        else:
            return self.health

    def clear_input(self) -> None:
        self.log("debug", "clear_input")

        """Clears input buffer by reading all available data"""
        if self.scanning:
            raise RPLidarException("Clearing not allowed during active scanning!")
        self._serial_port.flushInput()
        self.express_frame = 32
        self.express_data = False

    def start(self, scan_type: int = SCAN_TYPE_NORMAL) -> None:
        self.log("debug", "start")

        """Start the scanning process

        Parameters

        scan_type : int, optional
            Normal, force or express; default is normal
        """
        if self.scanning:
            raise RPLidarException("Scanning already running!")
        # Start the scanning process, enable laser diode and the
        # measurement system
        status, error_code = self.health
        self.log("debug", "Health status: %s [%d]" % (status, error_code))
        if status == _HEALTH_STATUSES[2]:
            self.log(
                "warning",
                "Trying to reset sensor due to the error. "
                "Error code: %d" % (error_code),
            )
            self.reset()
            status, error_code = self.health
            if status == _HEALTH_STATUSES[2]:
                raise RPLidarException(
                    "RPLidar hardware failure. " "Error code: %d" % error_code
                )
        elif status == _HEALTH_STATUSES[1]:
            self.log(
                "warning",
                "Warning sensor status detected! " "Error code: %d" % (error_code),
            )
        cmd = _SCAN_TYPES[scan_type]["byte"]
        self.log("info", "starting scan process in %s mode" % scan_type)

        if scan_type == "express":
            self._send_payload_cmd(cmd, b"\x00\x00\x00\x00\x00")
        else:
            self._send_cmd(cmd)

        dsize, is_single, dtype = self._read_descriptor()
        if dsize != _SCAN_TYPES[scan_type]["size"]:
            raise RPLidarException("Wrong info reply length")
        if is_single:
            raise RPLidarException("Not a multiple response mode")
        if dtype != _SCAN_TYPES[scan_type]["response"]:
            raise RPLidarException("Wrong response data type")
        self.descriptor_size = dsize
        self.scan_type = scan_type
        self.scanning = True

    def stop(self) -> None:
        """Stops scanning process, disables laser diode and the measurement
        system, moves sensor to the idle state."""
        self.log("info", "Stopping scanning")
        self._send_cmd(STOP_BYTE)
        time.sleep(0.001)
        self.scanning = False
        self.clear_input()

    def reset(self) -> None:
        """Resets sensor core, reverting it to a similar state as it has
        just been powered up."""
        self.log("info", "Resetting the sensor")
        self._send_cmd(RESET_BYTE)
        time.sleep(0.002)
        self.clear_input()

    def iter_measurements(
            self, max_buf_meas: int = 500, scan_type: int = SCAN_TYPE_NORMAL
    ) -> Iterator[Tuple[bool, Optional[int], float, float]]:
        """Iterate over measurements. Note that consumer must be fast enough,
        otherwise data will be accumulated inside buffer and consumer will get
        data with increasing lag.

        Parameters

        max_buf_meas : int, optional
            Maximum number of measurements to be stored inside the buffer. Once
            number exceeds this limit buffer will be emptied out.  Default is
            500.
        scan_type : int, optional
            Normal, force or express; default is normal

        Yields

        new_scan : bool
            True if measurement belongs to a new scan
        quality : int | None
            Reflected laser pulse strength
        angle : float
            The measurement heading angle in degree unit [0, 360)
        distance : float
            Measured object distance related to the sensor's rotation center.
            In millimeter unit. Set to 0 when measurement is invalid.
        """
        self.log("debug", "iter_measurements")

        self.start_motor()
        if not self.scanning:
            self.start(scan_type)

        while True:
            dsize = self.descriptor_size
            if max_buf_meas:
                data_in_buf = self._serial_port.in_waiting
                if data_in_buf > max_buf_meas * dsize:
                    self.log(
                        "warning",
                        "Too many measurements in the input buffer: %d/%d. "
                        "Clearing buffer..." % (data_in_buf // dsize, max_buf_meas),
                    )
                    self._serial_port.read(data_in_buf // dsize * dsize)
            if self.scan_type == SCAN_TYPE_NORMAL:
                raw = self._read_response(dsize)
                self.log_bytes("debug", "Received scan response: ", raw)
                if raw is not None:
                    yield _process_scan(raw)
            elif self.scan_type == SCAN_TYPE_EXPRESS:
                if self.express_frame == 32:
                    self.express_frame = 0
                    if not self.express_data:
                        self.log("debug", "reading first time bytes")
                        self.express_data = ExpressPacket.from_string(
                            self._read_response(dsize)
                        )

                    self.express_old_data = self.express_data
                    self.log(
                        "debug",
                        "set old_data with start_angle %f"
                        % self.express_old_data.start_angle,
                    )
                    self.express_data = ExpressPacket.from_string(
                        self._read_response(dsize)
                    )
                    self.log(
                        "debug",
                        "set new_data with start_angle %f"
                        % self.express_data.start_angle,
                    )

                self.express_frame += 1
                self.log(
                    "debug",
                    "process scan of frame %d with angle : "
                    "%f and angle new : %f"
                    % (
                        self.express_frame,
                        self.express_old_data.start_angle,
                        self.express_data.start_angle,
                    ),
                )
                yield _process_express_scan(
                    self.express_old_data,
                    self.express_data.start_angle,
                    self.express_frame,
                )

    def iter_scans(
            self, max_buf_meas: int = 500, min_len: int = 5
    ) -> List[Union[int, float]]:
        self.log("debug", "iter_scans")

        """Iterate over scans. Note that consumer must be fast enough,
        otherwise data will be accumulated inside buffer and consumer will get
        data with increasing lag.

        Parameters

        max_buf_meas : int, optional
            Maximum number of measurements to be stored inside the buffer. Once
            number exceeds this limit buffer will be emptied out. Default is
            500.
        min_len : int, optional
            Minimum number of measurements in the scan for it to be yielded.
            Default is 5.

        Yields

        scan : list
            List of the measurements. Each measurement is tuple with following
            format: (quality, angle, distance). For values description please
            refer to `iter_measurements` method's documentation.
        """
        scan = []
        iterator = self.iter_measurements(max_buf_meas)
        for new_scan, quality, angle, distance in iterator:
            if new_scan:
                if len(scan) > min_len:
                    yield scan
                scan = []
            if quality > 0 and distance > 0:
                scan.append((quality, angle, distance))


class ExpressPacket(express_packet):
    """Class representing a Express type Packet"""

    sync1 = 0xA
    sync2 = 0x5
    sign = {0: 1, 1: -1}

    @classmethod
    def from_string(cls, data: bytes) -> "ExpressPacket":
        """Decode and Instantiate the class from a string packet"""
        packet = bytearray(data)

        if (packet[0] >> 4) != cls.sync1 or (packet[1] >> 4) != cls.sync2:
            raise ValueError("try to parse corrupted data ({})".format(packet))

        checksum = 0
        for b in packet[2:]:
            checksum ^= b
        if checksum != (packet[0] & 0b00001111) + ((packet[1] & 0b00001111) << 4):
            raise ValueError("Invalid checksum ({})".format(packet))

        new_scan = packet[3] >> 7
        start_angle = (packet[2] + ((packet[3] & 0b01111111) << 8)) / 64

        d = a = ()
        for i in range(0, 80, 5):
            d += ((packet[i + 4] >> 2) + (packet[i + 5] << 6),)
            a += (
                ((packet[i + 8] & 0b00001111) + ((packet[i + 4] & 0b00000001) << 4))
                / 8
                * cls.sign[(packet[i + 4] & 0b00000010) >> 1],
            )
            d += ((packet[i + 6] >> 2) + (packet[i + 7] << 6),)
            a += (
                ((packet[i + 8] >> 4) + ((packet[i + 6] & 0b00000001) << 4))
                / 8
                * cls.sign[(packet[i + 6] & 0b00000010) >> 1],
            )
        return cls(d, a, new_scan, start_angle)
code.py output:
debug: connect
info: Starting motor
debug: _control_motor
debug: set_pwm
debug: Command sent: a5 f0 02 94 02 c1
debug: Command sent: a5 50
debug: _read_descriptor
debug: Command sent: a5 50
debug: _read_descriptor
debug: Received descriptor:a5 5a 14 00 00 00 04
debug: _read_response: 20 bytes
debug: Received data:18 1d 01 07 92 d8 ed 93 c0 ea 98 c9 a5 e6 98 f2 07 06 46 69
{'firmware': (1, 29), 'serialnumber': '69460607f298e6a5c998eac093edd892', 'model': 24, 'hardware': 7}
debug: Received descriptor:a5 5a 03 00 00 00 06
debug: _read_response: 3 bytes
debug: Received data:00 00 00
debug: Health status: Good [0]
info: starting scan process in 0 mode
debug: Command sent: a5 20
debug: _read_response: 5 bytes
debug: Received scan response:
debug: _read_response: 5 bytes
debug: _read_response: 5 bytes
debug: Received data:02 8f 63 00 00
debug: Received scan response: 02 8f 63 00 00
debug: _read_response: 5 bytes
debug: Received data:02 23 64 00 00
debug: Received scan response: 02 23 64 00 00
debug: Received scan response: 3e 9b 64 00 00
debug: Received scan response: 3e 97 64 00 00
debug: Received data:3e 5b 68 00 00
debug: Received scan response: 3e 5b 68 00 00
debug: _read_response: 5 bytes
debug: Received data:3e ad 65 00 00
debug: Received scan response: 3e ad 65 00 00
debug: _read_response: 5 bytes
debug: Received data:02 63 69 00 00
debug: Received scan response: 02 63 69 00 00
debug: _read_response: 5 bytes
debug: Received data:3e 5b 66 00 00
debug: Received scan response: 3e 5b 66 00 00
debug: _read_response: 5 bytes
debug: Received data:3e 0f 68 00 00
debug: Received scan response: 3e 0f 68 00 00
debug: _read_response: 5 bytes
debug: Received data:02 23 6b 00 00
debug: Received scan response: 02 23 6b 00 00
debug: _read_response: 5 bytes
debug: Received data:3e 01 68 00 00
debug: Received scan response: 3e 01 68 00 00
debug: _read_response: 5 bytes
debug: Received data:3e 9f 68 00 00
debug: Received scan response: 3e 9f 68 00 00
debug: _read_response: 5 bytes
debug: Received data:3e 35 69 00 00
debug: Received scan response: 3e 35 69 00 00
debug: _read_response: 5 bytes
debug: Received data:02 79 6d 00 00
debug: Received scan response: 02 79 6d 00 00
debug: _read_response: 5 bytes
debug: Received data:3e 5f 6a c0 23
debug: Received scan response: 3e 5f 6a c0 23
debug: _read_response: 5 bytes
debug: Received data:22 0e 3e 69 72
debug: Received scan response: 22 0e 3e 69 72
Traceback (most recent call last):
  File "code.py", line 32, in <module>
  File "/lib/zxc.py", line 563, in iter_scans
  File "/lib/zxc.py", line 493, in iter_measurements
  File "/lib/zxc.py", line 101, in _process_scan
RPLidarException: Check bit not equal to 1

so now I have no idea how to fix it. Would love some help.

@dastels
Copy link
Collaborator

dastels commented Aug 14, 2023

Is that exception persistent or sporadic? I.e. once it occurs does it continue to occur or does it happen occasionally?

The documentation says that the check bit should always be 1, so I'm thinking that if it's 0 then something went bad and the data isn't trustworthy. Throw it out and move on to the next scan. It's an exception which means that it's something that is anticipated and should be handled.

@HourGlss
Copy link
Author

Can anyone confirm this is even remotely good? I have no way to test if this data is usable.

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
#
# SPDX-License-Identifier: MIT
import board
import time
import digitalio
import busio
from math import floor
from zxc import RPLidar

# Setup the RPLidar
uart = busio.UART(
    tx=board.TX,
    rx=board.RX,
    baudrate=115200)
motor_control = digitalio.DigitalInOut(board.D4)
motor_control.switch_to_output()
lidar = RPLidar(motor_control, uart, timeout=3)

scan_data = [0] * 360

try:
    print(lidar.info)
    for scan in lidar.iter_scans():
        for _, angle, distance in scan:
            scan_data[min([359, floor(angle)])] = distance
        print(scan_data)

except KeyboardInterrupt:
    print("Stopping.")
lidar.stop()
lidar.disconnect()
# SPDX-FileCopyrightText: 2019 Dave Astels for Adafruit Industries
#
# SPDX-License-Identifier: MIT

"""
`adafruit_rplidar`
====================================================

Provide an interface to the Slamtech RPLidar that works in plain Python3
as well as CircuitPython/Blinka.

* Author(s): Dave Astels
* Based on https://github.com/SkoltechRobotics/rplidar by Artyom Pavlov
* and updates from https://github.com/Roboticia/RPLidar by Julien JEHL

Implementation Notes
--------------------

**Hardware:**


**Software and Dependencies:**

* Adafruit CircuitPython firmware for the supported boards:
  https://github.com/adafruit/circuitpython/releases

The Current Version does NOT support CircuitPython. Future versions will.
"""

import struct
import sys
import time
from collections import namedtuple

try:
    from typing import Tuple, Dict, Any, Optional, List, Iterator, Union
    from busio import UART
    from digitalio import DigitalInOut
except ImportError:
    pass

# pylint:disable=invalid-name,undefined-variable,global-variable-not-assigned
# pylint:disable=too-many-arguments,raise-missing-from,too-many-instance-attributes

__version__ = "0.0.0+auto.0"
__repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_RPLIDAR.git"

SYNC_BYTE = b"\xA5"
SYNC_BYTE2 = b"\x5A"

GET_INFO_BYTE = b"\x50"
GET_HEALTH_BYTE = b"\x52"

STOP_BYTE = b"\x25"
RESET_BYTE = b"\x40"

DESCRIPTOR_LEN = 7
INFO_LEN = 20
HEALTH_LEN = 3

INFO_TYPE = 4
HEALTH_TYPE = 6

# Constants & Command to start A2 motor
MAX_MOTOR_PWM = 1023
DEFAULT_MOTOR_PWM = 660
SET_PWM_BYTE = b"\xF0"

_HEALTH_STATUSES = {
    0: "Good",
    1: "Warning",
    2: "Error",
}

SCAN_TYPE_NORMAL = 0
SCAN_TYPE_FORCE = 1
SCAN_TYPE_EXPRESS = 2

_SCAN_TYPES = (
    {"byte": b"\x20", "response": 129, "size": 5},
    {"byte": b"\x21", "response": 129, "size": 5},
    {"byte": b"\x82", "response": 130, "size": 84},
)

express_packet = namedtuple("express_packet", "distance angle new_scan start_angle")


class RPLidarException(Exception):
    """Basic exception class for RPLidar"""


def _process_scan(raw: bytes) -> Tuple[bool, int, float, float] | None:
    """Processes input raw data and returns measurement data"""
    data_bad = False
    new_scan = bool(raw[0] & 0b1)
    inversed_new_scan = bool((raw[0] >> 1) & 0b1)
    quality = raw[0] >> 2
    if new_scan == inversed_new_scan:
        data_bad = True
        # raise RPLidarException("New scan flags mismatch")
    check_bit = raw[1] & 0b1
    if check_bit != 1:
        data_bad = True
        # raise RPLidarException("Check bit not equal to 1")
    if not data_bad:
        angle = ((raw[1] >> 1) + (raw[2] << 7)) / 64.0
        distance = (raw[3] + (raw[4] << 8)) / 4.0
        return new_scan, quality, angle, distance
    else:
        return None


def _process_express_scan(
        data: "ExpressPacket", new_angle: float, frame: int
) -> Tuple[bool, None, float, float]:
    new_scan = (new_angle < data.start_angle) & (frame == 1)
    angle = (
                    data.start_angle
                    + ((new_angle - data.start_angle) % 360) / 32 * frame
                    - data.angle[frame - 1]
            ) % 360
    distance = data.distance[frame - 1]
    return new_scan, None, angle, distance


class RPLidar:
    """Class for communicating with RPLidar rangefinder scanners"""

    motor_pin = None  #: DigitalInOut instance controlling the motor
    _serial_port = None  #: Serial port (or UART) instance
    port = None  #: Serial port name, e.g. /dev/ttyUSB0
    timeout = 1  #: Serial port timeout
    motor = False  #: Is motor running?
    baudrate = 115200  #: Baudrate for serial port
    scanning = False
    descriptor_size = 0
    scan_type = SCAN_TYPE_NORMAL
    express_frame = 32
    express_data = False
    express_old_data = None

    def __init__(
            self,
            motor_pin: DigitalInOut,
            port: UART,
            baudrate: int = 115200,
            timeout: float = 1,
            logging: bool = False,
    ) -> None:
        """Initialize RPLidar object for communicating with the sensor.

        Parameters

        motor_pin : digitalio.DigitalInOut
            Pin controlling the motor
        port : busio.UART or str
            Serial port instance or name of the port to which the sensor is connected
        baudrate : int, optional
            Baudrate for serial connection (the default is 115200)
        timeout : float, optional
            Serial port connection timeout in seconds (the default is 1)
        logging : bool, optional
            Whether to output logging information
        """
        self.motor_pin = motor_pin
        self.port = port
        self.baudrate = baudrate
        self.timeout = timeout
        self.motor_running = False
        self.logging = logging

        self.is_CP = not isinstance(port, str)

        if self.is_CP:
            self._serial_port = port
        else:
            global serial  # pylint: disable=global-statement
            import serial  # pylint: disable=import-outside-toplevel

        self.connect()
        self.start_motor()

    def log(self, level: str, msg: str) -> None:
        """Output the level and a message if logging is enabled."""
        if self.logging:
            sys.stdout.write("{0}: {1}\n".format(level, msg))

    def log_bytes(self, level: str, msg: str, ba: bytes) -> None:
        """Log and output a byte array in a readable way."""
        if ba is not None:
            bs = ["%02x" % b for b in ba]
            self.log(level, msg + " ".join(bs))
        elif ba is None:
            self.log(level, f"{msg}")

    def connect(self) -> None:
        self.log("debug", "connect")

        """Connects to the serial port named by the port instance var. If it was
        connected to another serial port disconnects from it first."""
        if not self.is_CP:
            if self._serial_port is not None:
                self.disconnect()
            try:
                self._serial_port = serial.Serial(
                    self.port,
                    self.baudrate,
                    parity=serial.PARITY_NONE,
                    stopbits=serial.STOPBITS_ONE,
                    timeout=self.timeout,
                )
            except serial.SerialException as err:
                raise RPLidarException(
                    "Failed to connect to the sensor " "due to: %s" % err
                )

    def disconnect(self) -> None:
        self.log("debug", "disconnect")

        """Disconnects from the serial port"""
        if self._serial_port is None:
            return
        if not self.is_CP:
            self._serial_port.close()

    def set_pwm(self, pwm: int) -> None:
        self.log("debug", "set_pwm")

        """Set the motor PWM"""
        assert 0 <= pwm <= MAX_MOTOR_PWM
        payload = struct.pack("<H", pwm)
        self._send_payload_cmd(SET_PWM_BYTE, payload)

    def _control_motor(self, val: bool) -> None:
        self.log("debug", "_control_motor")

        """Manipulate the motor"""
        if self.is_CP:
            self.motor_pin.value = val
        else:
            self._serial_port.dtr = not val

    def start_motor(self) -> None:
        """Starts sensor motor"""
        self.log("info", "Starting motor")
        # For A1
        self._control_motor(True)

        # For A2
        self.set_pwm(DEFAULT_MOTOR_PWM)
        self.motor_running = True

    def stop_motor(self) -> None:
        self.log("debug", "stop_motor")
        """Stops sensor motor"""
        self.log("info", "Stopping motor")
        # For A2
        self.set_pwm(0)
        time.sleep(0.001)
        # For A1
        self._control_motor(False)
        self.motor_running = False

    def _send_payload_cmd(self, cmd: bytes, payload: bytes) -> None:
        """Sends `cmd` command with `payload` to the sensor"""
        size = struct.pack("B", len(payload))
        req = SYNC_BYTE + cmd + size + payload
        checksum = 0
        for v in struct.unpack("B" * len(req), req):
            checksum ^= v
        req += struct.pack("B", checksum)
        self._serial_port.write(req)
        self.log_bytes("debug", "Command sent: ", req)

    def _send_cmd(self, cmd: bytes) -> None:
        """Sends `cmd` command to the sensor"""
        req = SYNC_BYTE + cmd
        self._serial_port.write(req)
        self.log_bytes("debug", "Command sent: ", req)

    def _read_descriptor(self) -> Tuple[int, bool, int] | None:
        """Reads descriptor packet"""
        self.log("debug", "_read_descriptor")

        descriptor = self._serial_port.read(DESCRIPTOR_LEN)
        if descriptor is None:
            return None
        self.log_bytes("debug", "Received descriptor:", descriptor)
        if len(descriptor) != DESCRIPTOR_LEN:
            raise RPLidarException("Descriptor length mismatch")
        if not descriptor.startswith(SYNC_BYTE + SYNC_BYTE2):
            raise RPLidarException("Incorrect descriptor starting bytes")
        is_single = descriptor[-2] == 0
        return descriptor[2], is_single, descriptor[-1]

    def _read_response(self, dsize: int) -> bytes | None:
        """Reads response packet with length of `dsize` bytes"""
        self.log("debug", "_read_response: %d bytes" % dsize)
        data = self._serial_port.read(dsize)
        if data is not None:
            self.log_bytes("debug", "Received data:", data)
            if len(data) != dsize:
                raise RPLidarException("Wrong body size")
            return data
        return None

    @property
    def info(self) -> Dict[str, Any] | None:
        """Get device information

        Returns

        dict
            Dictionary with the sensor information
        """
        self._send_cmd(GET_INFO_BYTE)
        descriptor = self._read_descriptor()
        if descriptor is not None:
            dsize, is_single, dtype = descriptor
            if dsize != INFO_LEN:
                raise RPLidarException("Wrong info reply length")
            if not is_single:
                raise RPLidarException("Not a single response mode")
            if dtype != INFO_TYPE:
                raise RPLidarException("Wrong response data type")
            raw = self._read_response(dsize)
            serialnumber_bytes = struct.unpack("B" * len(raw[4:]), raw[4:])
            serialnumber = "".join(reversed(["%02x" % b for b in serialnumber_bytes]))
            data = {
                "model": raw[0],
                "firmware": (raw[2], raw[1]),
                "hardware": raw[3],
                "serialnumber": serialnumber,
            }
            return data
        elif descriptor is None:
            return self.info

    @property
    def health(self) -> Tuple[str, int]:
        """Get device health state. When the core system detects some
        potential risk that may cause hardware failure in the future,
        the returned status value will be 'Warning'. But sensor can still work
        as normal. When sensor is in the Protection Stop state, the returned
        status value will be 'Error'. In case of warning or error statuses
        non-zero error code will be returned.

        Returns

        status : str
            'Good', 'Warning' or 'Error' statuses
        error_code : int
            The related error code that caused a warning/error.
        """
        self._send_cmd(GET_HEALTH_BYTE)
        descriptor = self._read_descriptor()
        if descriptor is not None:
            dsize, is_single, dtype = descriptor
            if dsize != HEALTH_LEN:
                raise RPLidarException("Wrong info reply length")
            if not is_single:
                raise RPLidarException("Not a single response mode")
            if dtype != HEALTH_TYPE:
                raise RPLidarException("Wrong response data type")
            raw = self._read_response(dsize)
            status = _HEALTH_STATUSES[raw[0]]
            error_code = (raw[1] << 8) + raw[2]
            return status, error_code
        else:
            return self.health

    def clear_input(self) -> None:
        self.log("debug", "clear_input")

        """Clears input buffer by reading all available data"""
        if self.scanning:
            raise RPLidarException("Clearing not allowed during active scanning!")
        if not self.is_CP:
            self._serial_port.flushInput()
        self.express_frame = 32
        self.express_data = False

    def start(self, scan_type: int = SCAN_TYPE_NORMAL) -> None:
        self.log("debug", "start")

        """Start the scanning process

        Parameters

        scan_type : int, optional
            Normal, force or express; default is normal
        """
        if self.scanning:
            raise RPLidarException("Scanning already running!")
        # Start the scanning process, enable laser diode and the
        # measurement system
        status, error_code = self.health
        self.log("debug", "Health status: %s [%d]" % (status, error_code))
        if status == _HEALTH_STATUSES[2]:
            self.log(
                "warning",
                "Trying to reset sensor due to the error. "
                "Error code: %d" % (error_code),
            )
            self.reset()
            status, error_code = self.health
            if status == _HEALTH_STATUSES[2]:
                raise RPLidarException(
                    "RPLidar hardware failure. " "Error code: %d" % error_code
                )
        elif status == _HEALTH_STATUSES[1]:
            self.log(
                "warning",
                "Warning sensor status detected! " "Error code: %d" % (error_code),
            )
        cmd = _SCAN_TYPES[scan_type]["byte"]
        self.log("info", "starting scan process in %s mode" % scan_type)

        if scan_type == "express":
            self._send_payload_cmd(cmd, b"\x00\x00\x00\x00\x00")
        else:
            self._send_cmd(cmd)

        dsize, is_single, dtype = self._read_descriptor()
        if dsize != _SCAN_TYPES[scan_type]["size"]:
            raise RPLidarException("Wrong info reply length")
        if is_single:
            raise RPLidarException("Not a multiple response mode")
        if dtype != _SCAN_TYPES[scan_type]["response"]:
            raise RPLidarException("Wrong response data type")
        self.descriptor_size = dsize
        self.scan_type = scan_type
        self.scanning = True

    def stop(self) -> None:
        """Stops scanning process, disables laser diode and the measurement
        system, moves sensor to the idle state."""
        self.log("info", "Stopping scanning")
        self._send_cmd(STOP_BYTE)
        time.sleep(0.001)
        self.scanning = False
        self.clear_input()

    def reset(self) -> None:
        """Resets sensor core, reverting it to a similar state as it has
        just been powered up."""
        self.log("info", "Resetting the sensor")
        self._send_cmd(RESET_BYTE)
        time.sleep(0.002)
        self.clear_input()

    def iter_measurements(
            self, max_buf_meas: int = 500, scan_type: int = SCAN_TYPE_NORMAL
    ) -> Iterator[Tuple[bool, Optional[int], float, float]]:
        self.log("debug", "iter_measurements")
        """Iterate over measurements. Note that consumer must be fast enough,
        otherwise data will be accumulated inside buffer and consumer will get
        data with increasing lag.

        Parameters

        max_buf_meas : int, optional
            Maximum number of measurements to be stored inside the buffer. Once
            number exceeds this limit buffer will be emptied out.  Default is
            500.
        scan_type : int, optional
            Normal, force or express; default is normal

        Yields

        new_scan : bool
            True if measurement belongs to a new scan
        quality : int | None
            Reflected laser pulse strength
        angle : float
            The measurement heading angle in degree unit [0, 360)
        distance : float
            Measured object distance related to the sensor's rotation center.
            In millimeter unit. Set to 0 when measurement is invalid.
        """
        self.log("debug", "iter_measurements")

        self.start_motor()
        if not self.scanning:
            self.start(scan_type)

        while True:
            dsize = self.descriptor_size
            if max_buf_meas:
                data_in_buf = self._serial_port.in_waiting
                if data_in_buf > max_buf_meas * dsize:
                    self.log(
                        "warning",
                        "Too many measurements in the input buffer: %d/%d. "
                        "Clearing buffer..." % (data_in_buf // dsize, max_buf_meas),
                    )
                    self._serial_port.read(data_in_buf // dsize * dsize)
            if self.scan_type == SCAN_TYPE_NORMAL:
                raw = self._read_response(dsize)
                self.log_bytes("debug", "Received scan response: ", raw)
                if raw is not None:
                    yield _process_scan(raw)
            elif self.scan_type == SCAN_TYPE_EXPRESS:
                if self.express_frame == 32:
                    self.express_frame = 0
                    if not self.express_data:
                        self.log("debug", "reading first time bytes")
                        self.express_data = ExpressPacket.from_string(
                            self._read_response(dsize)
                        )

                    self.express_old_data = self.express_data
                    self.log(
                        "debug",
                        "set old_data with start_angle %f"
                        % self.express_old_data.start_angle,
                    )
                    self.express_data = ExpressPacket.from_string(
                        self._read_response(dsize)
                    )
                    self.log(
                        "debug",
                        "set new_data with start_angle %f"
                        % self.express_data.start_angle,
                    )

                self.express_frame += 1
                self.log(
                    "debug",
                    "process scan of frame %d with angle : "
                    "%f and angle new : %f"
                    % (
                        self.express_frame,
                        self.express_old_data.start_angle,
                        self.express_data.start_angle,
                    ),
                )
                yield _process_express_scan(
                    self.express_old_data,
                    self.express_data.start_angle,
                    self.express_frame,
                )

    def iter_scans(
            self, max_buf_meas: int = 500, min_len: int = 5
    ) -> List[Union[int, float]] | None:
        self.log("debug", "iter_scans")

        """Iterate over scans. Note that consumer must be fast enough,
        otherwise data will be accumulated inside buffer and consumer will get
        data with increasing lag.

        Parameters

        max_buf_meas : int, optional
            Maximum number of measurements to be stored inside the buffer. Once
            number exceeds this limit buffer will be emptied out. Default is
            500.
        min_len : int, optional
            Minimum number of measurements in the scan for it to be yielded.
            Default is 5.

        Yields

        scan : list
            List of the measurements. Each measurement is tuple with following
            format: (quality, angle, distance). For values description please
            refer to `iter_measurements` method's documentation.
        """
        scan = []
        iterator = self.iter_measurements(max_buf_meas)
        try:
            for new_scan, quality, angle, distance in iterator:
                if new_scan:
                    if len(scan) > min_len:
                        yield scan
                    scan = []
                if quality > 0 and distance > 0:
                    scan.append((quality, angle, distance))
        except TypeError:
            pass


class ExpressPacket(express_packet):
    """Class representing a Express type Packet"""

    sync1 = 0xA
    sync2 = 0x5
    sign = {0: 1, 1: -1}

    @classmethod
    def from_string(cls, data: bytes) -> "ExpressPacket":
        """Decode and Instantiate the class from a string packet"""
        packet = bytearray(data)

        if (packet[0] >> 4) != cls.sync1 or (packet[1] >> 4) != cls.sync2:
            raise ValueError("try to parse corrupted data ({})".format(packet))

        checksum = 0
        for b in packet[2:]:
            checksum ^= b
        if checksum != (packet[0] & 0b00001111) + ((packet[1] & 0b00001111) << 4):
            raise ValueError("Invalid checksum ({})".format(packet))

        new_scan = packet[3] >> 7
        start_angle = (packet[2] + ((packet[3] & 0b01111111) << 8)) / 64

        d = a = ()
        for i in range(0, 80, 5):
            d += ((packet[i + 4] >> 2) + (packet[i + 5] << 6),)
            a += (
                ((packet[i + 8] & 0b00001111) + ((packet[i + 4] & 0b00000001) << 4))
                / 8
                * cls.sign[(packet[i + 4] & 0b00000010) >> 1],
            )
            d += ((packet[i + 6] >> 2) + (packet[i + 7] << 6),)
            a += (
                ((packet[i + 8] >> 4) + ((packet[i + 6] & 0b00000001) << 4))
                / 8
                * cls.sign[(packet[i + 6] & 0b00000010) >> 1],
            )
        return cls(d, a, new_scan, start_angle)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants