-
Notifications
You must be signed in to change notification settings - Fork 128
/
Copy pathnukedopl3.d
2622 lines (2339 loc) · 126 KB
/
nukedopl3.d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (C) 2013-2016 Alexey Khokholov (Nuke.YKT)
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
//
// Nuked OPL3 emulator.
// Thanks:
// MAME Development Team(Jarek Burczynski, Tatsuyuki Satoh):
// Feedback and Rhythm part calculation information.
// forums.submarine.org.uk(carbon14, opl3):
// Tremolo and phase generator calculation information.
// OPLx decapsulated(Matthew Gambrell, Olli Niemitalo):
// OPL2 ROMs.
//
// version: 1.7.4
/++
OPL3 (1990's midi chip) emulator.
License:
GPL2
Authors:
Originally written in C by Alexey Khokholov, ported to D by ketmar, very slightly modified by me.
+/
module arsd.nukedopl3;
nothrow @trusted @nogc:
public:
enum OPL_WRITEBUF_SIZE = 1024;
enum OPL_WRITEBUF_DELAY = 2;
// ////////////////////////////////////////////////////////////////////////// //
// ////////////////////////////////////////////////////////////////////////// //
private:
enum OPL_RATE = 49716;
struct OPL3Slot {
OPL3Channel* channel;
OPL3Chip* chip;
short out_;
short fbmod;
short* mod;
short prout;
short eg_rout;
short eg_out;
ubyte eg_inc;
ubyte eg_gen;
ubyte eg_rate;
ubyte eg_ksl;
ubyte *trem;
ubyte reg_vib;
ubyte reg_type;
ubyte reg_ksr;
ubyte reg_mult;
ubyte reg_ksl;
ubyte reg_tl;
ubyte reg_ar;
ubyte reg_dr;
ubyte reg_sl;
ubyte reg_rr;
ubyte reg_wf;
ubyte key;
uint pg_phase;
uint timer;
}
struct OPL3Channel {
OPL3Slot*[2] slots;
OPL3Channel* pair;
OPL3Chip* chip;
short*[4] out_;
ubyte chtype;
ushort f_num;
ubyte block;
ubyte fb;
ubyte con;
ubyte alg;
ubyte ksv;
ushort cha, chb;
}
struct OPL3WriteBuf {
ulong time;
ushort reg;
ubyte data;
}
///
public struct OPL3Chip {
private:
OPL3Channel[18] channel;
OPL3Slot[36] slot;
ushort timer;
ubyte newm;
ubyte nts;
ubyte rhy;
ubyte vibpos;
ubyte vibshift;
ubyte tremolo;
ubyte tremolopos;
ubyte tremoloshift;
uint noise;
short zeromod;
int[2] mixbuff;
//OPL3L
int rateratio;
int samplecnt;
short[2] oldsamples;
short[2] samples;
ulong writebuf_samplecnt;
uint writebuf_cur;
uint writebuf_last;
ulong writebuf_lasttime;
OPL3WriteBuf[OPL_WRITEBUF_SIZE] writebuf;
}
private:
enum RSM_FRAC = 10;
// Channel types
enum {
ch_2op = 0,
ch_4op = 1,
ch_4op2 = 2,
ch_drum = 3
}
// Envelope key types
enum {
egk_norm = 0x01,
egk_drum = 0x02
}
//
// logsin table
//
static immutable ushort[256] logsinrom = [
0x859, 0x6c3, 0x607, 0x58b, 0x52e, 0x4e4, 0x4a6, 0x471,
0x443, 0x41a, 0x3f5, 0x3d3, 0x3b5, 0x398, 0x37e, 0x365,
0x34e, 0x339, 0x324, 0x311, 0x2ff, 0x2ed, 0x2dc, 0x2cd,
0x2bd, 0x2af, 0x2a0, 0x293, 0x286, 0x279, 0x26d, 0x261,
0x256, 0x24b, 0x240, 0x236, 0x22c, 0x222, 0x218, 0x20f,
0x206, 0x1fd, 0x1f5, 0x1ec, 0x1e4, 0x1dc, 0x1d4, 0x1cd,
0x1c5, 0x1be, 0x1b7, 0x1b0, 0x1a9, 0x1a2, 0x19b, 0x195,
0x18f, 0x188, 0x182, 0x17c, 0x177, 0x171, 0x16b, 0x166,
0x160, 0x15b, 0x155, 0x150, 0x14b, 0x146, 0x141, 0x13c,
0x137, 0x133, 0x12e, 0x129, 0x125, 0x121, 0x11c, 0x118,
0x114, 0x10f, 0x10b, 0x107, 0x103, 0x0ff, 0x0fb, 0x0f8,
0x0f4, 0x0f0, 0x0ec, 0x0e9, 0x0e5, 0x0e2, 0x0de, 0x0db,
0x0d7, 0x0d4, 0x0d1, 0x0cd, 0x0ca, 0x0c7, 0x0c4, 0x0c1,
0x0be, 0x0bb, 0x0b8, 0x0b5, 0x0b2, 0x0af, 0x0ac, 0x0a9,
0x0a7, 0x0a4, 0x0a1, 0x09f, 0x09c, 0x099, 0x097, 0x094,
0x092, 0x08f, 0x08d, 0x08a, 0x088, 0x086, 0x083, 0x081,
0x07f, 0x07d, 0x07a, 0x078, 0x076, 0x074, 0x072, 0x070,
0x06e, 0x06c, 0x06a, 0x068, 0x066, 0x064, 0x062, 0x060,
0x05e, 0x05c, 0x05b, 0x059, 0x057, 0x055, 0x053, 0x052,
0x050, 0x04e, 0x04d, 0x04b, 0x04a, 0x048, 0x046, 0x045,
0x043, 0x042, 0x040, 0x03f, 0x03e, 0x03c, 0x03b, 0x039,
0x038, 0x037, 0x035, 0x034, 0x033, 0x031, 0x030, 0x02f,
0x02e, 0x02d, 0x02b, 0x02a, 0x029, 0x028, 0x027, 0x026,
0x025, 0x024, 0x023, 0x022, 0x021, 0x020, 0x01f, 0x01e,
0x01d, 0x01c, 0x01b, 0x01a, 0x019, 0x018, 0x017, 0x017,
0x016, 0x015, 0x014, 0x014, 0x013, 0x012, 0x011, 0x011,
0x010, 0x00f, 0x00f, 0x00e, 0x00d, 0x00d, 0x00c, 0x00c,
0x00b, 0x00a, 0x00a, 0x009, 0x009, 0x008, 0x008, 0x007,
0x007, 0x007, 0x006, 0x006, 0x005, 0x005, 0x005, 0x004,
0x004, 0x004, 0x003, 0x003, 0x003, 0x002, 0x002, 0x002,
0x002, 0x001, 0x001, 0x001, 0x001, 0x001, 0x001, 0x001,
0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000
];
//
// exp table
//
static immutable ushort[256] exprom = [
0x000, 0x003, 0x006, 0x008, 0x00b, 0x00e, 0x011, 0x014,
0x016, 0x019, 0x01c, 0x01f, 0x022, 0x025, 0x028, 0x02a,
0x02d, 0x030, 0x033, 0x036, 0x039, 0x03c, 0x03f, 0x042,
0x045, 0x048, 0x04b, 0x04e, 0x051, 0x054, 0x057, 0x05a,
0x05d, 0x060, 0x063, 0x066, 0x069, 0x06c, 0x06f, 0x072,
0x075, 0x078, 0x07b, 0x07e, 0x082, 0x085, 0x088, 0x08b,
0x08e, 0x091, 0x094, 0x098, 0x09b, 0x09e, 0x0a1, 0x0a4,
0x0a8, 0x0ab, 0x0ae, 0x0b1, 0x0b5, 0x0b8, 0x0bb, 0x0be,
0x0c2, 0x0c5, 0x0c8, 0x0cc, 0x0cf, 0x0d2, 0x0d6, 0x0d9,
0x0dc, 0x0e0, 0x0e3, 0x0e7, 0x0ea, 0x0ed, 0x0f1, 0x0f4,
0x0f8, 0x0fb, 0x0ff, 0x102, 0x106, 0x109, 0x10c, 0x110,
0x114, 0x117, 0x11b, 0x11e, 0x122, 0x125, 0x129, 0x12c,
0x130, 0x134, 0x137, 0x13b, 0x13e, 0x142, 0x146, 0x149,
0x14d, 0x151, 0x154, 0x158, 0x15c, 0x160, 0x163, 0x167,
0x16b, 0x16f, 0x172, 0x176, 0x17a, 0x17e, 0x181, 0x185,
0x189, 0x18d, 0x191, 0x195, 0x199, 0x19c, 0x1a0, 0x1a4,
0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc, 0x1c0, 0x1c4,
0x1c8, 0x1cc, 0x1d0, 0x1d4, 0x1d8, 0x1dc, 0x1e0, 0x1e4,
0x1e8, 0x1ec, 0x1f0, 0x1f5, 0x1f9, 0x1fd, 0x201, 0x205,
0x209, 0x20e, 0x212, 0x216, 0x21a, 0x21e, 0x223, 0x227,
0x22b, 0x230, 0x234, 0x238, 0x23c, 0x241, 0x245, 0x249,
0x24e, 0x252, 0x257, 0x25b, 0x25f, 0x264, 0x268, 0x26d,
0x271, 0x276, 0x27a, 0x27f, 0x283, 0x288, 0x28c, 0x291,
0x295, 0x29a, 0x29e, 0x2a3, 0x2a8, 0x2ac, 0x2b1, 0x2b5,
0x2ba, 0x2bf, 0x2c4, 0x2c8, 0x2cd, 0x2d2, 0x2d6, 0x2db,
0x2e0, 0x2e5, 0x2e9, 0x2ee, 0x2f3, 0x2f8, 0x2fd, 0x302,
0x306, 0x30b, 0x310, 0x315, 0x31a, 0x31f, 0x324, 0x329,
0x32e, 0x333, 0x338, 0x33d, 0x342, 0x347, 0x34c, 0x351,
0x356, 0x35b, 0x360, 0x365, 0x36a, 0x370, 0x375, 0x37a,
0x37f, 0x384, 0x38a, 0x38f, 0x394, 0x399, 0x39f, 0x3a4,
0x3a9, 0x3ae, 0x3b4, 0x3b9, 0x3bf, 0x3c4, 0x3c9, 0x3cf,
0x3d4, 0x3da, 0x3df, 0x3e4, 0x3ea, 0x3ef, 0x3f5, 0x3fa
];
//
// freq mult table multiplied by 2
//
// 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 12, 12, 15, 15
//
static immutable ubyte[16] mt = [
1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 20, 24, 24, 30, 30
];
//
// ksl table
//
static immutable ubyte[16] kslrom = [
0, 32, 40, 45, 48, 51, 53, 55, 56, 58, 59, 60, 61, 62, 63, 64
];
static immutable ubyte[4] kslshift = [
8, 1, 2, 0
];
//
// envelope generator constants
//
static immutable ubyte[8][4][3] eg_incstep = [
[
[ 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0 ]
],
[
[ 0, 1, 0, 1, 0, 1, 0, 1 ],
[ 0, 1, 0, 1, 1, 1, 0, 1 ],
[ 0, 1, 1, 1, 0, 1, 1, 1 ],
[ 0, 1, 1, 1, 1, 1, 1, 1 ]
],
[
[ 1, 1, 1, 1, 1, 1, 1, 1 ],
[ 2, 2, 1, 1, 1, 1, 1, 1 ],
[ 2, 2, 1, 1, 2, 2, 1, 1 ],
[ 2, 2, 2, 2, 2, 2, 1, 1 ]
]
];
static immutable ubyte[16] eg_incdesc = [
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2
];
static immutable byte[16] eg_incsh = [
0, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, -1, -2
];
//
// address decoding
//
static immutable byte[0x20] ad_slot = [
0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, 9, 10, 11, -1, -1,
12, 13, 14, 15, 16, 17, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
];
static immutable ubyte[18] ch_slot = [
0, 1, 2, 6, 7, 8, 12, 13, 14, 18, 19, 20, 24, 25, 26, 30, 31, 32
];
//
// Envelope generator
//
alias envelope_sinfunc = short function (ushort phase, ushort envelope) nothrow @trusted @nogc;
alias envelope_genfunc = void function (OPL3Slot *slott) nothrow @trusted @nogc;
private short OPL3_EnvelopeCalcExp (uint level) {
if (level > 0x1fff) level = 0x1fff;
return cast(short)(((exprom.ptr[(level&0xff)^0xff]|0x400)<<1)>>(level>>8));
}
private short OPL3_EnvelopeCalcSin0 (ushort phase, ushort envelope) {
ushort out_ = 0;
ushort neg = 0;
phase &= 0x3ff;
if (phase&0x200) neg = ushort.max;
if (phase&0x100) out_ = logsinrom.ptr[(phase&0xff)^0xff]; else out_ = logsinrom.ptr[phase&0xff];
return OPL3_EnvelopeCalcExp(out_+(envelope<<3))^neg;
}
private short OPL3_EnvelopeCalcSin1 (ushort phase, ushort envelope) {
ushort out_ = 0;
phase &= 0x3ff;
if (phase&0x200) out_ = 0x1000;
else if (phase&0x100) out_ = logsinrom.ptr[(phase&0xff)^0xff];
else out_ = logsinrom.ptr[phase&0xff];
return OPL3_EnvelopeCalcExp(out_+(envelope<<3));
}
private short OPL3_EnvelopeCalcSin2 (ushort phase, ushort envelope) {
ushort out_ = 0;
phase &= 0x3ff;
if (phase&0x100) out_ = logsinrom.ptr[(phase&0xff)^0xff]; else out_ = logsinrom.ptr[phase&0xff];
return OPL3_EnvelopeCalcExp(out_+(envelope<<3));
}
private short OPL3_EnvelopeCalcSin3 (ushort phase, ushort envelope) {
ushort out_ = 0;
phase &= 0x3ff;
if (phase&0x100) out_ = 0x1000; else out_ = logsinrom.ptr[phase&0xff];
return OPL3_EnvelopeCalcExp(out_+(envelope<<3));
}
private short OPL3_EnvelopeCalcSin4 (ushort phase, ushort envelope) {
ushort out_ = 0;
ushort neg = 0;
phase &= 0x3ff;
if ((phase&0x300) == 0x100) neg = ushort.max;
if (phase&0x200) out_ = 0x1000;
else if (phase&0x80) out_ = logsinrom.ptr[((phase^0xff)<<1)&0xff];
else out_ = logsinrom.ptr[(phase<<1)&0xff];
return OPL3_EnvelopeCalcExp(out_+(envelope<<3))^neg;
}
private short OPL3_EnvelopeCalcSin5 (ushort phase, ushort envelope) {
ushort out_ = 0;
phase &= 0x3ff;
if (phase&0x200) out_ = 0x1000;
else if (phase&0x80) out_ = logsinrom.ptr[((phase^0xff)<<1)&0xff];
else out_ = logsinrom.ptr[(phase<<1)&0xff];
return OPL3_EnvelopeCalcExp(out_+(envelope<<3));
}
private short OPL3_EnvelopeCalcSin6 (ushort phase, ushort envelope) {
ushort neg = 0;
phase &= 0x3ff;
if (phase&0x200) neg = ushort.max;
return OPL3_EnvelopeCalcExp(envelope<<3)^neg;
}
private short OPL3_EnvelopeCalcSin7 (ushort phase, ushort envelope) {
ushort out_ = 0;
ushort neg = 0;
phase &= 0x3ff;
if (phase&0x200) {
neg = ushort.max;
phase = (phase&0x1ff)^0x1ff;
}
out_ = cast(ushort)(phase<<3);
return OPL3_EnvelopeCalcExp(out_+(envelope<<3))^neg;
}
static immutable envelope_sinfunc[8] envelope_sin = [
&OPL3_EnvelopeCalcSin0,
&OPL3_EnvelopeCalcSin1,
&OPL3_EnvelopeCalcSin2,
&OPL3_EnvelopeCalcSin3,
&OPL3_EnvelopeCalcSin4,
&OPL3_EnvelopeCalcSin5,
&OPL3_EnvelopeCalcSin6,
&OPL3_EnvelopeCalcSin7
];
static immutable envelope_genfunc[5] envelope_gen = [
&OPL3_EnvelopeGenOff,
&OPL3_EnvelopeGenAttack,
&OPL3_EnvelopeGenDecay,
&OPL3_EnvelopeGenSustain,
&OPL3_EnvelopeGenRelease
];
alias envelope_gen_num = int;
enum /*envelope_gen_num*/:int {
envelope_gen_num_off = 0,
envelope_gen_num_attack = 1,
envelope_gen_num_decay = 2,
envelope_gen_num_sustain = 3,
envelope_gen_num_release = 4
}
private ubyte OPL3_EnvelopeCalcRate (OPL3Slot* slot, ubyte reg_rate) {
if (reg_rate == 0x00) return 0x00;
ubyte rate = cast(ubyte)((reg_rate<<2)+(slot.reg_ksr ? slot.channel.ksv : (slot.channel.ksv>>2)));
if (rate > 0x3c) rate = 0x3c;
return rate;
}
private void OPL3_EnvelopeUpdateKSL (OPL3Slot* slot) {
short ksl = (kslrom.ptr[slot.channel.f_num>>6]<<2)-((0x08-slot.channel.block)<<5);
if (ksl < 0) ksl = 0;
slot.eg_ksl = cast(ubyte)ksl;
}
private void OPL3_EnvelopeUpdateRate (OPL3Slot* slot) {
switch (slot.eg_gen) {
case envelope_gen_num_off:
case envelope_gen_num_attack:
slot.eg_rate = OPL3_EnvelopeCalcRate(slot, slot.reg_ar);
break;
case envelope_gen_num_decay:
slot.eg_rate = OPL3_EnvelopeCalcRate(slot, slot.reg_dr);
break;
case envelope_gen_num_sustain:
case envelope_gen_num_release:
slot.eg_rate = OPL3_EnvelopeCalcRate(slot, slot.reg_rr);
break;
default: break;
}
}
private void OPL3_EnvelopeGenOff (OPL3Slot* slot) {
slot.eg_rout = 0x1ff;
}
private void OPL3_EnvelopeGenAttack (OPL3Slot* slot) {
if (slot.eg_rout == 0x00) {
slot.eg_gen = envelope_gen_num_decay;
OPL3_EnvelopeUpdateRate(slot);
} else {
slot.eg_rout += ((~cast(uint)slot.eg_rout)*slot.eg_inc)>>3;
if (slot.eg_rout < 0x00) slot.eg_rout = 0x00;
}
}
private void OPL3_EnvelopeGenDecay (OPL3Slot* slot) {
if (slot.eg_rout >= slot.reg_sl<<4) {
slot.eg_gen = envelope_gen_num_sustain;
OPL3_EnvelopeUpdateRate(slot);
} else {
slot.eg_rout += slot.eg_inc;
}
}
private void OPL3_EnvelopeGenSustain (OPL3Slot* slot) {
if (!slot.reg_type) OPL3_EnvelopeGenRelease(slot);
}
private void OPL3_EnvelopeGenRelease (OPL3Slot* slot) {
if (slot.eg_rout >= 0x1ff) {
slot.eg_gen = envelope_gen_num_off;
slot.eg_rout = 0x1ff;
OPL3_EnvelopeUpdateRate(slot);
} else {
slot.eg_rout += slot.eg_inc;
}
}
private void OPL3_EnvelopeCalc (OPL3Slot* slot) {
ubyte rate_h, rate_l;
ubyte inc = 0;
rate_h = slot.eg_rate>>2;
rate_l = slot.eg_rate&3;
if (eg_incsh.ptr[rate_h] > 0) {
if ((slot.chip.timer&((1<<eg_incsh.ptr[rate_h])-1)) == 0) {
inc = eg_incstep.ptr[eg_incdesc.ptr[rate_h]].ptr[rate_l].ptr[((slot.chip.timer)>> eg_incsh.ptr[rate_h])&0x07];
}
} else {
inc = cast(ubyte)(eg_incstep.ptr[eg_incdesc.ptr[rate_h]].ptr[rate_l].ptr[slot.chip.timer&0x07]<<(-cast(int)(eg_incsh.ptr[rate_h])));
}
slot.eg_inc = inc;
slot.eg_out = cast(short)(slot.eg_rout+(slot.reg_tl<<2)+(slot.eg_ksl>>kslshift.ptr[slot.reg_ksl])+*slot.trem);
envelope_gen[slot.eg_gen](slot);
}
private void OPL3_EnvelopeKeyOn (OPL3Slot* slot, ubyte type) {
if (!slot.key) {
slot.eg_gen = envelope_gen_num_attack;
OPL3_EnvelopeUpdateRate(slot);
if ((slot.eg_rate>>2) == 0x0f) {
slot.eg_gen = envelope_gen_num_decay;
OPL3_EnvelopeUpdateRate(slot);
slot.eg_rout = 0x00;
}
slot.pg_phase = 0x00;
}
slot.key |= type;
}
private void OPL3_EnvelopeKeyOff (OPL3Slot* slot, ubyte type) {
if (slot.key) {
slot.key &= (~cast(uint)type);
if (!slot.key) {
slot.eg_gen = envelope_gen_num_release;
OPL3_EnvelopeUpdateRate(slot);
}
}
}
//
// Phase Generator
//
private void OPL3_PhaseGenerate (OPL3Slot* slot) {
ushort f_num;
uint basefreq;
f_num = slot.channel.f_num;
if (slot.reg_vib) {
byte range;
ubyte vibpos;
range = (f_num>>7)&7;
vibpos = slot.chip.vibpos;
if (!(vibpos&3)) range = 0;
else if (vibpos&1) range >>= 1;
range >>= slot.chip.vibshift;
if (vibpos&4) range = cast(byte) -cast(int)(range);
f_num += range;
}
basefreq = (f_num<<slot.channel.block)>>1;
slot.pg_phase += (basefreq*mt.ptr[slot.reg_mult])>>1;
}
//
// Noise Generator
//
private void OPL3_NoiseGenerate (OPL3Chip* chip) {
if (chip.noise&0x01) chip.noise ^= 0x800302;
chip.noise >>= 1;
}
//
// Slot
//
private void OPL3_SlotWrite20 (OPL3Slot* slot, ubyte data) {
slot.trem = ((data>>7)&0x01 ? &slot.chip.tremolo : cast(ubyte*)&slot.chip.zeromod);
slot.reg_vib = (data>>6)&0x01;
slot.reg_type = (data>>5)&0x01;
slot.reg_ksr = (data>>4)&0x01;
slot.reg_mult = data&0x0f;
OPL3_EnvelopeUpdateRate(slot);
}
private void OPL3_SlotWrite40 (OPL3Slot* slot, ubyte data) {
slot.reg_ksl = (data>>6)&0x03;
slot.reg_tl = data&0x3f;
OPL3_EnvelopeUpdateKSL(slot);
}
private void OPL3_SlotWrite60 (OPL3Slot* slot, ubyte data) {
slot.reg_ar = (data>>4)&0x0f;
slot.reg_dr = data&0x0f;
OPL3_EnvelopeUpdateRate(slot);
}
private void OPL3_SlotWrite80 (OPL3Slot* slot, ubyte data) {
slot.reg_sl = (data>>4)&0x0f;
if (slot.reg_sl == 0x0f) slot.reg_sl = 0x1f;
slot.reg_rr = data&0x0f;
OPL3_EnvelopeUpdateRate(slot);
}
private void OPL3_SlotWriteE0 (OPL3Slot* slot, ubyte data) {
slot.reg_wf = data&0x07;
if (slot.chip.newm == 0x00) slot.reg_wf &= 0x03;
}
private void OPL3_SlotGeneratePhase (OPL3Slot* slot, ushort phase) {
slot.out_ = envelope_sin[slot.reg_wf](phase, slot.eg_out);
}
private void OPL3_SlotGenerate (OPL3Slot* slot) {
OPL3_SlotGeneratePhase(slot, cast(ushort)(cast(ushort)(slot.pg_phase>>9)+*slot.mod));
}
private void OPL3_SlotGenerateZM (OPL3Slot* slot) {
OPL3_SlotGeneratePhase(slot, cast(ushort)(slot.pg_phase>>9));
}
private void OPL3_SlotCalcFB (OPL3Slot* slot) {
slot.fbmod = (slot.channel.fb != 0x00 ? cast(short)((slot.prout+slot.out_)>>(0x09-slot.channel.fb)) : 0);
slot.prout = slot.out_;
}
//
// Channel
//
private void OPL3_ChannelUpdateRhythm (OPL3Chip* chip, ubyte data) {
OPL3Channel* channel6;
OPL3Channel* channel7;
OPL3Channel* channel8;
ubyte chnum;
chip.rhy = data&0x3f;
if (chip.rhy&0x20) {
channel6 = &chip.channel.ptr[6];
channel7 = &chip.channel.ptr[7];
channel8 = &chip.channel.ptr[8];
channel6.out_.ptr[0] = &channel6.slots.ptr[1].out_;
channel6.out_.ptr[1] = &channel6.slots.ptr[1].out_;
channel6.out_.ptr[2] = &chip.zeromod;
channel6.out_.ptr[3] = &chip.zeromod;
channel7.out_.ptr[0] = &channel7.slots.ptr[0].out_;
channel7.out_.ptr[1] = &channel7.slots.ptr[0].out_;
channel7.out_.ptr[2] = &channel7.slots.ptr[1].out_;
channel7.out_.ptr[3] = &channel7.slots.ptr[1].out_;
channel8.out_.ptr[0] = &channel8.slots.ptr[0].out_;
channel8.out_.ptr[1] = &channel8.slots.ptr[0].out_;
channel8.out_.ptr[2] = &channel8.slots.ptr[1].out_;
channel8.out_.ptr[3] = &channel8.slots.ptr[1].out_;
for (chnum = 6; chnum < 9; ++chnum) chip.channel.ptr[chnum].chtype = ch_drum;
OPL3_ChannelSetupAlg(channel6);
//hh
if (chip.rhy&0x01) {
OPL3_EnvelopeKeyOn(channel7.slots.ptr[0], egk_drum);
} else {
OPL3_EnvelopeKeyOff(channel7.slots.ptr[0], egk_drum);
}
//tc
if (chip.rhy&0x02) {
OPL3_EnvelopeKeyOn(channel8.slots.ptr[1], egk_drum);
} else {
OPL3_EnvelopeKeyOff(channel8.slots.ptr[1], egk_drum);
}
//tom
if (chip.rhy&0x04) {
OPL3_EnvelopeKeyOn(channel8.slots.ptr[0], egk_drum);
} else {
OPL3_EnvelopeKeyOff(channel8.slots.ptr[0], egk_drum);
}
//sd
if (chip.rhy&0x08) {
OPL3_EnvelopeKeyOn(channel7.slots.ptr[1], egk_drum);
} else {
OPL3_EnvelopeKeyOff(channel7.slots.ptr[1], egk_drum);
}
//bd
if (chip.rhy&0x10) {
OPL3_EnvelopeKeyOn(channel6.slots.ptr[0], egk_drum);
OPL3_EnvelopeKeyOn(channel6.slots.ptr[1], egk_drum);
} else {
OPL3_EnvelopeKeyOff(channel6.slots.ptr[0], egk_drum);
OPL3_EnvelopeKeyOff(channel6.slots.ptr[1], egk_drum);
}
} else {
for (chnum = 6; chnum < 9; ++chnum) {
chip.channel.ptr[chnum].chtype = ch_2op;
OPL3_ChannelSetupAlg(&chip.channel.ptr[chnum]);
OPL3_EnvelopeKeyOff(chip.channel.ptr[chnum].slots.ptr[0], egk_drum);
OPL3_EnvelopeKeyOff(chip.channel.ptr[chnum].slots.ptr[1], egk_drum);
}
}
}
private void OPL3_ChannelWriteA0 (OPL3Channel* channel, ubyte data) {
if (channel.chip.newm && channel.chtype == ch_4op2) return;
channel.f_num = (channel.f_num&0x300)|data;
channel.ksv = cast(ubyte)((channel.block<<1)|((channel.f_num>>(0x09-channel.chip.nts))&0x01));
OPL3_EnvelopeUpdateKSL(channel.slots.ptr[0]);
OPL3_EnvelopeUpdateKSL(channel.slots.ptr[1]);
OPL3_EnvelopeUpdateRate(channel.slots.ptr[0]);
OPL3_EnvelopeUpdateRate(channel.slots.ptr[1]);
if (channel.chip.newm && channel.chtype == ch_4op) {
channel.pair.f_num = channel.f_num;
channel.pair.ksv = channel.ksv;
OPL3_EnvelopeUpdateKSL(channel.pair.slots.ptr[0]);
OPL3_EnvelopeUpdateKSL(channel.pair.slots.ptr[1]);
OPL3_EnvelopeUpdateRate(channel.pair.slots.ptr[0]);
OPL3_EnvelopeUpdateRate(channel.pair.slots.ptr[1]);
}
}
private void OPL3_ChannelWriteB0 (OPL3Channel* channel, ubyte data) {
if (channel.chip.newm && channel.chtype == ch_4op2) return;
channel.f_num = (channel.f_num&0xff)|((data&0x03)<<8);
channel.block = (data>>2)&0x07;
channel.ksv = cast(ubyte)((channel.block<<1)|((channel.f_num>>(0x09-channel.chip.nts))&0x01));
OPL3_EnvelopeUpdateKSL(channel.slots.ptr[0]);
OPL3_EnvelopeUpdateKSL(channel.slots.ptr[1]);
OPL3_EnvelopeUpdateRate(channel.slots.ptr[0]);
OPL3_EnvelopeUpdateRate(channel.slots.ptr[1]);
if (channel.chip.newm && channel.chtype == ch_4op) {
channel.pair.f_num = channel.f_num;
channel.pair.block = channel.block;
channel.pair.ksv = channel.ksv;
OPL3_EnvelopeUpdateKSL(channel.pair.slots.ptr[0]);
OPL3_EnvelopeUpdateKSL(channel.pair.slots.ptr[1]);
OPL3_EnvelopeUpdateRate(channel.pair.slots.ptr[0]);
OPL3_EnvelopeUpdateRate(channel.pair.slots.ptr[1]);
}
}
private void OPL3_ChannelSetupAlg (OPL3Channel* channel) {
if (channel.chtype == ch_drum) {
final switch (channel.alg&0x01) {
case 0x00:
channel.slots.ptr[0].mod = &channel.slots.ptr[0].fbmod;
channel.slots.ptr[1].mod = &channel.slots.ptr[0].out_;
break;
case 0x01:
channel.slots.ptr[0].mod = &channel.slots.ptr[0].fbmod;
channel.slots.ptr[1].mod = &channel.chip.zeromod;
break;
}
return;
}
if (channel.alg&0x08) return;
if (channel.alg&0x04) {
channel.pair.out_.ptr[0] = &channel.chip.zeromod;
channel.pair.out_.ptr[1] = &channel.chip.zeromod;
channel.pair.out_.ptr[2] = &channel.chip.zeromod;
channel.pair.out_.ptr[3] = &channel.chip.zeromod;
final switch (channel.alg&0x03) {
case 0x00:
channel.pair.slots.ptr[0].mod = &channel.pair.slots.ptr[0].fbmod;
channel.pair.slots.ptr[1].mod = &channel.pair.slots.ptr[0].out_;
channel.slots.ptr[0].mod = &channel.pair.slots.ptr[1].out_;
channel.slots.ptr[1].mod = &channel.slots.ptr[0].out_;
channel.out_.ptr[0] = &channel.slots.ptr[1].out_;
channel.out_.ptr[1] = &channel.chip.zeromod;
channel.out_.ptr[2] = &channel.chip.zeromod;
channel.out_.ptr[3] = &channel.chip.zeromod;
break;
case 0x01:
channel.pair.slots.ptr[0].mod = &channel.pair.slots.ptr[0].fbmod;
channel.pair.slots.ptr[1].mod = &channel.pair.slots.ptr[0].out_;
channel.slots.ptr[0].mod = &channel.chip.zeromod;
channel.slots.ptr[1].mod = &channel.slots.ptr[0].out_;
channel.out_.ptr[0] = &channel.pair.slots.ptr[1].out_;
channel.out_.ptr[1] = &channel.slots.ptr[1].out_;
channel.out_.ptr[2] = &channel.chip.zeromod;
channel.out_.ptr[3] = &channel.chip.zeromod;
break;
case 0x02:
channel.pair.slots.ptr[0].mod = &channel.pair.slots.ptr[0].fbmod;
channel.pair.slots.ptr[1].mod = &channel.chip.zeromod;
channel.slots.ptr[0].mod = &channel.pair.slots.ptr[1].out_;
channel.slots.ptr[1].mod = &channel.slots.ptr[0].out_;
channel.out_.ptr[0] = &channel.pair.slots.ptr[0].out_;
channel.out_.ptr[1] = &channel.slots.ptr[1].out_;
channel.out_.ptr[2] = &channel.chip.zeromod;
channel.out_.ptr[3] = &channel.chip.zeromod;
break;
case 0x03:
channel.pair.slots.ptr[0].mod = &channel.pair.slots.ptr[0].fbmod;
channel.pair.slots.ptr[1].mod = &channel.chip.zeromod;
channel.slots.ptr[0].mod = &channel.pair.slots.ptr[1].out_;
channel.slots.ptr[1].mod = &channel.chip.zeromod;
channel.out_.ptr[0] = &channel.pair.slots.ptr[0].out_;
channel.out_.ptr[1] = &channel.slots.ptr[0].out_;
channel.out_.ptr[2] = &channel.slots.ptr[1].out_;
channel.out_.ptr[3] = &channel.chip.zeromod;
break;
}
} else {
final switch (channel.alg&0x01) {
case 0x00:
channel.slots.ptr[0].mod = &channel.slots.ptr[0].fbmod;
channel.slots.ptr[1].mod = &channel.slots.ptr[0].out_;
channel.out_.ptr[0] = &channel.slots.ptr[1].out_;
channel.out_.ptr[1] = &channel.chip.zeromod;
channel.out_.ptr[2] = &channel.chip.zeromod;
channel.out_.ptr[3] = &channel.chip.zeromod;
break;
case 0x01:
channel.slots.ptr[0].mod = &channel.slots.ptr[0].fbmod;
channel.slots.ptr[1].mod = &channel.chip.zeromod;
channel.out_.ptr[0] = &channel.slots.ptr[0].out_;
channel.out_.ptr[1] = &channel.slots.ptr[1].out_;
channel.out_.ptr[2] = &channel.chip.zeromod;
channel.out_.ptr[3] = &channel.chip.zeromod;
break;
}
}
}
private void OPL3_ChannelWriteC0 (OPL3Channel* channel, ubyte data) {
channel.fb = (data&0x0e)>>1;
channel.con = data&0x01;
channel.alg = channel.con;
if (channel.chip.newm) {
if (channel.chtype == ch_4op) {
channel.pair.alg = cast(ubyte)(0x04|(channel.con<<1)|(channel.pair.con));
channel.alg = 0x08;
OPL3_ChannelSetupAlg(channel.pair);
} else if (channel.chtype == ch_4op2) {
channel.alg = cast(ubyte)(0x04|(channel.pair.con<<1)|(channel.con));
channel.pair.alg = 0x08;
OPL3_ChannelSetupAlg(channel);
} else {
OPL3_ChannelSetupAlg(channel);
}
} else {
OPL3_ChannelSetupAlg(channel);
}
if (channel.chip.newm) {
channel.cha = ((data>>4)&0x01 ? ushort.max : 0);
channel.chb = ((data>>5)&0x01 ? ushort.max : 0);
} else {
channel.cha = channel.chb = ushort.max;
}
}
private void OPL3_ChannelKeyOn (OPL3Channel* channel) {
if (channel.chip.newm) {
if (channel.chtype == ch_4op) {
OPL3_EnvelopeKeyOn(channel.slots.ptr[0], egk_norm);
OPL3_EnvelopeKeyOn(channel.slots.ptr[1], egk_norm);
OPL3_EnvelopeKeyOn(channel.pair.slots.ptr[0], egk_norm);
OPL3_EnvelopeKeyOn(channel.pair.slots.ptr[1], egk_norm);
} else if (channel.chtype == ch_2op || channel.chtype == ch_drum) {
OPL3_EnvelopeKeyOn(channel.slots.ptr[0], egk_norm);
OPL3_EnvelopeKeyOn(channel.slots.ptr[1], egk_norm);
}
} else {
OPL3_EnvelopeKeyOn(channel.slots.ptr[0], egk_norm);
OPL3_EnvelopeKeyOn(channel.slots.ptr[1], egk_norm);
}
}
private void OPL3_ChannelKeyOff (OPL3Channel* channel) {
if (channel.chip.newm) {
if (channel.chtype == ch_4op) {
OPL3_EnvelopeKeyOff(channel.slots.ptr[0], egk_norm);
OPL3_EnvelopeKeyOff(channel.slots.ptr[1], egk_norm);
OPL3_EnvelopeKeyOff(channel.pair.slots.ptr[0], egk_norm);
OPL3_EnvelopeKeyOff(channel.pair.slots.ptr[1], egk_norm);
} else if (channel.chtype == ch_2op || channel.chtype == ch_drum) {
OPL3_EnvelopeKeyOff(channel.slots.ptr[0], egk_norm);
OPL3_EnvelopeKeyOff(channel.slots.ptr[1], egk_norm);
}
} else {
OPL3_EnvelopeKeyOff(channel.slots.ptr[0], egk_norm);
OPL3_EnvelopeKeyOff(channel.slots.ptr[1], egk_norm);
}
}
private void OPL3_ChannelSet4Op (OPL3Chip* chip, ubyte data) {
ubyte bit;
ubyte chnum;
for (bit = 0; bit < 6; ++bit) {
chnum = bit;
if (bit >= 3) chnum += 9-3;
if ((data>>bit)&0x01) {
chip.channel.ptr[chnum].chtype = ch_4op;
chip.channel.ptr[chnum+3].chtype = ch_4op2;
} else {
chip.channel.ptr[chnum].chtype = ch_2op;
chip.channel.ptr[chnum+3].chtype = ch_2op;
}
}
}
private short OPL3_ClipSample (int sample) pure {
pragma(inline, true);
if (sample > 32767) sample = 32767;
else if (sample < -32768) sample = -32768;
return cast(short)sample;
}
private void OPL3_GenerateRhythm1 (OPL3Chip* chip) {
OPL3Channel* channel6;
OPL3Channel* channel7;
OPL3Channel* channel8;
ushort phase14;
ushort phase17;
ushort phase;
ushort phasebit;
channel6 = &chip.channel.ptr[6];
channel7 = &chip.channel.ptr[7];
channel8 = &chip.channel.ptr[8];
OPL3_SlotGenerate(channel6.slots.ptr[0]);
phase14 = (channel7.slots.ptr[0].pg_phase>>9)&0x3ff;
phase17 = (channel8.slots.ptr[1].pg_phase>>9)&0x3ff;
phase = 0x00;
//hh tc phase bit
phasebit = ((phase14&0x08)|(((phase14>>5)^phase14)&0x04)|(((phase17>>2)^phase17)&0x08)) ? 0x01 : 0x00;
//hh
phase = cast(ushort)((phasebit<<9)|(0x34<<((phasebit^(chip.noise&0x01))<<1)));
OPL3_SlotGeneratePhase(channel7.slots.ptr[0], phase);
//tt
OPL3_SlotGenerateZM(channel8.slots.ptr[0]);
}
private void OPL3_GenerateRhythm2 (OPL3Chip* chip) {
OPL3Channel* channel6;
OPL3Channel* channel7;
OPL3Channel* channel8;
ushort phase14;
ushort phase17;
ushort phase;
ushort phasebit;
channel6 = &chip.channel.ptr[6];
channel7 = &chip.channel.ptr[7];
channel8 = &chip.channel.ptr[8];
OPL3_SlotGenerate(channel6.slots.ptr[1]);
phase14 = (channel7.slots.ptr[0].pg_phase>>9)&0x3ff;
phase17 = (channel8.slots.ptr[1].pg_phase>>9)&0x3ff;
phase = 0x00;
//hh tc phase bit
phasebit = ((phase14&0x08)|(((phase14>>5)^phase14)&0x04)|(((phase17>>2)^phase17)&0x08)) ? 0x01 : 0x00;
//sd
phase = (0x100<<((phase14>>8)&0x01))^((chip.noise&0x01)<<8);
OPL3_SlotGeneratePhase(channel7.slots.ptr[1], phase);
//tc
phase = cast(ushort)(0x100|(phasebit<<9));
OPL3_SlotGeneratePhase(channel8.slots.ptr[1], phase);
}
// ////////////////////////////////////////////////////////////////////////// //
/// OPL3_Generate
public void generate (ref OPL3Chip chip, short* buf) {
ubyte ii;
ubyte jj;
short accm;
buf[1] = OPL3_ClipSample(chip.mixbuff.ptr[1]);
for (ii = 0; ii < 12; ++ii) {
OPL3_SlotCalcFB(&chip.slot.ptr[ii]);
OPL3_PhaseGenerate(&chip.slot.ptr[ii]);
OPL3_EnvelopeCalc(&chip.slot.ptr[ii]);
OPL3_SlotGenerate(&chip.slot.ptr[ii]);
}
for (ii = 12; ii < 15; ++ii) {
OPL3_SlotCalcFB(&chip.slot.ptr[ii]);
OPL3_PhaseGenerate(&chip.slot.ptr[ii]);
OPL3_EnvelopeCalc(&chip.slot.ptr[ii]);
}
if (chip.rhy&0x20) {
OPL3_GenerateRhythm1(&chip);
} else {
OPL3_SlotGenerate(&chip.slot.ptr[12]);
OPL3_SlotGenerate(&chip.slot.ptr[13]);
OPL3_SlotGenerate(&chip.slot.ptr[14]);
}
chip.mixbuff.ptr[0] = 0;
for (ii = 0; ii < 18; ++ii) {
accm = 0;
for (jj = 0; jj < 4; ++jj) accm += *chip.channel.ptr[ii].out_.ptr[jj];
chip.mixbuff.ptr[0] += cast(short)(accm&chip.channel.ptr[ii].cha);
}
for (ii = 15; ii < 18; ++ii) {
OPL3_SlotCalcFB(&chip.slot.ptr[ii]);
OPL3_PhaseGenerate(&chip.slot.ptr[ii]);
OPL3_EnvelopeCalc(&chip.slot.ptr[ii]);
}
if (chip.rhy&0x20) {
OPL3_GenerateRhythm2(&chip);
} else {
OPL3_SlotGenerate(&chip.slot.ptr[15]);
OPL3_SlotGenerate(&chip.slot.ptr[16]);
OPL3_SlotGenerate(&chip.slot.ptr[17]);
}
buf[0] = OPL3_ClipSample(chip.mixbuff.ptr[0]);
for (ii = 18; ii < 33; ++ii) {
OPL3_SlotCalcFB(&chip.slot.ptr[ii]);
OPL3_PhaseGenerate(&chip.slot.ptr[ii]);
OPL3_EnvelopeCalc(&chip.slot.ptr[ii]);
OPL3_SlotGenerate(&chip.slot.ptr[ii]);
}
chip.mixbuff.ptr[1] = 0;
for (ii = 0; ii < 18; ++ii) {
accm = 0;
for (jj = 0; jj < 4; jj++) accm += *chip.channel.ptr[ii].out_.ptr[jj];
chip.mixbuff.ptr[1] += cast(short)(accm&chip.channel.ptr[ii].chb);
}
for (ii = 33; ii < 36; ++ii) {
OPL3_SlotCalcFB(&chip.slot.ptr[ii]);