-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathutilities.py
149 lines (117 loc) · 5.05 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
import theano
floatX = theano.config.floatX
M_x = 8.18586
M_y = 0.11457
s_x = 40.3719
s_y = 37.0466
def plot_generated_sequences(pt_batch, other_mats=None, pt_mask=None,
show=False, folder_path=None, file_name=None):
"""
Plot sequences of (x, y, penup) points and other information
Parameters:
-----------
pt_batch: numpy array (seq_length, batch_size, 3)
other_mats: list of numpy arrays of shapes (seq_length, batch_size)
pt_mask: numpy array (seq_length, batch_size)
"""
if not other_mats:
other_mats = []
# Renorm batch
batch_normed = np.zeros_like(pt_batch, dtype=pt_batch.dtype)
batch_normed[:] = pt_batch
batch_normed[:, :, 0] = s_x * batch_normed[:, :, 0] + M_x
batch_normed[:, :, 1] = s_y * batch_normed[:, :, 1] + M_y
n_samples = batch_normed.shape[1]
n_mats = len(other_mats)
fig = plt.figure(figsize=(10*n_samples, (1 + n_mats) * 3))
for i in range(n_samples):
mask_term = pt_mask[:, i].astype(bool)
splot_pt = plt.subplot2grid((1 + n_mats, n_samples), (0, i))
plot_seq(splot_pt, batch_normed[:, i], mask_term)
for j, (mat, title) in enumerate(other_mats):
splot_pt = plt.subplot2grid((1 + n_mats, n_samples), (j+1, i))
plot_matrix(splot_pt, mat[:, i], mask_term, title)
if folder_path and file_name:
fig.savefig(os.path.join(folder_path, file_name + '.png'),
bbox_inches='tight', dpi=200)
if show:
plt.show()
plt.close()
def plot_seq_pt(pt_batch, pt_mask_batch=None, use_mask=False, show=False,
folder_path=None, file_name=None):
batch_normed = np.zeros_like(pt_batch, dtype=pt_batch.dtype)
batch_normed[:] = pt_batch
batch_normed[:, :, 0] = s_x * batch_normed[:, :, 0] + M_x
batch_normed[:, :, 1] = s_y * batch_normed[:, :, 1] + M_y
# print 'mean x: {}'.format(batch_normed[:, :, 0].mean())
# print 'std x: {}'.format(batch_normed[:, :, 0].std())
# print 'mean y: {}'.format(batch_normed[:, :, 1].mean())
# print 'std y: {}'.format(batch_normed[:, :, 1].std())
n_samples = batch_normed.shape[1]
fig = plt.figure(figsize=(10, n_samples*3))
for i in range(n_samples):
mask_term = np.array([])
if use_mask:
mask_term = pt_mask_batch[:, i].astype(bool)
subplot = fig.add_subplot(n_samples, 1, i + 1)
plot_seq(subplot, batch_normed[:, i], mask_term)
if folder_path and file_name:
fig.savefig(os.path.join(folder_path, file_name + '.png'),
bbox_inches='tight', dpi=200)
if show:
plt.show()
plt.close()
def plot_seq(subplot, seq_pt, seq_mask=np.array([]), norm=False):
if norm:
seq_normed = np.zeros_like(seq_pt, dtype=seq_pt.dtype)
seq_normed[:] = seq_pt
seq_normed[:, 0] = s_x * seq_normed[:, 0] + M_x
seq_normed[:, 1] = s_y * seq_normed[:, 1] + M_y
else:
seq_normed = seq_pt
if seq_mask.size:
seq_normed = seq_normed[seq_mask.astype(bool)]
pt = seq_normed[:, 0:2]
penup = seq_normed[:, 2].astype(bool)
pos = np.where(penup)[0]+1
pt = np.cumsum(pt, axis=0)
pt = np.insert(pt, pos, [np.nan, np.nan], axis=0)
subplot.plot(pt[:, 0], -pt[:, 1])
subplot.axis('equal')
def plot_matrix(subplot, mat, seq_mask=np.array([]), title=''):
if seq_mask.size:
mat = mat[seq_mask.astype(bool)]
im = subplot.matshow(mat.T)
subplot.set_aspect('auto')
subplot.set_title(title)
cax = make_axes_locatable(subplot).append_axes("right", size="1%",
pad=0.05)
plt.colorbar(im, cax=cax)
def create_train_tag_values(seq_pt, seq_str, seq_tg, seq_pt_mask,
seq_str_mask, batch_size):
f_s_pt = 6
f_s_str = 7
seq_pt.tag.test_value = np.zeros((f_s_pt, batch_size, 3), dtype=floatX)
seq_str.tag.test_value = np.zeros((f_s_str, batch_size), dtype='int32')
seq_tg.tag.test_value = np.ones((f_s_pt, batch_size, 3), dtype=floatX)
seq_pt_mask.tag.test_value = np.ones((f_s_pt, batch_size), dtype=floatX)
seq_str_mask.tag.test_value = np.ones((f_s_str, batch_size), dtype=floatX)
def create_gen_tag_values(model, pt_ini, h_ini_pred, k_ini_pred, w_ini_pred,
bias, seq_str, seq_str_mask):
f_s_str = 7
n_samples = 3
n_hidden, n_chars = model.n_hidden, model.n_chars
n_mixt_attention = model.n_mixt_attention
pt_ini.tag.test_value = np.zeros((n_samples, 3), floatX)
h_ini_pred.tag.test_value = np.zeros((n_samples, n_hidden), floatX)
k_ini_pred.tag.test_value = np.zeros((n_samples, n_mixt_attention), floatX)
w_ini_pred.tag.test_value = np.zeros((n_samples, n_chars), floatX)
bias.tag.test_value = np.float32(0.0)
seq_str.tag.test_value = np.zeros((f_s_str, n_samples), dtype='int32')
seq_str_mask.tag.test_value = np.ones((f_s_str, n_samples), dtype=floatX)