-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathquant3b.py
80 lines (56 loc) · 2 KB
/
quant3b.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import numpy as np
import matplotlib as mpl
mpl.use('TkAgg')
import matplotlib.pyplot as plt
from sklearn import svm, preprocessing
import pandas as pd
from matplotlib import style
import statistics
from my_utils import FEATURES
style.use("ggplot")
def build_data_set():
data_df = pd.DataFrame.from_csv("key_stats_acc_perf_NO_NA.csv")
data_df = data_df.reindex(np.random.permutation(data_df.index))
data_df = data_df.replace("NaN", 0).replace("N/A", 0)
X = np.array(data_df[FEATURES].values)#.tolist()
y = (data_df["Status"]
.replace("underperform", 0)
.replace("outperform", 1)
.values.tolist())
X = preprocessing.scale(X)
z = np.array(data_df[["stock_p_change", "sp500_p_change"]])
return X, y, z
def analysis():
test_size = 400
invest_amount = 1000
total_invests = 0
if_market = 0
if_strat = 0
X, y, Z = build_data_set()
print(len(X))
clf = svm.SVC(kernel="linear", C=1.0) # create a new classifer
clf.fit(X[:-test_size], y[:-test_size]) # create a model for my classifier based on the feature set and labels, 'supervision
correct_count = 0
for x in range(1, test_size + 1):
if clf.predict(X[-x])[0] == y[-x]:
correct_count += 1
if clf.predict(X[-x])[0] == 1:
invest_return = invest_amount + (invest_amount * (Z[-x][0] / 100))
market_return = invest_amount + (invest_amount * (Z[-x][1] / 100))
total_invests += 1
if_market += market_return
if_strat += invest_return
data_df = pd.DataFrame.from_csv("forward_sample_WITH_NA.csv")
data_df = data_df.replace("N/A", 0).replace("NaN", 0)
X = np.array(data_df[FEATURES].values)
X = preprocessing.scale(X)
Z = data_df["Ticker"].values.tolist()
invest_list = []
for i in range(len(X)):
p = clf.predict(X[i])[0]
if p == 1:
print(Z[i])
invest_list.append(Z[i])
print(len(invest_list))
print(invest_list)
analysis()