-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfigures.m
51 lines (36 loc) · 1.16 KB
/
figures.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
% Code for reproducing the figures in
% Ecker et al. (2014): State dependence of noise correlations in macaque
% primary visual cortex. Neuron.
%
% For more information consult the readme in this Git repository or
% http://toliaslab.org/publications/ecker-et-al-2014/
%
% AE 2014-01-22
% Fig. 1: Rasters by neuron and tuning curves
fig1_data
% Fig. 2: Fano factors and noise correlations
fig2_fano_nc
% Fig. 3: Rasters by trial, variance explained
fig3_rasters
fig3_ve
% Fig. 4: Model parameters: weights and timescale
fig4_params
% Fig. 5: Residual noise correlations
fig5_resid
% Fig. 6: Model of unobserved common gain modulation
fig6_model
% Fig. 7: Analysis of spontaneous activity
fig7_spont
% Fig. 8: LFP as predictor of network state
fig8_lfp
% Fig. 9: Changes in depth of anesthesia within recording sessions
fig9_anesth_depth
% Supplementary Figures
% Fig. S1: Failure of CCG normalization suggested by Bair et al. 2001
figS1_xcorr_fail
% Fig. S2: Simulation showing different estimates of timescale depending on
% method of normalization
figS2_xcorr_sim
% Fig. S3: Timescale of correlations in our data, measured using different
% normalizations
figS3_xcorr