From 122e7f604f6337c581a527cb73d9f9d6e382a3c2 Mon Sep 17 00:00:00 2001 From: Divya Tiwari <108270861+itsdivya1309@users.noreply.github.com> Date: Mon, 16 Dec 2024 12:51:14 +0530 Subject: [PATCH] [DOC] Anomaly Detection Overview Notebook (#2446) * AB overview nb * Overview NB * Anomaly Detection Overview * First draft * git status * API updated * Performance metrics * use correct performance metrics --- docs/api_reference/anomaly_detection.rst | 55 +--- .../anomaly_detection/anomaly_detection.ipynb | 243 +++++++++++++++++- .../img/anomaly_detection.png | Bin 65807 -> 73962 bytes 3 files changed, 239 insertions(+), 59 deletions(-) diff --git a/docs/api_reference/anomaly_detection.rst b/docs/api_reference/anomaly_detection.rst index 92084f4c72..7db535a9be 100644 --- a/docs/api_reference/anomaly_detection.rst +++ b/docs/api_reference/anomaly_detection.rst @@ -3,58 +3,11 @@ Anomaly Detection ================= -Time Series Anomaly Detection aims at discovering regions of a time series that in -some way are not representative of the underlying generative process. -The :mod:`aeon.anomaly_detection` module contains algorithms and tools -for time series anomaly detection. The detectors have different capabilities that can -be grouped into the following categories, where ``m`` is the number of time points and -``d`` is the number of channels for a time series: +The :mod:`aeon.anomaly_detection` module contains algorithms and composition tools for time series classification. -Input data format (one of the following): - Univariate series (default): - Example: :class:`~aeon.anomaly_detection.MERLIN`. - - - np.ndarray, shape ``(m,)``, ``(m, 1)`` or ``(1, m)`` depending on axis. - - pd.DataFrame, shape ``(m, 1)`` or ``(1, m)`` depending on axis. - - pd.Series, shape ``(m,)``. - Multivariate series: - Example: :class:`~aeon.anomaly_detection.KMeansAD`. - - - np.ndarray array, shape ``(m, d)`` or ``(d, m)`` depending on axis. - - pd.DataFrame ``(m, d)`` or ``(d, m)`` depending on axis. - -Output data format (one of the following): - Anomaly scores (default): - np.ndarray, shape ``(m,)`` of type float. For each point of the input time - series, the anomaly score is a float value indicating the degree of - anomalousness. The higher the score, the more anomalous the point. The - detectors return raw anomaly scores that are not normalized. - Example: :class:`~aeon.anomaly_detection.PyODAdapter`. - Binary classification: - np.ndarray, shape ``(m,)`` of type bool or int. For each point of the input - time series, the output is a boolean or integer value indicating whether the - point is anomalous (``True``/``1``) or not (``False``/``0``). - Example: :class:`~aeon.anomaly_detection.STRAY`. - -Detector learning types: - Unsupervised (default): - Unsupervised detectors do not require any training data and can directly be - used on the target time series. You would usually call the ``fit_predict`` - method on these detectors. - Example: :class:`~aeon.anomaly_detection.DWT_MLEAD`. - Semi-supervised: - Semi-supervised detectors require a training step on a time series without - anomalies (normal behaving time series). The target value ``y`` would - consist of only zeros. You would usually first call the ``fit`` method on the - training time series and then the ``predict`` method on your target time series. - Example: :class:`~aeon.anomaly_detection.KMeansAD`. - Supervised: - Supervised detectors require a training step on a time series with known - anomalies (anomalies should be present and must be annotated). The detector - implements the ``fit`` method, and the target value ``y`` consists of zeros - and ones; ones indicating points of an anomaly. You would usually first call - the ``fit`` method on the training data and then the ``predict`` method on your - target time series. +All detectors in `aeon` can be listed using the `aeon.utils.discovery.all_estimators` utility, +using ``estimator_types="anomaly-detector"``, optionally filtered by tags. +Valid tags can be listed by calling the function `aeon.utils.discovery.all_tags_for_estimator`. Each detector in this module specifies its supported input data format, output data format, and learning type as an overview table in its documentation. Some detectors diff --git a/examples/anomaly_detection/anomaly_detection.ipynb b/examples/anomaly_detection/anomaly_detection.ipynb index a49aaa71d4..9f393437e9 100644 --- a/examples/anomaly_detection/anomaly_detection.ipynb +++ b/examples/anomaly_detection/anomaly_detection.ipynb @@ -1,35 +1,262 @@ { "cells": [ { + "cell_type": "markdown", + "id": "36c7dcfec1245abe", "metadata": {}, + "source": [ + "# Time Series Anomaly Detection with aeon\n", + "\n", + "The aim of Time Series Anomaly Detection is to discover regions of a time series that, in some way, are not representative of the underlying generative process. An anomaly in a time series can be a single point or a subsequence that deviates from the regular patterns of the sequence with respect to some measure, model or embedding. This notebook gives an overview of the anomaly detection module and the available detectors.[1]\n", + "\n", + "\"time" + ] + }, + { "cell_type": "markdown", + "id": "9673b594-aad1-46f3-bba9-158def0578fa", + "metadata": {}, "source": [ - "# Anomaly Detection\n", + "## Data Storage and Problem types\n", + "\n", + "The anomaly detectors in the `aeon.anomaly_detection` module are designed with diverse capabilities. They are categorized based on their input data format, output format, and learning type.\n", + "\n", + "### Input data format\n", + "The anomaly detectors in aeon accept time series input in either `np.ndarray` or `pd.DataFrame` formats. The shape of the input can vary depending on the number of time points (`m`) and the number of channels (`d`).\n", + "\n", + "**Univariate series (default):**\n", + "* Numpy Array: shape `(m,)`, `(m, 1)` or `(1, m)` depending on the axis.\n", + "* Pandas DataFrame: shape `(m, 1)` or `(1, m)` depending on the axis.\n", + "* Pandas Series: shape `(m,)`.\n", + "\n", + "Example: `MERLIN`.\n", + "\n", + "**Multivariate series:**\n", + "\n", + "* Numpy Array: shape `(m, d)` or `(d, m)` depending on axis.\n", + "* Pandas DataFrame: shape `(m, d)` or `(d, m)` depending on axis.\n", + "\n", + "Example: `KMeansAD`.\n", + "\n", + "### Output format\n", + "The anomaly detectors would return one of the following as output:\n", + "\n", + "**Anomaly scores (default):**\n", + "\n", + "np.ndarray, shape (m,) of type float. For each point of the input time series, the anomaly score is a float value indicating the degree of anomalousness. The higher the score, the more anomalous the point. The detectors return raw anomaly scores that are not normalized. \n", + "\n", + "Example: `PyODAdapter`.\n", + "\n", + "**Binary classification:**\n", + "\n", + "np.ndarray, shape (m,) of type bool or int. For each point of the input time series, the output is a boolean or integer value indicating whether the point is anomalous (`True`/`1`) or not (`False`/`0`). \n", + "\n", + "Example: `STRAY`.\n", "\n", - "This notebook is currently under construction! Please check back later.\n", + "Each detector in the module specifies its supported input data format, output format, and learning type as an overview table in its documentation. Some detectors support multiple learning types as well.\n", "\n", - "If you have any questions about the `aeon` anomaly detection module in the mean time, please ask us on Slack!" + "There are a couple of functions in the `aeon.datasets` module to load anomaly detection datasets. Here, we'll load the KDD-TSAD 135 UCR_Anomaly_Internal_Bleeding16 univariate dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "6583bc79-e76f-40a5-b2af-b4f9a4a90f74", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAIjCAYAAAB20vpjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOxdd7gU5fV+9+6lV1GkCAoiKmJJ1MSooMYQsMRAALFGQBNNNAoxajSxlxg7aCzEgg17UKO/WMCKXRNLNMaIgoAUC/WCwC3z+2Odu9/unZn9Zuac2TO7530enl327j13dr/5yjnve87JOI7jQKFQKBQKhUKhUCgUCoU41JT7AhQKhUKhUCgUCoVCoVB4Q512hUKhUCgUCoVCoVAohEKddoVCoVAoFAqFQqFQKIRCnXaFQqFQKBQKhUKhUCiEQp12hUKhUCgUCoVCoVAohEKddoVCoVAoFAqFQqFQKIRCnXaFQqFQKBQKhUKhUCiEQp12hUKhUCgUCoVCoVAohEKddoVCoVAoFAqFQqFQKIRCnXaFQqFQBGLChAno169fWf72/PnzkclkcPvtt5fl78dBOb83CUjL5w9zj7nvvfLKK/kvLOXo168fJkyY0Pz/559/HplMBs8//3zZrkmhUCjSCnXaFQqFogJw/vnnI5PJ4KuvvvL8+Y477oj99tsv2YsqM1555RWcf/75WLlyJZnNTCZj9U+qYzJ//nxMnDgRAwYMQNu2bdGzZ0/ss88+OO+888p9aaLwj3/8A+effz7738hkMujduzeamppY/5ZCoVAo0o3acl+AQqFQKGTj5ptvLptTsdVWW+Gbb75Bq1atQv/uK6+8ggsuuAATJkxA165dSa7nrrvuKvj/nXfeiVmzZrV4fdCgQWX93rwwd+5cfO9730O7du1w7LHHol+/fliyZAn+9a9/4bLLLsMFF1xA+vekfX4/eN1j//jHP3D99dezOu4zZsxAv379MH/+fDz77LMYNmwY29+SgH322QfffPMNWrduXe5LUSgUitRBnXaFQqFQBCKKwxwXDQ0NaGpqQuvWrdG2bdvE/74fjj766IL/v/baa5g1a1aL1yXimmuuQV1dHd555x1stdVWBT/74osvyP7O2rVr0aFDh7LcN1GQyWQSv8fWrl2LRx99FJdeeimmT5+OGTNmVLzTXlNTI2ouKxQKRZqg8niFQqGoQrj5pQ888AAuueQS9OnTB23btsWPfvQjzJ07t+C9Zm5yfX09unXrhokTJ7awuXr1arRt2xannXYaAGDjxo0499xzsdtuu6FLly7o0KEDhg4diueee67g98w84SlTpmDAgAFo06YN/vOf/3jmG7/33nuYMGECtt5662aJ97HHHouvv/66+T3nn38+Tj/9dABA//79m2Xr8+fPb37P3Xffjd122w3t2rVDt27dcPjhh2PhwoVxvtYCFOd0m5/z+uuvx9Zbb4327dtj+PDhWLhwIRzHwUUXXYQ+ffqgXbt2GDlyJJYvX97C7hNPPIGhQ4eiQ4cO6NSpEw4++GB88MEHJa/nk08+QZ8+fVo47ACw+eabR/o7EyZMQMeOHfHJJ5/goIMOQqdOnXDUUUd5fn4AaGpqwpQpUzB48GC0bdsWPXr0wAknnIAVK1YUvO+tt97CiBEjsNlmm6Fdu3bo378/jj322MDPd+qpp2LTTTeF4zjNr5188snIZDK49tprm19btmwZMpkMbrzxRgAtc9onTJiA66+/HkBhOkQx/vrXvzbfq9/73vfw5ptvBl6fiYcffhjffPMNDj30UBx++OGYOXMm1q9f3+J9mUwGv/nNb/DII49gxx13RJs2bTB48GA8+eSTLd779ttv48ADD0Tnzp3RsWNH/OhHP8Jrr71W8J7bb78dmUwGL730Ek455RR0794dXbt2xQknnICNGzdi5cqVOOaYY7DJJptgk002wRlnnFHwfQLAlVdeib322gubbrop2rVrh9122w0PPfRQyc/sl9P++uuv44ADDkCXLl3Qvn177Lvvvnj55ZcL3rNmzRpMnjwZ/fr1Q5s2bbD55pvjxz/+Mf71r3+V/LsKhUJRCVCmXaFQKKoYf/7zn1FTU4PTTjsNq1atwuWXX46jjjoKr7/+uuf7W7VqhZ/97GeYOXMmpk2bViB1feSRR7BhwwYcfvjhAHJO/C233IIjjjgCv/zlL7FmzRrceuutGDFiBN544w185zvfKbA9ffp0rF+/HscffzzatGmDbt26ecqrZ82ahU8//RQTJ05Ez5498cEHH+Cvf/0rPvjgA7z22mvIZDIYPXo0/ve//+Hee+/FNddcg8022wwA0L17dwDAJZdcgnPOOQfjxo3DL37xC3z55Ze47rrrsM8+++Dtt98mk9N7YcaMGdi4cSNOPvlkLF++HJdffjnGjRuH/fffH88//zx+//vfY+7cubjuuutw2mmn4bbbbmv+3bvuugvjx4/HiBEjcNlll2HdunW48cYbMWTIELz99tuBhd+22morzJ49G88++yz233//wGsM83caGhowYsQIDBkyBFdeeSXat2/va/eEE07A7bffjokTJ+KUU07BvHnz8Je//AVvv/02Xn75ZbRq1QpffPEFhg8fju7du+PMM89E165dMX/+fMycOTPwmocOHYprrrkGH3zwAXbccUcAwJw5c1BTU4M5c+bglFNOaX4NyMm1/a5x8eLFnmkPLu655x6sWbMGJ5xwAjKZDC6//HKMHj0an376qZXCYMaMGfjhD3+Inj174vDDD8eZZ56Jxx57DIceemiL97700kuYOXMmTjzxRHTq1AnXXnstxowZgwULFmDTTTcFAHzwwQcYOnQoOnfujDPOOAOtWrXCtGnTsN9+++GFF17AHnvsUWDz5JNPRs+ePXHBBRfgtddew1//+ld07doVr7zyCrbcckv86U9/wj/+8Q9cccUV2HHHHXHMMcc0/+7UqVPx05/+FEcddRQ2btyI++67D4ceeigef/xxHHzwwSU/u4lnn30WBx54IHbbbTecd955qKmpwfTp07H//vtjzpw5+P73vw8A+NWvfoWHHnoIv/nNb7DDDjvg66+/xksvvYQPP/wQu+66a6i/qVAoFKmEo1AoFIrU47zzznMAOF9++aXnzwcPHuzsu+++zf9/7rnnHADOoEGDnA0bNjS/PnXqVAeA8+9//7v5tfHjxztbbbVV8/+feuopB4Dz2GOPFfyNgw46yNl6662b/9/Q0FBg23EcZ8WKFU6PHj2cY489tvm1efPmOQCczp07O1988UXB+92fTZ8+vfm1devWtfh89957rwPAefHFF5tfu+KKKxwAzrx58wreO3/+fCebzTqXXHJJwev//ve/ndra2havB+Gkk05y/LbS4u/N/Szdu3d3Vq5c2fz6WWed5QBwdtllF6e+vr759SOOOMJp3bq1s379esdxHGfNmjVO165dnV/+8pcFf2fp0qVOly5dWrxejPfff99p166dA8D5zne+40yaNMl55JFHnLVr1xa8L8zfGT9+vAPAOfPMM0t+/jlz5jgAnBkzZhS878knnyx4/eGHH3YAOG+++Wbg5ynGF1984QBwbrjhBsdxHGflypVOTU2Nc+ihhzo9evRoft8pp5zidOvWzWlqanIcx/se8xtX972bbrqps3z58ubXH330Uc854YVly5Y5tbW1zs0339z82l577eWMHDmyxXsBOK1bt3bmzp3b/Nq7777rAHCuu+665tdGjRrltG7d2vnkk0+aX1u8eLHTqVMnZ5999ml+bfr06Q4AZ8SIEc2f33EcZ88993QymYzzq1/9qvm1hoYGp0+fPgXrhuO0nH8bN250dtxxR2f//fcveH2rrbZyxo8f3/x/d8157rnnHMdxnKamJmfgwIEtrmXdunVO//79nR//+MfNr3Xp0sU56aSTWnw/CoVCUS1QebxCoVBUMSZOnFjAlg8dOhQA8Omnn/r+zv7774/NNtsM999/f/NrK1aswKxZs3DYYYc1v5bNZpttNzU1Yfny5WhoaMDuu+/uKWsdM2ZMMxMehHbt2jU/X79+Pb766iv84Ac/AAAruezMmTPR1NSEcePG4auvvmr+17NnTwwcOLCFfJ8ahx56KLp06dL8f5cFPfroo1FbW1vw+saNG/H5558DyCkMVq5ciSOOOKLgurPZLPbYY4+S1z148GC88847OProozF//nxMnToVo0aNQo8ePXDzzTc3vy/K3/n1r39d8nM/+OCD6NKlC3784x8X2N1tt93QsWPHZruuyuHxxx9HfX19Sbsuunfvju233x4vvvgiAODll19GNpvF6aefjmXLluHjjz8GkGPahwwZ4il5t8Vhhx2GTTbZpPn/NvPGxX333YeamhqMGTOm+bUjjjgCTzzxRIs0AQAYNmwYBgwY0Pz/nXfeGZ07d27+W42NjXj66acxatQobL311s3v69WrF4488ki89NJLWL16dYHN4447ruDz77HHHnAcB8cdd1zza9lsFrvvvnuLz2TOvxUrVmDVqlUYOnRoaKn6O++8g48//hhHHnkkvv766+b7Ye3atfjRj36EF198sVlp07VrV7z++utYvHhxqL+hUCgUlQKVxysUCkWVwMtJ2XLLLQv+7zoiXs6Di9raWowZMwb33HMPNmzYgDZt2mDmzJmor68vcNoB4I477sBVV12F//73vwUOWP/+/VvY9XrNC8uXL8cFF1yA++67r0UBtVWrVpX8/Y8//hiO42DgwIGeP+cuoFb8nbsOfN++fT1fd8fCdTr9pO2dO3cu+be33XZb3HXXXWhsbMR//vMfPP7447j88stx/PHHo3///hg2bFjov1NbW4s+ffqU/Nsff/wxVq1a5Zk/D+SL4e27774YM2YMLrjgAlxzzTXYb7/9MGrUKBx55JFo06ZN4N8YOnQo/vGPfwDIOee77747dt99d3Tr1g1z5sxBjx498O677+LII48seb1BiDJvXNx99934/ve/j6+//rq5DsN3v/tdbNy4EQ8++CCOP/74wL/l/j33b3355ZdYt24dtttuuxbvGzRoEJqamrBw4UIMHjzY12bQPVj8mR5//HFcfPHFeOedd7Bhw4bm18MGQdz7bPz48b7vWbVqFTbZZBNcfvnlGD9+PPr27YvddtsNBx10EI455piCIIVCoVBUMtRpVygUigqAW5X5m2++8fz5unXrPCs3Z7NZz/c7RcWninH44Ydj2rRpeOKJJzBq1Cg88MAD2H777bHLLrs0v+fuu+/GhAkTMGrUKJx++unYfPPNkc1mcemll+KTTz5pYdNk8IIwbtw4vPLKKzj99NPxne98Bx07dkRTUxMOOOAAqxZjTU1NyGQyeOKJJzw/f8eOHa2uIyr8vvNSY+F+trvuugs9e/Zs8T6Tpbe5hp122gk77bQT9txzT/zwhz9srmAe9u+0adMGNTWlhXtNTU3YfPPNMWPGDM+fuyqLTCaDhx56CK+99hoee+wxPPXUUzj22GNx1VVX4bXXXgscnyFDhuDmm2/Gp59+ijlz5mDo0KHIZDIYMmQI5syZ09wT3WXGoyLqvPn444+bC9Z5BY1mzJjRwmmP+reCEOYeNP/OnDlz8NOf/hT77LMPbrjhBvTq1QutWrXC9OnTcc8994S6Bvc+u+KKK1rUt3DhjvW4ceMwdOhQPPzww3j66adxxRVX4LLLLsPMmTNx4IEHhvq7CoVCkUao065QKBQVALci+EcffdSCLVu3bh0WLlyI4cOHk/29ffbZB7169cL999+PIUOG4Nlnn8Uf//jHgvc89NBD2HrrrTFz5swCFu68886L/HdXrFiBZ555BhdccAHOPffc5tdd1s6EH/M3YMAAOI6D/v37Y9ttt418LUnDlUhvvvnmpO3Bdt99dwDAkiVLWP/OgAEDMHv2bOy9995WAZof/OAH+MEPfoBLLrkE99xzD4466ijcd999+MUvfuH7O64zPmvWLLz55ps488wzAeTu1xtvvBG9e/dGhw4dsNtuuwX+7TjS+SDMmDEDrVq1wl133dXCQX7ppZdw7bXXYsGCBZ7suh+6d++O9u3b46OPPmrxs//+97+oqalpsSZExd/+9je0bdsWTz31VIHqYfr06aFtufdZ586dre6zXr164cQTT8SJJ56IL774ArvuuisuueQSddoVCkVVQHPaFQqFogLwox/9CK1bt8aNN97Ygm3+61//ioaGBtLDbU1NDcaOHYvHHnsMd911FxoaGlpI412nxGTqXn/9dbz66quR/66XTQCYMmVKi/d26NABALBy5cqC10ePHo1sNosLLrighR3HcQpax0nCiBEj0LlzZ/zpT3/yzPX+8ssvA39/zpw5nr/nysldeXXcv+OHcePGobGxERdddFGLnzU0NDSP04oVK1qMi8vEmnJsL/Tv3x9bbLEFrrnmGtTX12PvvfcGkHPmP/nkEzz00EP4wQ9+UFKV4HfvxMWMGTMwdOhQHHbYYRg7dmzBP7dF4b333hvKZjabxfDhw/Hoo48WtDRctmwZ7rnnHgwZMsQqdcL2b2UyGTQ2Nja/Nn/+fDzyyCOhbe22224YMGAArrzyStTV1bX4uXufNTY2tkh72XzzzdG7d++S94NCoVBUCpRpVygUigrA5ptvjnPPPRdnn3029tlnH/z0pz9F+/bt8corr+Dee+/F8OHDccghh5D+zcMOOwzXXXcdzjvvPOy0004YNGhQwc9/8pOfYObMmfjZz36Ggw8+GPPmzcNNN92EHXbYwfOQboPOnTtjn332weWXX476+npsscUWePrppzFv3rwW73XZ1D/+8Y84/PDD0apVKxxyyCEYMGAALr74Ypx11lmYP38+Ro0ahU6dOmHevHl4+OGHcfzxxzf3mpeEzp0748Ybb8TPf/5z7Lrrrjj88MPRvXt3LFiwAP/3f/+HvffeG3/5y198f/+yyy7DP//5T4wePRo777wzgFzhvjvvvBPdunXD5MmTSf6OH/bdd1+ccMIJuPTSS/HOO+9g+PDhaNWqFT7++GM8+OCDmDp1KsaOHYs77rgDN9xwA372s59hwIABWLNmDW6++WZ07twZBx10UMm/M3ToUNx3333YaaedmnPNd911V3To0AH/+9//rPLZ3XvnlFNOwYgRI5DNZptbGUbF66+/jrlz5+I3v/mN58+32GIL7LrrrpgxYwZ+//vfh7J98cUXY9asWRgyZAhOPPFE1NbWYtq0adiwYQMuv/zyWNdt4uCDD8bVV1+NAw44AEceeSS++OILXH/99dhmm23w3nvvhbJVU1ODW265BQceeCAGDx6MiRMnYosttsDnn3+O5557Dp07d8Zjjz2GNWvWoE+fPhg7dix22WUXdOzYEbNnz8abb76Jq666iuyzKRQKhWSo065QKBQVgj/+8Y/o168f/vKXv+DCCy9EQ0MD+vfvjwsuuAC///3vrfKOw2CvvfZC3759sXDhwhYsOwBMmDABS5cuxbRp0/DUU09hhx12wN13340HH3wQzz//fOS/e8899+Dkk0/G9ddfD8dxMHz4cDzxxBPo3bt3wfu+973v4aKLLsJNN92EJ598Ek1NTZg3bx46dOiAM888E9tuuy2uueYaXHDBBQByRbiGDx+On/70p5GvjRtHHnkkevfujT//+c+44oorsGHDBmyxxRYYOnQoJk6cGPi7f/jDH3DPPffghRdewIwZM7Bu3Tr06tULhx9+OM4555yCQoBx/k4QbrrpJuy2226YNm0a/vCHP6C2thb9+vXD0Ucf3cyK77vvvnjjjTdw3333YdmyZejSpQu+//3vY8aMGVbFCl2nfciQIc2v1dbWYs8998Ts2bOt8tlHjx6Nk08+Gffddx/uvvtuOI4T22l3c/mDgmeHHHIIzj//fLz33nvNgRUbDB48GHPmzMFZZ52FSy+9FE1NTdhjjz1w9913t+jRHgf7778/br31Vvz5z3/G5MmT0b9/f1x22WWYP39+aKcdAPbbbz+8+uqruOiii/CXv/wFdXV16NmzJ/bYYw+ccMIJAID27dvjxBNPxNNPP93c+WGbbbbBDTfcYNW1QKFQKCoBGSdOJROFQqFQKBQKhUKhUCgUbNCcdoVCoVAoFAqFQqFQKIRCnXaFQqFQKBQKhUKhUCiEQp12hUKhUCgUCoVCoVAohEKddoVCoVAoFAqFQqFQKIRCnXaFQqFQKBQKhUKhUCiEQp12hUKhUCgUCoVCoVAohEL7tANoamrC4sWL0alTJ2QymXJfjkKhUCgUCoVCoVAoKhyO42DNmjXo3bs3amr8+XR12gEsXrwYffv2LfdlKBQKhUKhUCgUCoWiyrBw4UL06dPH9+fqtAPo1KkTgNyX1blz5zJfjUKhUCgUCoVCoVAoKh2rV69G3759m/1RP6jTDjRL4jt37qxOu0KhUCgUCoVCoVAoEkOpFG0tRKdQKBQKhUKhUCgUCoVQqNOuUCgUCoVCoVAoFAqFUKjTrlAoFAqFQqFQKBQKhVBoTrslGhsbUV9fX+7LUJQJrVq1QjabLfdlKBQKhUKhUCgUiiqDOu0WqKurw6JFi+A4TrkvRVEmZDIZ9OnTBx07diz3pSgUCoVCoVAoFIoqgjrtJdDY2IhFixahffv26N69e8nKforKg+M4+PLLL7Fo0SIMHDhQGXeFQqFQKBQKhUKRGNRpL4H6+no4joPu3bujXbt25b4cRZnQvXt3zJ8/H/X19eq0KxQKhUKhUCgUisSghegsoQx7dUPHX6FQKBQKhUKhUJQD6rQrFAqFQqFQKBQKhUIhFOq0KxQKhUKhUCgUCoVCIRTqtFcpJkyYgFGjRpX7Mkhx++23o2vXruW+DIVCoVAoFAqFQqEggzrtFYhMJhP47/zzz8fUqVNx++23l+X6br75Zuyyyy7o2LEjunbtiu9+97u49NJLY9s97LDD8L///Y/gChUKhUKhUCgUCoVCBrR6fAViyZIlzc/vv/9+nHvuufjoo4+aX+vYsWPZ+o3fdtttmDx5Mq699lrsu+++2LBhA9577z28//77sezW19ejXbt2WuFfoVAoFAqFQqFQVBSUaQ8JxwHWri3PP8exu8aePXs2/+vSpQsymUzBax07dmwhj99vv/1w8sknY/Lkydhkk03Qo0cP3HzzzVi7di0mTpyITp06YZtttsETTzxR8Lfef/99HHjggejYsSN69OiBn//85/jqq698r+3vf/87xo0bh+OOOw7bbLMNBg8ejCOOOAKXXHJJwftuueUWDBo0CG3btsX222+PG264ofln8+fPRyaTwf333499990Xbdu2xYwZMzzl8Y8++ih23XVXtG3bFltvvTUuuOACNDQ0fDuWDs4//3xsueWWaNOmDXr37o1TTjnF7ktWKBQKhUKhUCgUigSgTntIrFsHdOxYnn/r1vF+tjvuuAObbbYZ3njjDZx88sn49a9/jUMPPRR77bUX/vWvf2H48OH4+c9/jnXfXsjKlSux//7747vf/S7eeustPPnkk1i2bBnGjRvn+zd69uyJ1157DZ999pnve2bMmIFzzz0Xl1xyCT788EP86U9/wjnnnIM77rij4H1nnnkmJk2ahA8//BAjRoxoYWfOnDk45phjMGnSJPznP//BtGnTcPvttzcHCP72t7/hmmuuwbRp0/Dxxx/jkUcewU477RTlq1MoFAqFQqFQKBQKFqjTrmjGLrvsgrPPPhsDBw7EWWedhbZt22KzzTbDL3/5SwwcOBDnnnsuvv76a7z33nsAgL/85S/47ne/iz/96U/Yfvvt8d3vfhe33XYbnnvuOd/c8vPOOw9du3ZFv379sN1222HChAl44IEH0NTUVPCeq666CqNHj0b//v0xevRo/Pa3v8W0adMKbE2ePLn5Pb169Wrxty644AKceeaZGD9+PLbeemv8+Mc/xkUXXdRsZ8GCBejZsyeGDRuGLbfcEt///vfxy1/+kurrVCgUCoVCoVAoFIrY0Jz2kGjfHqirK9/f5sTOO+/c/DybzWLTTTctYJ579OgBAPjiiy8AAO+++y6ee+45z/z4Tz75BNtuu22L13v16oVXX30V77//Pl588UW88sorGD9+PG655RY8+eST+Oabb/DJJ5/guOOOK3CgGxoa0KVLlwJbu+++e+Dneffdd/Hyyy8XSO8bGxuxfv16rFu3DoceeiimTJmCrbfeGgcccAAOOuggHHLIIait1WmhUCgUCoVCoVBIR0MD8MYbwO67A61bl/tq+KDeSUhkMkCHDuW+Ch60atWq4P+ZTKbgtUwmAwDNrHhdXR0OOeQQXHbZZS1seTHfJnbccUfsuOOOOPHEE/GrX/0KQ4cOxQsvvIAddtgBQK7C/B577FHwO9lstuD/HUoMRF1dHS644AKMHj26xc/atm2Lvn374qOPPsLs2bMxa9YsnHjiibjiiivwwgsvtPguFAqFQqFQKBQKhSycfTZw2WXAKacAU6eW+2r4oE67IjJ23XVX/O1vf0O/fv1isdOuo7527Vr06NEDvXv3xqeffoqjjjoq9vV99NFH2GabbXzf065dOxxyyCE45JBDcNJJJ2H77bfHv//9b+y6666x/rZCoVAoFAqFQqHghcsdXnutOu0KhSdOOukk3HzzzTjiiCNwxhlnoFu3bpg7dy7uu+8+3HLLLS2YcQD49a9/jd69e2P//fdHnz59sGTJElx88cXo3r079txzTwC5XPRTTjkFXbp0wQEHHIANGzbgrbfewooVK3DqqadaX9+5556Ln/zkJ9hyyy0xduxY1NTU4N1338X777+Piy++GLfffjsaGxuxxx57oH379rj77rvRrl07bLXVVmTfkUKhUCgUCoVCoVDEgRaiU0RG79698fLLL6OxsRHDhw/HTjvthMmTJ6Nr166oqfG+tYYNG4bXXnsNhx56KLbddluMGTMGbdu2xTPPPINNN90UAPCLX/wCt9xyC6ZPn46ddtoJ++67L26//Xb0798/1PWNGDECjz/+OJ5++ml873vfww9+8ANcc801zU55165dcfPNN2PvvffGzjvvjNmzZ+Oxxx5rvg6FQqFQKBQKRbowbx4wZAhwyy3lvhJFkvg2i7dikXEc2+7flYvVq1ejS5cuWLVqFTp37lzws/Xr12PevHno378/2rZtW6YrVJQbeh8oFAqFQqFQyMellwJ/+EPuuXo5lQ/XWW/dGtiwobzXEgVBfqgJZdoVCoVCoVAoFApFReCrr/LPGxrKdx2KZFHpNaTVaVcoFAqFQqFQKBQVgcbG/PONG8t3HYpkUekdm9VpVygUCoVCoVAoFBWBm27KP1envbKxfn3+uTLtCkVKsXYt8N57wPLl5b4ShUKhUCgU5YLjAKNHAyNHAk1N5b4aBTfMvOb6+vJdh4IfdXX555VeiK7ChQSKasann+YirJ9+CnTrVu6rUSgUCoVCUQ4sWQI8/HDu+SefAAMHlvd6FLzo1AlYsyb3XJ32yoappPjmm/JdRxJQpl1RsTBzmhQKhUKhUFQnPv00/3zt2vJdhyIZbLdd/rk67ZUNc3zXrq3sbgHqtCsUiopBGlt9KBQKhYIXn3+ef65Oe+XDZF81p72yYTrtjlPZ461Ou0KhqAhceCHQuTPw9NPlvhJFEpg+HTjwQGDx4nJfiSKtuOIK4Npry30ViiTw9df55+vWle86FMnAdNyUaa9sFDvplayyVaddUbGoZImMoiXOPz+3eJ92WrmvRJEELrgAePJJ4JRTyn0liiRwxRXAEUfQOVzLlwNnnAFMmgQsWEBjUyEXZkFaddorH+q0Vw+Kx7ehoTzXkQTUaVeIRL9+/TBlypTm/2cyGTzyyCNlux6FfLhBmi+/LO91KJLBZ5/lHj/8sLzXoUgGZ5wB3HcfcPvtNPZWr84//89/aGwq5MKsMK3y+MqHOu3Vg+LxVaZdkVq8+uqryGazOPjgg8t9KbGwZMkSHHjggaF+R5n26oSOe3Wh0lu8KAoPZUuW0Ng0nfZKzoFU5GDWO1GmvfKhOe3Vg+LxVaZdER+NjcDzzwP33pt7TCgUdOutt+Lkk0/Giy++iMUpTv7s2bMn2rRpE/n31ZGrHuhYVxey2XJfgYIbK1bQ23zqqfxzdeLk4amngOuuo7OnTrtsXH01cMMNdPaUaa8eqDxeQYuZM4F+/YAf/hA48sjcY79+udcZUVdXh/vvvx+//vWvcfDBB+N2Q1f4/PPPI5PJ4JlnnsHuu++O9u3bY6+99sJHH31UYOPGG2/EgAED0Lp1a2y33Xa46667Cn6eyWQwbdo0/OQnP0H79u0xaNAgvPrqq5g7dy72228/dOjQAXvttRc++eST5t/55JNPMHLkSPTo0QMdO3bE9773PcyePTvwsxTL4xcuXIhx48aha9eu6NatG0aOHIn58+cXfL5jjvk+hg7tgB/+sCuGDNkbn7l6WkVFo6mp3Feg4Ia5KVM67evWqVRaIlatyj+nYs3MbCt14mTBcYADDsjVqzCDK3FgOu0qj5eF994Dfvc74KST8r3V40Kd9uqBFqJT0GHmTGDsWGDRosLXP/889zqj4/7AAw9g++23x3bbbYejjz4at912G5wiGvKPf/wjrrrqKrz11luora3Fscce2/yzhx9+GJMmTcLvfvc7vP/++zjhhBMwceJEPPfccwU2LrroIhxzzDF45513sP322+PII4/ECSecgLPOOgtvvfUWHMfBb37zm+b319XV4aCDDsIzzzyDt99+GwcccAAOOeQQLLCsBlRfX48RI0agU6dOmDNnDl5++WV07NgRBxxwADZu3IiGhgaMGjUKu+66L+699z3cdtur+MUvjkdGdbQVC/O2pmTa16wBXnlF2XtpMA92NYS72NixwODBwD/+QWdTER+mw7V+PY3NkSPzz7/5hsamggamU/3WWzQ2zXtInThZWLo0/3zlShqb6rTLBmWgVJl2BQ0aG3Olab1O/O5rkyezhYVuvfVWHH300QCAAw44AKtWrcILL7xQ8J5LLrkE++67L3bYYQeceeaZeOWVV7D+21PRlVdeiQkTJuDEE0/Etttui1NPPRWjR4/GlVdeWWBj4sSJGDduHLbddlv8/ve/x/z583HUUUdhxIgRGDRoECZNmoTnn3+++f277LILTjjhBOy4444YOHAgLrroIgwYMAB///vfrT7X/fffj6amJtxyyy3YaaedMGjQIEyfPh0LFizA888/j9WrV2PVqlUYMuQn6NNnAPr3H4Sjjx6PLbfcMsa3qZAM80BG6WAfeSSw9965AlgKOTCLSlEun088kXu87TY6m4r44HDaTUddmXZZMINyVOOtTrtcmPPPXNujoqmp0HHTnHZZeOEFoFs34A9/oLGnhegUNJgzpyXDbsJxgIULc+8jxkcffYQ33ngDRxxxBACgtrYWhx12GG699daC9+28887Nz3v16gUA+OKLLwAAH374Ifbee++C9++99974sKhcs2mjR48eAICddtqp4LX169dj9beVf+rq6nDaaadh0KBB6Nq1Kzp27IgPP/zQmml/9913MXfuXHTq1AkdO3ZEx44d0a1bN6xfvx6ffPIJunXrhgkTJuDkk0fgt789BPfeOxWLFxNVL1KIhHkAp5THP/547vHii+lsKuKDw+EyN/4uXWhsKmjA4bRrjrNcmI4b1XibdtRplwVzPadw2ovHV8dbFn73u9z6e+mlNPaqqRBdbbkvoKJhW+aWqhyugVtvvRUNDQ3o3bt382uO46BNmzb4y1/+0vxaq1atmp+78vGmkF6Pl40gu6eddhpmzZqFK6+8Ettssw3atWuHsWPHYqNlOLSurg677bYbZsyY0eJn3bt3BwDceut0DBt2Cl555UnMmnU//vrXszFr1iz84Ac/CPXZirFwYa4f+BlnALvsEsuUghDmoZsjqm7czgoBMA9hVBu0WeysXTsamwoamHOayokz7xt12mXBdNzM4EocKNMuF9RMe/EZQMdbFqiLx1aTPF6ddk58y1yTvc8SDQ0NuPPOO3HVVVdh+PDhBT8bNWoU7r33Xmy//fYl7QwaNAgvv/wyxo8f3/zayy+/jB122CHW9b388suYMGECfvaznwHIOeFmEblS2HXXXXH//fdj8803R+fOnT3f4zjAdtt9F9tt911MnHgWTjppT9xzzz2xnfaTT84VxnnlFWDevFimFIQwI/VUC7YpsVLmVRbMMaY6kJmSXCpHQUEDDqbdvG/UaZcFlcdXF8z9m6IQnTrtstGpU/55fX18UkTl8QoaDB0K9Onj30g4kwH69s29jxCPP/44VqxYgeOOOw477rhjwb8xY8a0kMj74fTTT8ftt9+OG2+8ER9//DGuvvpqzJw5E6eddlqs6xs4cCBmzpyJd955B++++y6OPPLIUOz+UUcdhc022wwjR47EnDlzMG/ePDz//PM45ZRTsGjRIsybNw9/+MNZeO+9V7FkyWd47bWnMXfuxxg0aFCs6waA//439xgixqBIAOahm8ppN/s4d+hAY1NBAw6m3TwsqhMnC9xMuwZpZIFDHq9Ou1xwM+2a0y4LppKNI0hTyUy7Ou2cyGaBqVNzz4sdd/f/U6aQa0VuvfVWDBs2DF086MExY8bgrbfewnvvvVfSzqhRozB16lRceeWVGDx4MKZNm4bp06djv/32i3V9V199NTbZZBPstddeOOSQQzBixAjsuuuu1r/fvn17vPjii9hyyy0xevRoDBo0CMcddxzWr1+Pzp07o3379vjvf/+L3/9+DMaM2RZ/+tPxOP74k3DCCSfEum6FXBTntFMUo9McSLkwN2UOp12ricsCN9Ou81sWVB5fXTDXW4p2fMq0y4Y5PhT7dzUx7SqP58bo0cBDD+WqyJtF6fr0yTnso0eT/8nHHnvM92ff//73m9u+nXLKKQU/+853vtOiJdyvf/1r/PrXv/a1V/z+fv36tXhtv/32K3itX79+ePbZZwvec9JJJxX8v1guX2yzZ8+euOOOOzyvqXPnznjwwYdhxiW23Za2NZRCFoqdrMZGoDbm6mY6B8q8ygKHw2U6CjressDttCsTJwum46aF6Cof5npLMTbFgR4db1mgbsenOe0KWowenWsKO2dOruhcr145STx1NQZFM4qZVu2zXdnwkkfFddq1urRccDDtOt5ywS2PV6ddFlRZUV2grkmjTLtsmPObY7zVaVfERzYLxJSVK+yhTnt1gSPSqky7XHAcwNVplwt14qoLHFJ2HW+5oK5JozntssHNtFeyPF4Fw4qKhDrt1QWOSKvpHGiOsyxwMO3mPaSFyWSBw4lTpl0uzLWX6gDO0XFCQQNzf6UYG2XaZYN6Pa8mebw67YqqgDrtlQ2OSKsyr3JhjndjI838ppbsKehAzcwU29FDvSxwzEV12uWCm2nX8ZYF6kJ0xeOtTLuiRSE0hWxQM+2O48Bx1PmXCm55vDpxssAx3hyOoYIGyrRXFzicdg3SyIUy7dUFZdqjQ532Esh+Wyxuo+7qqQK1c71x40Y4DrB6tRYPlAhup72SI7dpRPH4Uoy3toSSC+4cZ93eZYEjYKpMu1xoTnt1QZ326NBCdCVQW1uL9u3b48svv0SrVq1Qo33DUoHiYkUbN0YvYNTU1IQvv/wS2Wx7rFqVnzKNjdoAQAo4Fm2VS8uFMu3VBZXHVxfMtZcqYKrjLRfU1eOLx1fHWxZUHh8d6rSXQCaTQa9evTBv3jx89tln5b4chSXWrwe++ir//6YmYOXK6PZqamrQps2WcJxM82v19eq0SwFHTrsy7XJRvNFT9/bVQ54scMvjdbxlgfpQX2xHx1sWqPu0c+wPCjoo0x4d6rRboHXr1hg4cKBK5FOE114DfvWr/P/PPx84/PDo9lq3bo25cwtVFhs3Am3bRrepoANH9XgOtkdBA25lhR7yZIGbadf5LQvU3SEcR512yaBm2ottNDXFt6mgA7fTXsnruTrtlqipqUFb9dBSgw0bAFMYsXZtfAe7WF6vbaHkgFsu3dSUO/hlMv7vVyQHDiaFg91T0KA4gEYxF80xruRDXhpBPTbFNtRplwVqpr2anLi0oamJPijHQdpIRVkTtF988UUccsgh6N27NzKZDB555JGCnzuOg3PPPRe9evVCu3btMGzYMHz88ccF71m+fDmOOuoodO7cGV27dsVxxx2Hurq6BD+FQiK4C1UBWtxEEjicdt345UKZ9upC8dpLfbDXuS0L5thwMK86v2WBun5MsQ2d33LAUdm/muTxZXXa165di1122QXXX3+9588vv/xyXHvttbjpppvw+uuvo0OHDhgxYgTWG5TnUUcdhQ8++ACzZs3C448/jhdffBHHH398Uh9BIRTc1cQBddolgcPBVqddLrQQXXWB46BHzfYo6EA9NlqYTDa4gzS6d8tBEk57JY93WeXxBx54IA488EDPnzmOgylTpuDss8/GyJEjAQB33nknevTogUceeQSHH344PvzwQzz55JN48803sfvuuwMArrvuOhx00EG48sor0bt3b0/bGzZswAYjtLd69WriT6YoNzgWbXXa5UKZ9uoCdyE6x9HuEJKgTHt1gVoer0y7bFDXG1CnXS6K13KVx4eD2P5l8+bNw9KlSzFs2LDm17p06YI99tgDr776KgDg1VdfRdeuXZsddgAYNmwYampq8Prrr/vavvTSS9GlS5fmf3379uX7IIqygFs+6/V/RfnAsWhXk+QqbUgiSKMHezngOOip0y4X1Myrzm3Z4FZW6PyWA+4ALFDZ4y3WaV+6dCkAoEePHgWv9+jRo/lnS5cuxeabb17w89raWnTr1q35PV4466yzsGrVquZ/CxcuJL56RRT8+99AUcmCyFCmvbqgTHt1gaNmBYdNBQ04+vBqITq5oHbilGmXC1fV5IKDadfq8XKgOe3xUJXV49u0aYM2bdqU+zIUBhYsAHbeGdh8c2Dx4viyVI4DuDrttKCUH2tOe3WBgzlTSaVcFLMz1PNbx1oWqAMqupbLRRIBWB1vOeBQTbk22rbNndMr2WkXy7T37NkTALBs2bKC15ctW9b8s549e+KLL74o+HlDQwOWL1/e/B5FOuAy7F98kXPa4yIJebw67dExdy7QrRvw+9/T2EuCaa/kjSBt4Djo6XjLRfHaS8GcKdMuF1qYrHqgTnt1gUMebzrtQGWPt1invX///ujZsyeeeeaZ5tdWr16N119/HXvuuScAYM8998TKlSvxz3/+s/k9zz77LJqamrDHHnskfs2K6Fi5Mv/866/j2+NYtIuddHXao+Pyy4HVq3OPFFB5fHUhCaZdnXY54JDHK9MuF5rjXD3gSF1wbdR+qyXW8ZYDjvpDxU57Je/dZZXH19XVYe7cuc3/nzdvHt555x1069YNW265JSZPnoyLL74YAwcORP/+/XHOOeegd+/eGDVqFABg0KBBOOCAA/DLX/4SN910E+rr6/Gb3/wGhx9+uG/leIVMLF+ef07htKsTJxvu4grkctoymXj2dLzl48kngX79gO23j29Lmfbqgsrjqwvc1eN1vOWAY901nbi6Oh1vSeBk2t2s50oe77I67W+99RZ++MMfNv//1FNPBQCMHz8et99+O8444wysXbsWxx9/PFauXIkhQ4bgySefRFvjxD9jxgz85je/wY9+9CPU1NRgzJgxuPbaaxP/LIp4MJ32FSvi21PJlWy0bp1/vm4d0KFDPHvcTBygTlwcvPACcOCBuRoGUh1snd9yweG0qzxeLooDKnEDu1qYTC44mHbTiaur0/GWBI5CdMq0J4T99tsPjuP4/jyTyeDCCy/EhRde6Puebt264Z577uG4PEWCMB11Ctl5EoXJKnlhSBJ1dfGddmXaZePBB3OPVN8hhzxe5zctVq4EunSJr6IBWu4JFIdwZdrlwiuAVhvjtOqOdevWuXtJx1sOOAmWamBe0wbOQnTueFfy3i02p11RXTArs0vNT1Unjg7r1uWf19XFt6dOu2yY400BbfkmG88+C2yyCfCHP9DYo2bam5oKHX+d27JArXopPtQ3NeXYe0X5wbl3u4o+nd9yoPL4eFCnXSEC5kSmYNo151U2TCduzZr49rR6vGyYc5qaJQV0vKXhpptyj3/+M409LifOtKdOXHQsXQpMnAi88QaNPeq56NozO/2qZFoGOOXx1VBNPG3gkMe746tMu0KREMyJzCF11WI2srB2bf45BQurfdplw5zf33wT3x7nQc+Fjnd0ULTtNMHttAPqxMXByScDt98OUDXtoQ66FzNxgI53HCxfDjz6qFxVZDUxr2kDd592oLLHW512hQhQO+2cbUT8/obCHqbTTqGs4Ggjok47Hczvzhz7qFCmXTa40yHizkWv/UDnd3R8+CGtPWpHzotp1/GOjiFDgFGjgMMOi2+Ls32nmQ6hkAHO8a6GQnTqtCtEwHS6KAvRuTlNHJJc3fSjg9ppd8fGLXqlTrssmNF1Cqc9Caa9kjd+bphqCoq11x0LqvVcnXZatG9Pa4967fVi2nW8o8MN0jz8cHxbyrTLxz//CTzwAI2tJII0lbx3l7V6vELhgotpb9MmZ5vy4Oj3f4U9TCaO0mlv1y5nW5lXWTCduLQw7XrQiw6zYvzatUCnTtFtmUXj3PWcQx6v4x0d7drR2uOSxxvdgnW8hYCz/pA67TTYfffcY6tWwM9+Fs8WZ5BG5fEKRULgYtop5VF6qKcDNdPOsWjreNPB7A7BwbRr9Xi5iNsdwpx3VNWglWmnBbUzzCWPd+8fQMebAptsEt8Gd592QMeaCrNnx7eRxHhX8t6tTrtCBLiYdsqWH+rE0YGaaXfH22V8lHmVBZNp50iHkOgoVDPMIE1x4aGwMMeB6hCucmlamN/j11/Ht8cljzeDC5rnHB/ZbHwbHKopddrp4BU0jYMkctorebzVaVeIAFfLN06mXQ/10cGZDmH+Pw50vOlgOnHSlTQ13+6KOt7RYQZp4s5vDqddC5PRwhxvju4QVPJ4Zdrjw1xrKZx2d2zcdVcL0cmC2ZKXwmnnCI5ryzeFImFwtXyjjLRqSyg6mGPMIY9Xpl0WqJl2DialmqL13OB22uMewk0njlKtUa0wUyAkFoV0f79Vq7xzqOMdDWYAltJp51DJ6VoeH6tW5Z9z1IaSStpIhTrtChHgZl6VaZcF87vTnPbKBzfTTjne1dA2hhuU422OA3VOe21t3vHQ+R0dJhsXd/82Cw9SBVTM8VanPR7MgBylPN5dyzWnXRZMp51CRWPORfP/UWGuF9UQpFGnXSECWoiuupAGpp2j93u1gtpp5wjKcTA+1QjHKUx3omLas1k6B9u9plat1GmnACXTbs47qrno/r4ZpFHJdDRwtXPkWMvVaY8Paqedep81x1aZdoUiIXAz7ZTy2VatCv+vCA8up50jp103/vjgKkTHoaxQpj0eigvPUTlxlKy4l00d7+jgctqp1nNz79YgTTxwpTpRruUchYirFdxOO+V6UQ17tzrtChGgZto55fHVIMHhBrc8XvPi5KCYeZWY015tEjtOFDvtVPJ4SpZUmXZamPJ4qvZsAN1c5Aj8VCu4ArAcqU4acI8P6Uw7R80TyVCnXSECXIXoOFq+qXw2HkwHCZAbrVfmlQbF35vE9Jdqi9Zzonh8JTPt6rTHx8aNtPs3hzxec9rpwNWu1ezk4Dg0Nt21vJKdOG5w5bRz7N3VoKxQp10hAiY7w9GnU5l2OSg+1Eln2t2Do453NHCMNzWTok47HdIgj9dCdHQwpfEArdPuHsI1p10OuDuBAHTruTLt8bF2bf45JdNO5WB79ZGv5LmtTrtCBMzFn0MeRVncRA/18VB8qCs+5EeByuPlgjNIQzW/vSS5Or+jgVMeT8WSKtNOB5N5BeI77WZAxa0wreMtB6bj1thI72C7dilt6lhHB3f9ISqmPZOhWy8kQ512hQiYiwEH084hl67khYETHP3uOQvR6XjHQ/FGLzFnsdry4jihTHt1oXh8qca7Vav8IZyDadfxjoZitpUqSEPptGtOOx2oz+Zc8vhqmdvqtCvKDsdJB9OuOe00oG6dx1FEzLSp4x0P1Id6gD4o515TJpPvDqFOezQk4bRrITo54HLaKSv7a047HYrnd1ylnBfTTuXIqdMeH+Z8pty7qeTx1Zb6ok67ouwo3pApmXbKwhQcxc6qEcULP2WfTippM0cF42oF9XibNjmi9Xqoj4ckqsdrNXE5oHbaOeXxOt7xQZ3ulIQ8nsqJa2wE/v73wm4JlQ4up1337mhQp11RdnDIZ5MoRKfMazRQy+M5+vqq004HTqaduiWUybxWcrS+GF9/DaxYQWMrTfJ4ZdrjI03y+Gqd35Sgdto55PFcTPuMGcDIkcDQoTT20gBuebwG5MJBnXZFJDz8MHDQQcBnn8W3VbzoS2TiAJVcUYGaefVy2qkO9YDK4+OCerwdJz++1ONtRuur5VC/YQOw2WZAt240axqn085RiK4aihdxong+S5THV9vBnhPF5zWJTDtXTvu0abnHd9+lsZcGpIlpr4aAnDrtikj4+c+BJ54AxoyJbysJpp3SZjW0lSjGlVcC++xDIwujzmnnKCLGEQhIE264ARg1ime8OYI0VOPdqlV1SOxMLFuWfz57dnx7aZDHV3shujVrgNdei98PG0iHPF5z2unAJY93z1UA3XpOrZLLZGjspAnm+EqsR6PyeIXCAm7vRoqIY/EhTyrTXs0VSU8/HZgzB7jzzvi2OOXxbhExKps1NXQ204STTgIefRS47bb4trgO9QAP014N0XoT5vf58svx7VGv50kVoqsmJc222wJ77gncf398W2mSx1drkGbx4sLgXBxQM+3mXKRW0pjnP4oAVTWtES7M+SzxbO7eK9Wyd6vTrogFiknMybRzFKKr5pZQf/1rfBtczGs2S3+op5RopgXmd/fVV/HtUae/eDntyrRHh9lne9dd49vjUtJoIToabNwILF2ae37DDfHtpaF6fDXntC9dCmy5JbD77rSdeVxIVNJ4Se7VaY8GLqadunp8Nlsde7c67YpYcCPhcaA57bJhjs/mm8e3l8ShXnt/RocpieeQz1LK46nkj9XMtLuqKaBlD+Yo4FLSaCE6Gnz9df75ppvGt0ed0+4lj1emPTpefz33WRctKhz7qEiD0+5eoym5pxhv6tbEaUAac9oreWzUaVeEhjlx27ePb4/DaedgxavVaTcP9f36xbdH3eKPu1BVNWwEJlatyj9fvz6+PS55vNlTnXK8qyFab4LaaVemXTbM+f3DH8a3xzXelPJ4zpz2zz4D6upobHHATFfhUE5JDrq7QV2AXmVAsVZy4Msvge99D7j6ahp71NXjOXPaqyHgrk67IjRMJs6MZEZF2grRVZs83jzUm1LaqEgb0051cEwLzEM9RRswLqadstK7Mu05UARpOJl2Koermpn21avzzylVbS4kBlS4gjTz5uUC2dtuG98WF8w9m8Jppx5v6pz2pqb82k1Zkd617YLiLMSBP/0JeOst4He/o7FHzbRTq2C1EJ1CUQLUEiHqQ71pk6MQHWWefBpgHurNA19UcB7yqJn2amTizDGW6LRzOFzVzLSbh8+0MO2UNQyqeX7HlTYDfPObMijHtZ4/+2zuccmS+La4IN1ppx4br+4iAM0ZkHqt5AC16qM4pz1uyhxXTnu1nNXUaVeEhim3Kq4UHAXUmwBAvzBw9IZOC0ynneKQl4Q8noN5rZbxli6P53CwlWnPodpy2qtxfpuOB2WOqt//o9rjCspRzm8zPZDiLMQBc7wpgu5JyOM5nHaK+U2tOuSAmRLAEZSjCqBpn/ZoUKddERrmQkCxUVFv+l4ONlVbCUqbaYG5UVHKo1xIZ+KoegWnBabTLrE7BIeDzRH4SQuqMae9muXxZiCO41AvebypJbTm+ed//4tvjwPUQRpOeTzFes7JtJsstlSm3WTCKQILxWsEVU0ajpZv1aCSU6ddERrF8nhKptS1SWEPoI/mmTYreWEwwe20Sy5EV40t38yaFRw5rxKlzdXsxFUj015tkkoT3E47pTxeejcQU25OkUrEAdNxoxhvTqadYv8270fK6vGNjYW2pSorzDWcowYRlVJOC9FFgzrtitAoXrTjLl7FkTeOPs4SAwFpAfWmnyamvRoP9dTVYrmYGa6c12pj2s35zZEOwXGop0p/qcYgjTnGkoOwlOkvXOu56SBJdeLSuH9TyOMzmZzNTCb3f6o1w4XU9WLRovxzDqadan5TE2rap12h8EHx5kQ1ial6LnM42ByBgLSAmmlPU3Vps3p8tYy3OcaSnXYtREcD81BWbUx7tTvtHDVK0jLeFEE587tUpz2ePWqn3d23qdZzjtbEHDDPa+bzqOBq2aqF6KJBnXZFaFDnuBQ77VRBACC/MKg8Pjq4c+IkFqLzOuRJ3aSpwe20S2zxUs2F6Exno9py2qvloGcijfJ4qTntaWDaqcebSx5PFVAxxxqgW885WhNzwBxviTntWoguHtRpV4QGV2EKKqbdK6eJamPJZqtjYTBhHkYoD3mckVbdCKKjuMVLXEgvXAQo0+6impl2qvm9YAEwZw6NLQ6kSR4vPd0pDUy7Ob8lBmmog7Dm/QPQB3ZdSN0fuIOw1PJ4iUpLyVCnXREaxZuTVKadu7p0JS8MJszxppTHU6dDcBWiq7bx5mLaOcabk3mtxiBNNTLt1PN7q62AffYB3n2Xxh410iSP58xpp5jfaWDaqffvtLR8K2baqeXxUs8D5vzm6P5Cdd6nVsFWy96tTrsiNLgKU1Az7dx9nKUu2tTgitS3a5d7lB6kqYaNwAS10+7eM5LndzUz7eahnqIQHVc3kDQUojNtpMFpl8i0c8rjqee3+V1SzB0OcDPt0mqUFMvjqdaMtDjt5nrOkd4mTVlrtnyrhrO5Ou2K0EhCHm/2mgyLpJj2anHiqCP1nMwrdZCmGp04rurx7nhz1BugcuKqMUjDxbRLVlZwBeW++CL/fJNN4tvjgPSc9qTk8dXItEt02qnHplgeX81MO4eyQmr1+GpRRarTrggNLnm8O4kBukIknIXJKnlhMMEtj1emXRaky+M5pM1eTHu1jLd5KKNwPLhyFs16IlKDcsuX559TOEgc4HLaOQIq0tOdqjmnXerY+MnjlWmPBq4+7ZJrGkmGOu2K0OCuJgnQFSKRnhOXBnBt+pKZ9mqL3pqQ7rRzBNCqOf3FPORRfOY0Me3UhehWrsw/p6jczAFqJo46CMsxF5Vpz0Hi/k093n7y+Gpp+cbFtLvn8zg2TRWt9mmPBnXaFaFBvXgVbwIAXaRVC9HFRxrl8cq0RweX0061SXNI2TmZ9hdfBP71LxpbHKBOh+CsDiy9EN2KFfnnFKkGHOBi2tMQlKOe32lw2qmD7lzzm2q8/eTx1cC0NzXRruemk+3WIKIYG4BOWet3VouTYisZteW+AEX6IJ1p99ugHQfIZOLZrHYmrr4+3vcIpEMez1ldWjq4c9olSpu5xvurr4B99809r6sDOnSIb5Ma0sc7TYXoTKZdnfZoSFPQPQ3yeC6mnTMoR9mnnYtpl3geoD6bm/batcutb1xOe01ECtnr/gHin1OlQpl2RWhw5bS7OS4AfeQNkFfcLi0wF27HoXOQ0iCP5+jjLB3Sq8enqYbBV1/ln997b3x7HKCWxxcHYTmCchLvIaA65fGcShrp6W1mYEaqXJqLaZdao6Sac9qLOxhQqWABmkKypj3zvE813qbjL3F8KKBOuyI0pMvjvZg4gK4iabUxr9RBmuLxlsi0V3M6hDm+HOkQlCyp9G4B5lrZt298exxIE9MuvRCdeWiuFqZdulzatMnJtEvdH6gLk0kf72J5fDUx7dRnNfMzU6zn5v1HRdJ5tXyLa1My1GlXhIZ0eTxH5I3j4JgWcDvtEg9kqqzIQbITx3WopxzvtWvzz6VWE09jTrvUbiDmd1ltTHtagjTVzLRXQ6HJYnm8Mu3R4X6XmUw+CEJxjq6pydsDeJS1EseHAprTrggN6fJ4r/zzuDaruU978WYV1/mgltdxF6KrZqZdotOeVCE6ivGuq8s/l8q8pql6PEcNA0onzpw7UoM0XDntHPJ4NydV6nqeBqa92oJyxfJ4Zdqjw/3MVMEubkJN5fEKhQeomXaunKZieTxV9FaZ9nj23N93q5FKlMdzVRtOA8zxNavHxrXHIaeU7sSZTLtUp73aDvWmTc50CAoWmwNcLTyldgswK0lz5rRLPQ9ID8pxnv8APqZdorKCmmk3CTWKseEm1FQer1B4gHrx4spp4lgYqrEwGTXTznnIU3l8fFAzClw57Vx9uymDNGlg2tOSDsHNtFM77VKZduqaFVzKKerzAECrxmpsLLQh0Wl3nPQE5ajGu5qrx3MRLFTrJAeh5tWnPa5NyVCnXREaXPJ46pwmjkJ01SiX5hrvtFQTpx7v4oOUNBSPL3WhSYn5qVxOXBqY9rQUqkpDjnMamHZqCT+nPJ6yBRjA0/vdhcTzQENDoVKKg2mX1h3Cj2mvBqe9mGmXdjb3k7JrTrs91GlXhEbxQsARzZOcN1Nt8niudAhXHm/KF6MgbUx7TU3ugGu2A5MEaqeds+UbR4s/LqZdah/nNBaqkhqUo2axOcDltEud31xMO/U6yQEOR5Oz5RtnTrsWogsPaoVpcb0Kt2aFtECAZKjTXgVwHODoo4Gf/IRW/uhCWo6qV44UQF/cTvKi8NRTwLx5NLaKnQ2qTZqzW4DEtmIAsGRJ/vmLL8a3xwFupp1ybNLEtBcfqKQgLfJZDnk8J9NOqaZZtSp+bQkX5hhz9GmXJpf2c9qrgWkv3rvjzm/H4ZXHU5//gOpi2jnl8ZQBNMrK/mbLN6DylbDqtFcB1q0DZswA/u//gH/9K749LqedQx7FGc2Tuii88AJwwAHA1lvT2KPerLxa/FHLoySyewCwenX+uevESgN1zYo01TDgZNqpnPamJmDqVGDxYhpb5vg6Dl0AhDPHOQ0t36iY9jfeALp2BU44gcZeMdMeNxhQvJ5LC6CZ93dNDX2gz4XE8wD13m3+vtSWb0kVokvDeEtPXZAaCJAMddqrAMuX559LZNq5NmlKeRTXIY8DTz1Fa4+LaTedVmlMO1eQxnTiTBY2LihZPWqmnUtOSelgUzMKLjiY9h13BCZPBrbYIr4tr/uGOignMUjDNd4cTPuFF+Yeb76Zxp70mhXUAVNzvchk5DPt774LfPe7OZIlLqj3bvNeoZjfZncS7vNfNTDt1KmrnPJ4gCcdQvr5PC7Uaa8CrFiRf75uXXx7xZu85E0a4MuTlxrJMx1DCnBVE+eQx3PkvFJGbjmc9rlzgd69gQkTaOxxbfxUTFxSzKtUpv3DD2nsAN6OJZWkkjPnVSJ7D/Aw7RTOm4ni/ZtqvKXKpbmYOC6n/eCDgXfeyaUzxgWXagqgmd/m9Uh2DIF0tHzjCshxyeOl2pQMddqrANROOxfTzrVJU9uUHskznUGKa6TOi/OSx0tLXaA+OLowx4bKab/wQuDrr4E77qCxxyWxa9069yiRJfWySd3Hmcpp79SJxg7gXRyPau5wyOOlKyukF6Jramr53VErK6TK46kP9VyF6D7/nMYOwJfaBtAEaTjqDXBIsAG+IM1jjwE//jGwcGF8W1wBd8mpCyqPV1QcuJx2d5JwsJpULd8A+uit9EXB/O4oWHd346d2ukx5vDQVBNd4czjtZnE7CnDJ4zkLVUlbg1yY3yWV077DDvnnVPnIJqjnt7ScV9Nx5cxpp5LHb789jR3A+xCfhvGWeKhPQ047dcDd/MwcTjtHn3bp4/3TnwKzZwN/+EN8W1x7N3VRSA5Czb0+6aRaXKjTXgVYsyb/nMJRSEu1WI6c9jQUojOvyyx8FhVcOckcOe0cheikM+0mKCpMS8955WTaqQvRccilKVu0uddE2d+WOkjD1RKK0qYL6vZ5QKEiKS7S5LRTVxMvZl6lOnGU4GLas1laBxtIn7KCerwpzmrS2zEXB1Soz+amTYnzkQLqtFcBTIkmZU47x6GMYhL7LQxUsh7qSN4//wk8/jiNLaBwjONuBI6T/5zuoYxaLg3ILkQnPafd7Y4AFM71qOCSx1PLZ9PGtFPJZykDAdSpKkB6nDhKmy6o2+cV26G6z01Q1yiRLo+nmt9pcNq5CtFREyyZTGEggKpoMEC/R7igDuL37RvfHhfTzpW6wNHyTboSNi7Uaa8CUDvtSbT0kbYwcDlxALD//sAhhwDPP09jzxzjVavi2TIXfc7CUtRj4zjxWGeunHZzPKiYV/NzckTrpeW0c1YT52TaqQ71lHnTXgEQqekQHEw7pzyearxNpVzcoJx5v1C0QgWSGW9pyjsgHU67ez+6n5myMJlUVpyDtDHtUp2DgMIgvkliREUS1eOljbcy7YqKg3SnPQ0bgZejANBUJHUdrTfeiGfLBSXTTl14BuAtPEg1Nlw57abTTsXEmdF6CmWFe13t2uUepTlx1c60F/fZjgOOzy09HcJPkksxvznG23Ta49YoMdMh3P1R2nhT16xIUyE6ivQmEy7T7q7l0ggWv/xzyd0CqPYxoHA+cxSJli6Pp5zfxTntyrQrUgsup10qk5JUIbq4NoFCh4vqkGeOMdWhHuB1uqQ57Vw57aZckcNpjyu5Nzd5Kqfdq8UfhQqCIx2Ck2mnGm9zPedg2uPc52bQR2rNE/cz19Tk/8W16YJbWRF3fnMGaTjk8RzMq+TCZMXFKqkDKlKZ9uKzmsTq8cW1fSjWcy6nXWpqEiehRnkPSYY67VUAcyOgyKNNoqWPNDmc1zUC8T87dU91oPBQT1ktljqnnVMeD9AXt6smJw7gY9oBusJSnC3fpDpx5hpOKX+kYF7N35VaTZwjqOuCY36bNqmYdsq0gCSC+BKdOA6nvTj9waslYxhwntXc9SLOfc7BinOw96ZdKtUCULiWU3SbkN65gzt1FVB5vKICwC2Pl1Z4hrMQHaVjCBQewqhaBJlBGiqHC6CXu0qWx3Mx7RyHenO8KZ329u1pbFI77dTyWS6bAL1c2nEK13AO+SPFIRzgLVRKWU1cck6749AWHuRw2jkdwzTIpV1wOO1x20RSO5rcZzWpjqFpl0seHzdAA1Rn6iqXkkYqast9AQp+UDJxpg3pmzR3Ibq4NgEep90cb6qxoWrxAvDJ481rBOjYuGqUSwO8TDsVk8LJtEsc7/r6ws9Klf5CLT0H5OY4+7UAkxiUK7ZBNRfdzw7Qp0NwyOM5mDhqp51ivIuddqrx5lTJSVNBcNcw4CpER+m0c6YmSc1pV3m8omJA7bRzFZbi7gVJFc3jksdLZNrNAy5V4SJOuSvV2CQhj6eqHk/JtLvXRxWkMQ/11C3+zIOE+7cobVIXouPIeeVg2inGBuCRS3My7RKVFdTtFznHW6okl1suTbleUDvtXMwrtwpCIvPKUYiOWx5PWaCVI/9ccpBGKtRprwJQOnEAbzRPai/IapfHU8lnAZXHF/+NuOBg2lu35stxjmuTI4CWFqad2mmnzmk3r4czqEvptEuuYUDN5lI7XRzjza28o2baKZnX4vRF6iKgTU10RUA55iIH88pViI66MG01yuM5ctorXR6vTnsVgLIwGZCeYhdchego5fHm2FA47Y5TeLCXtmibNjkOZdIL0VFXj29oKPyc0nJevZjXuDa9rhGgn9/UThfFeBcf7KTmtFO2FEtKoikxKMfFtHPOb44aNxyHeolyaa6gHFXANKl6A9IcQ4BnvM31XHIhOq61lyOnXZl2Reoh3WlPA5NibgSZTP71uJ/d3KSpFm1zUaXMgaSWS3PIH82xoe4WIPFQXyynpJLHczvt1CqIuDaTYNqpD3kALdNOPRcp7JnMoHR5fHHROOr1ApCXk8xZw4BaksuV007pxHEFaThUTlLPalxOHHX7PEA+084tj1emPTzUaa8CUDvt1Dnt1NG8NElwqJ12zkMeRYsX816hKvJm3j+ZDP3GL7klFFeOM4fTTlX8irOGQdqY9rhrBpf8sfh7jCrJNb8/rpZv1PJZv/9HgXSm3bWXyeS/z7hBGndsOQJJgGwnjmv/Np12CiVNGph2rurxXEEaiU57GqrHayE6RcWB0ml3nPxk4FgYpEZauTZ+bqddmpTdPIRzH8qqIaedmmk3c9qpx5vTMQSij3ex+kNz2uPbo+qyURz0kcr2ADwtwNLitFMH3AHZvaEB+nZqgDLtUiXYpt1ql8dLKxKohegUFQeOauIAfYXKtLR8M21Kd9qlySmLD+FSCw1x5bRTO3HUcmkueXw2m2PjqA9lFEy7+XuUtRsaGws/p0R5PHVOO3W9AQ4nzs9RiDs+1Gsvh01O5owyoOLalHyo53DiuAoPUue0cxcmk5jTTq0wBdIlj+ecixJVsFKhTnsVgJJp585hk868UkfrqSOt0p12Trkrl8ROMtNePN5S5fFccjgKx7BY/SG5jzOX084x3hRFIYvXC4qx4ZLHF8/FuJW6vWxS7d/UShqudBqOnHbJhcmky+PTtj9Q2QT4x1si006tguUYG87CohKhTnsVgNJp9yosxVGYTFrLD65ovXSm3dykKXLazUN4Nsu7EVAFAiQz7VxOO9WhnoNJoWbai9k9yU47lzyeg8WmcNrd66upyf2TKskFvNdvqkOzizTI4wH6GgbSgvimXclOu7meu0VaJTHtScjjJXcLSAvTzl3DQKKSRirUaa8CUDoK5qbaunXuMc7k8CtMJn1hSIs8XqoKwi0ax5knJUn26SItTjt3Dhu1CgKgy5vmkktzyOOpCtFxFAGllMdzrOXU8nivuSdNcs/FlFIVhTQ/XzabjvGmLERHHaTxKiQrqWBnEvJ4qiANtzxeItNOTahx1BvgUsFKhXinfc2aNZg8eTK22mortGvXDnvttRfefPPN5p87joNzzz0XvXr1Qrt27TBs2DB8/PHHZbxieeBw2mtqaKrFJhlZl1ZAA5DPtCeVw8ahrKiGnHZqp50rp53yAEXNnPmpPyQy7Vwt3zjaqVE4cZyHPGpmxp07bjDb/FtxbVLZ4wzKUSor3PadaWj5loZCdOZ4UyjluDo5cNY0khikoW4R6V6jG1iguseltnwzu00o0y4Ev/jFLzBr1izcdddd+Pe//43hw4dj2LBh+PzzzwEAl19+Oa699lrcdNNNeP3119GhQweMGDEC64t1hFUMyrZD3Dls0guTUedJSXfaveTxlHI4zsr+1H3aHYc2RzWuwwWkJ8eZ8gBFfQ8VOwqSC5OlZbypnbgk5LNU8njXiQOqx2mnri+RRGEyiXJprnQIDqZdagCNa35zy+MplRppkcfHHe/iIrKAMu1lxTfffIO//e1vuPzyy7HPPvtgm222wfnnn49tttkGN954IxzHwZQpU3D22Wdj5MiR2HnnnXHnnXdi8eLFeOSRR8p9+SLQ1FS4GEhjXjkLDWmfdh55FFUhG0CuY0gt83UhnWmXntNutpykmovcOa8uOJg4yTntlHLpNBSqcsemffv8a9ICP9RKGu7x1pz2ePa8nC5qpl0S8+plk2p+Fxf1o3baHUfePcldJJpq7/ayqUx7GdDQ0IDGxka0NUtfAmjXrh1eeuklzJs3D0uXLsWwYcOaf9alSxfsscceePXVV33tbtiwAatXry74V6lIopANVV9WM4dN2qGMS1IpvXo8d7VYzjwpKskVxWHUhXSnnetQTzXexcocgI5pT0MLsOLxlcy0ZzL54leSmFeuQlXueFNV6jZtUtlLonp8HJtpcuKKHSTJ3QI40tskBnVNm64tyUw7NcnCWT1eYtG44iKyFDalQ7TT3qlTJ+y555646KKLsHjxYjQ2NuLuu+/Gq6++iiVLlmDp0qUAgB49ehT8Xo8ePZp/5oVLL70UXbp0af7Xt29f1s9RTkivPsshTeVg2rkOetLl8dzVYjnzpKg2AopiZ0DuQEcth0tbkIZyk6Y62HMxcUn07Y67ZngxcZJyVDmdOC75bJs2cgM/SaVDxJ2Lri3K/YHbiQPoixlyMO3UQRppBX45gjRmlyOuQnQA3fzmkMdLzGnnOA9Ih2inHQDuuusuOI6DLbbYAm3atMG1116LI444AjU10S/9rLPOwqpVq5r/LVy4kPCKZUH6ps8pZedk2qtRHk/Z8o3qUO8ll47rdPnVWYhjs9iu1/+jgCtSTy2PpxpvLzmcVKa9uFAVhfyRKx2CutAQ1SHcL+gDxJ/fXPJ4c+5Q7bcupO7f1PJ4rlQngK8QHSA3SMPBjHPWo5EWpDGvh0seD8h12qUWiTa/L9eWyuPLjAEDBuCFF15AXV0dFi5ciDfeeAP19fXYeuut0bNnTwDAsmXLCn5n2bJlzT/zQps2bdC5c+eCf5UK6cxrklJ2aYEAQD7TLl0ezymXBmjl8Ukwr9JyXpMYby6mPW7hQY4cZ2p5PCcTB9CPDWexM6qAClXRTtOmC2npEGlw2v1qYFBLkSltupBWSJa7MBmlg02p1jDHpdrl8ZLGu1ipC9AF5aRCvNPuokOHDujVqxdWrFiBp556CiNHjkT//v3Rs2dPPPPMM83vW716NV5//XXsueeeZbxaOeDcBDgrfUpl77nyIIufU9gD5AVpqOXxQYVIqIqbUDHtSTjtVJu0VHm8OTauLcrq8aY9IJ7T7sXEUec4UzLtEsfbL1hKaZN6Ladk2qUHYamDNH73T5wAWjHzylWIDpDHtKelEF0S3QKoVHKULd/SwrSb531J5FfxWR+ofKa9tvRbyounnnoKjuNgu+22w9y5c3H66adj++23x8SJE5HJZDB58mRcfPHFGDhwIPr3749zzjkHvXv3xqhRo8p96SIgPVKflpwmLnk8t9NOuWhzHvI4CpFQsLk1NYWHxUpn2pNKf6FwuKgi635OHJC7zqiZWBwtwKgr0qdlfnsx7dRBGkqnnYtplzq/zb22sZHuEF4cMDX/b4s0Me1pkcdLbgmaZqZdqtOeBqbdRaUXohPvtK9atQpnnXUWFi1ahG7dumHMmDG45JJL0OrbWX7GGWdg7dq1OP7447Fy5UoMGTIETz75ZIuK89UK6Zs+R6GhJArRUR/03OeOk3dG4toDaDd9ipx2rpxXgKf4lVkcEah8pt2LLZQUlAuKrFOze3FsAunLeaVkUrjGW7I83qsehDSm3ZzflM6MufbW19OrIICczShOe5JMu7QaBlxBOa71guKe9AvSUKzlQG7umH8nDqiDsFzyeK4gPrUSC6j8QnTinfZx48Zh3Lhxvj/PZDK48MILceGFFyZ4VelBEnJpac6wH9MuseKwOT5uUbXaGLMyrfJ4Klac0qY7DmYQpZqYdvdzS5qLXps0tTyegs0FlGkH6AIqaZPHUwQ4TZsupAXduVo6UgZpuJl2t5o4hc1qY9o5Uxk5OhBQfW4X3Ex73PMp9Xmf6zxQTfL41OS0K6LBjP4DuZucIk9TsjyKI3rLVYiOmiktzpFKy6GewuFynUxqSa5pk5ppp+7rKy2yrkx77lDv3ptSnTjpOe2cTDv1Ws5ZiI7DaZeco0oZpOFi2ikdubR0C5Cc084RpKH+3C7SJI+XmGZajfJ4ddorHO6i0KFD/jWqPrxSI61pLUTHYY9DHi8pSFN8IAPiH8q8HEOKjcA81LuQOt5U8njOnHYX0pl2jhxnKolmUoXJJDpxXKqpam35BtDPb8k1DDicdunKiqRynClsUgZpOMYaoD3/me1vXfVH3A4o0uXxHEF86VCnvcLh1XYozkbA1RKKKlLf1JSfrGkrRGf+nagoXsQkV58FeCOtHJIrCqbdDKBRMa+uBJuSLZRYeCaNTDuHE+eOt7R0J66aFWmVx1e6E8ddPZ7CaS8uTEZdw4BDWUGlzEmi5ZskpYZ5LVwV6SmddsqgnFexPEDW506CaVd5vCLVoG47lBYmjtImkEwhOkCeE0ctC6Nu+caxaHOwuQB9AM20SeXEcae/UEXW08S0mwdmqfObuoUnlxMH0CtpqOXSHIXoXOZM2vzmauFJmQ7hF5TjkMdTjY+7R1AWHqQOukskQ8zPRhmk8Qp+SKtJw+20S2z5FnRWU6ZdkUpQOwrUhzwuuTSlTS/2Xqo8nnrTly6nLM5fA+iYdvPASMm0czjtrk2q+0dq9XgOFUSxo2AWHqRi2qmYuOIgLGXOosScdo4+vGlk2qtlPS8eG4oioH5Mu2R5fBqCsBJJG/P30lSIjqstHZVNqco7ZdoVFQdOp52TwY57ADdtxl0YzM9HKY93HPqcRc5Nn1JeJ3nRrmamPS3yeMrIevE1ZjI00Xqv71LaeKfNiTNtUjOvHKkl1EG54v0iqj1qpRyXssKci9Q57ZIL0UkP0kjNaQ9SWlLVSaIa68bG/DVRrOfm2kDV0YA6qMvV8k0L0SkqBu4mTdVLlLr6LNchz7RJtTAAtAc9rwOYtJxXLnkdpzxeak67W9m/bVv6auLUTLvUwjMcmzRXkMaLaaee39KZdg5lBZcEm7IQHTXTzpEOIVFZwRGETTPTHjdIwxmUc+3FKXZGff9wMe3cnQIogjSuvWy2cP5QO+2U8niJNW6kQ532CkcSi7bEQx6QX6ypKhgDtAc9UxpP0RPbtCn1kMfZ8s0Fh9NOXT2eK8dZGjNDLUX2Ytol5k0DvC3AOMebIwgr6VAWdHCMU2mZo3p8WoJynPObej3nYNqrJUjjlR4J0BcelKaK5JDHm+c/ivntNdaUNjlqGEgM8kmHOu0VDmo5HLV8lvOQR92327UL0DpxAP0hXLoTlwZ5PFf1+DZt5B7qqdeLNDCvXBt/Gph27holElUQQW3kqGsYVPp6nkThwTQx7ZLnN/V6TuEYctY0cuc1JdNOKY83z3+uEpZaBQvIlsdTB2ABlccrUg7OHDbJ8jovJo5iI6Dc+M0iJG4OkjQmzkvyWS3yeHPjo5bYpYl5leS0p5Vpl5rTzrU/JFF4kMqmOc8pxpvquzRtpoVplxhAS1NOOxfTzrF/UziGXIXoqAPufp+bYr3IZnPjA9CNTSaTJ62oWnhyKO841wuVxytSCa4WbdyFbKg2AQqb5sJQzN5THfLSwMRJHO+kmHaKgx5nSyjph3quvt2ATEcBqO4c5yTWc2p5PKDpL3HsATKDcsVMu2SnnasmDWd6JCCnKCRXwN28TnMtonCyqfYH6rlYbJOy5ZvkoK50qNNe4Uhi0ZYor+PMiTNtUh3qpTJx0plXDgebK1pPPRdNm9TjLVUez+nEcQVpKJ04rqAcF9Muce0NksdXepBGenpbEukvaSpEJ+0a/XLaqceGY++Wli/uNRfjFB7kcNqTksdTnge0T7si1eDcpCUWpuBg2jlsAjyHPM4cSI5osMRDPVeQhlMeT53TLpV5TSooR62kkRqUM8ebkklJQknDwbRLV9JID8pJVL0UO3JpKETn5jjHsdfUlP+M3Ey7lIBKENPOIY+XdP6jdtodp3DuSAziK9OuqDi4E9ksfkUdHZTY8o0jp51Ssgeko9owd8s3jk2asxiS1EN9tSgrgiLr1RCkSUv6C2eOKhfzGscmkAzTLm1+p2n/pqxH4+cQU40PZQswoHqcdi6mnboAH8DvtFO2OqY475tBAGrShnK9kA512iscaStEJzHyxi2P55TPSjvkJcHESWTvAV55fDXntEsN0nDUrJBeiI6rO4RXUI5DHl/pQVjp6W0cclcOpp3DIQZo5fHmNXLMbwp5PJejSRnEB5Jj2uOsF+b5AqDba4HC8Y4bUHHtATLPf9KhTnuFI2057XEnHHchumKbVC3Aqo2ZkZzDlgTTLnW8OYN8gEymncOmabeaWkJRH8I56kskWYhOcrqTxPHmDLoXM+1A/HMGQPddOg6tPL74GtOQ3kZ1HuAqRMfRA52rMw+10061d7v2AJkknXSo017hqFamnSPnlXoj2LAh90jJzHAWqpIs4UoD087hxKWViZPOtFO2fJMcpPFK2ZCY7kS59hYHadyOIHFsAsq0AzLl8X5MOyDLaTd/l2J+m33ATadLomOYhBNHsa65HYTcNUMS084VIHdtUgYBJAfxpUOd9gqHtnyTeZAAeA/1VIWLqHtNJymPl7bxp6l6PPehPup1cua0U89vjurxnNXEqQNTAG+OqrR0iDQoadIoj6dOsaBgSotZQ4rxNp1sSnm862hKPK9x5bRTEyzFn5tazi7RaTevJZulI0MA+UEayVCnvcJB7Shwye2pcyA55XXmc2k5r2mRUyYx3tKUFZyHes7Cg5RKmrifO61MO5eSRur8pm4BRjkXkwjCUjPtaWn5JrEoJCfTXuwQUxWOo3Taufp2U9ik7j7AEeQD6MkGIF1FfimCPub9XRxAk7aWS0Zt6bco0oy0yOOpcyApCxd5bQTUfdpdO9IOecUbQVybSRSekdoCjFMenzYnjkMOJynQB9DnLDoObfpLU1P+97mUUxLXcy5JJUdh0STSIaSnt1EH3Smddg4nDqAZb45rpM5B5wricwXcqe5z0yZ3yzcp97h577jpBVID7pKhTHuFg1PO7k4Ox8n9i2sP4JFHcTLt0uTx1Eyc9LwrzvHmDNJQy+Opc16lpr8klQ5BybRTFYEy5x11dWnpNUo4qoknoZySlO7U2MjbtxuQmd5WHHSnlMdzOO1UcntzLQdkBuWoGWwupp1zvKWerbg6gSSVylipTLs67RWOJKrHA3Kqh7q/R3kgC2LapcnjpTOvSVaL5ahIT7XxUxzKzGrD1EEaqYd6jvmdRI4zhbKCi4kD5Bai4wjKBd1DkuSuTU3536cIynG0AOOuJg7Qs69SmXbpKicOm37ngahEEBfTTh2MBOTntFMHaDgCchw2pUOd9goHZ94MR8SaSk5pbsycvT8lHfKA6m0JxZHzylU9nmq8GxvzBxuKQ70pv5Z6cOSc39Ll0tQ5r2YQgLsQnaQAGsc9BPDJXQH6II3U+R3U/aVamHaqgEpx3+64a5C533DntEe1qUy73CKBnPWmqkkerzntFY4kctrj2KReGDhYFK6NICk5peMUtjUKA/Mg6n5WSYc895rMzV4q88pVFBKgOdSb1yJVHs8hbU5LNXFzvN0+zlROHEUfXtNmEjUrJKk1AL4AOUDPtEt32jkLyUpn2qU6ccX3j2mTWmkZ1SY3065OO21AjvNsrky7IpWgluRyM+0cTBxHTjtXjjM10w7QO5oULd+SkMdLY145mTiKnNdi5lXiod4rSCN1vKnnDnXOq3l9UltCJcW0c8ldJQXlXHvuWEts8ZdETjtFn23qVpaA/NQkL6edOigX90zJkU4DtLwvKZ1s6iCfW8OASs6eROqLpPOAdKjTXuGQzrRTVw/lWLS5onnu2LRpw5fTHtdmGuXxHMyrxBZgXsyrNCYuiT68aWLaqQ5lnMyMJBlpUky75PmdyeT2CIBu7aUK0iTBxlE5C5Tj7de3W5I8nroQnXkvU6/nVKkLXHu3yuNlB+QolZbSoU57hUO6007d8o2zUBWnnJJi029szF+P6bTH+S7d35Ua/Q+KtEpz4rhyFmtr899npee8BjlclIcJrpx2auae6tAIpC+nXZIaC6Bfz5Pq4yzJmeGoH8Oh1uAu8ibRiStOp6GwWTwXqXLaqZl2Tnk8hwoWkOe0cwTkuIqKSoY67RUOzhZOnEw75YFMYrEzgDcHkoJpL642TNm2ijPHOQ1yaa5UFceJvgG611dTk7Mn0WkPmt/SlBWc8keJhzwvm5xFQCUd9Bob80W6qJl2KiauOEgjcX5TS2ibmvLjQrlHFBd5ow76SBwb86xW3Gebav+Om9POEaABePq0S2faqYN8HPJ4jvOAdKjTXuHgzJOiyA3zc+IkHci4ekFSMzOcTjtVXm7x5scZaZWsrOA61APxN2nJh3pOeTxlgRyAvno8dY48x3gnkQ7B2WEkbsAL4HGy0xakkbKem5+NMijHXYiOev0B4t9DxZ8ZiPc9mm3dvJz2OPJ4aoKlGgsP+lX2NwNhUa6PI6ddmXZFxYA7eku9EXAcyDgPjpL6tHsVLopjMw1yaQ5lBTfTLl31Irmvb9KF6CRVj+eqRi95vDlSVYI6TsRlXgH6dAjqIJ/k8aZez83vi/Jgz5njzC2Pj3seoApumvOXWh5PzbSnuXq8tMr+3IXo1GlXpBrUjoLf4hV3I5Dc8i0Jpp2SOaOqDuzXEipqpBVIRh7PmUcryYnzY9qj3kNpOtRzMO1JtPiTyLQnMd6SukNw2PTrvCAxHSKtSpo4Thwgn2mXLo+nPgeZv0M1F7mZ9uLq8VRBGonruZ+9qDY5W76pPF5RMeCu/k21EVAf8riZdmq5NEcLJyoVhJvDRinBpuoWwFEJOkmmnbplDFDZ8niOQnQc4+04ebsc1eOpnQQgvk3Hyf8utXIqKXYmrhNXW5uzy8W0xwmYUs9F8x7nVNLEscnNtHOslVKrx3My7dTpEFwBd44Wf2mTxwPRvkuVx9NAnfYKB1f0lqsNBCeLUk1OHBDfpt+BDJCdDsHhxFEHabjklACd/FHiehEUlJPEtBenllAH5Vx7cQoPJtHHmergSHWo98qjNZ/HZdqp1t5imxQBU2oljReLLS0VLY1Me1qYV9Nm3LGhDtJQM+3UtToA+YVFg+TxccaGO9VJ+7QrUo20SK44mThpkj0XXDntHNViTXsUNtMml6YO0lAzcXFzAU17lAfRau0W4Nd5gcqJk6is4HDavZizOGPjlUdrPo9biM79Lrnks0D8oBxH326p+7d5jRzKCkrmVboTF1SIjlIeTyG5T4ppl3T+S6M8nrOGlcrjFakEtzyeUoIN8DJxkplXjpxF6iKBFGyPX/SWQx4vebypmRS3jkEcm2mXx0ti2pPKcQbogjRxD45eTjvV2FAF5UpJcqkDXhxMu5SaFUn07Y5r0wzyuZ1uTPtSgs8AfacfrvHmlsdLzGlPcyE6DqZdWiE6lccrKgaUTLvj0EeY09DyjYPdA5KrDhx3bLwWbSoJtsRIaxJ92qk3fYAvsi7JaU/LeJtOe22tbOY1DU4c1dhwSHIBXqZdaktH876jauFJrZzycuLi2gToyQsguU4/UqrHl5qLcST3lMo7gLdPO3e3ACqnPa6ajyOnPSg9Upl2RerQ2Ji/qSk2AvP3uCTYElu+JdmnXVLfZWp5VJBNKTmQQPqUFdSHMsrCZGkvREdxqDeLOEpk2qmduJqa/PdHZZMqCFuK3Ys73lw57RKDNF5Ou7T57RX0iWsTSFffbur5TbUvcsjjuQLuaWzxR32Px3XaOarHK9OuqChQ99nmyFlMQ44zh2MI8FaPB+JvBMWLbNxFu6kp/32lQR6fFmUF1aGMs1AV1T3JwbRzMACchcmkM+1UharMa6Fae7mZdqr7HCh0ujhqVlCuk670XJo83o9pT0shOkmOJnVOu/vdZzKFqQtU6RAU9lxwyuPbtKFPlwPogzSZDH3qApXTrn3aFRWB4mJIlJF1qS3fks5xluTEcTHt5ueOE1wIklNKl0tT3JeUqheAnmmnPphwFiZLKkgjUT7bpg2NE5dESyhpay9XTjt3zqvEmhUc+yK10+XHtEsjG0ybUosGc8nja4q8EOrxNu3HbZdY3Ke9mlq+AfH2Rc71QuXxioqAmVdJsRFwMu2S5fFceVJJMe1UB1Eg3sGRI+jD4cQFbfwUc4ejejxAv0lLXC+C5HBxA30cheiKc5ypDnkUTpz0QlXm71GNtx/TTp1SQz3epk0pSpqkC0tR5rSnhWmX5MRxOe2UYxPE5pp/MyySqh7PEaShusdNm3ECppTrrsrjFRUFd1GoqcndyJSHcNcWtWMoMcclyRZgkvq0U8uGzd/hzIGUyLT7BdAoD2VUOe1eqQtRGAqOnNegyLokmxwtoaQXHuR02jlavlHuEX5MHGUQlmo9l+y0U8/FNDHt3EF8aekvXnu3+X+q8TbtU50JuMZbUpCGen5zpC4o066oKHAeyopz2KgdhbQw7ZLk8VxMCtUhnLPaMKXDxV1NXGr1eL8AGhBtfLyCfNKYV/P3KG1yVxM3bcZl2jnl8VQBNA6mnbIFmN/c4WDapcjjOatBU+21STPtVEF3ifJ46n2RQx4flOoU1SbAG6Rp0yZ9TjtVkEYiSScd6rRXMLgOZZSbtF+xM0kH8LRVE6fu0+6V0x5XHp+EEycllwvIj7WreJFceNCrxV+U6wwK8sXdpCkj60kw7RKrQUsvVGX+HjXT7sfuUcvjOYI01PJ4SfsidWGpUky7ROaVWh5PFfShDuL7yeO52FxAZjqEVKadej3nINS0EJ2iopAkk0LlGHI4cVQHR0qbgPw+7dTjzVFtOKl0CGrmleNQRv25KZ12FxLndxJMOyfzGteJk1yYjLriMAe7B/jvYxzpENLk8RxBGq/5zZHTTr1WUjnt5hyS4mhyFYWkVEEEBfnMn4cFx3hv2JB75EqXS8N4qzw+PNRpr2BILzTU2JjPlaUuTKZ92uV9bg5nOKnxppLHc0XqAb6cdoB+vCU52Glh2qU7cUnltFNLNAG6QnSU3QK4lFNS9weA/mDPxbQXBxeo5dJx115AvhPHEUALYl7Nn4cFd40SiUw7l7KCg2lXebyiIsC1SZuTmLoFGJW8jiOaRxX9d8FVeIbaiaMeb0pn2GtsqIojJlFNXHLOokSnncPBTntOO9V6Ls3BBoJzVKU4CoD/3JEUpElD9Xjqgz0X087htLvMa7HTLiUoR502ximP99ofotoEeIJySVWPp1IPAfHGm7Pzi8rjFRWBJOXxUTYW8zpcO+aiEKVidVqZds5DHsfnjpPTnhQzQ5XbDdAx7UnIpan7tAN0LBdHAI2TaZfKzFDYpJZ8UjvY5u9RjTdHxWqAt3o8dZCGerwlz28/pp2qDoZ7bVxOXByb0pl2jrnoZdNc1+Ou51o9PrpNjoC7yuMVFYU0yOOL7cSVMiXFtMd1FBynMKdJ4iGPK6c9LfJ4yvGmVr2YNpNg2qUFabiZduogDac8XooTxxGkSapiNXWfdsogDVXgh5od5ihMSz0X/Zh26jOBRHm8dGWFH9NOwd6b8zuTydfQkRIAAfidduqOGAD9eKs8PjzUaa9gcFcbjmvTXJTdBSau084RefM6jFJECF0lAdWizcXEcTrtkuXxSThxEtMhXDtxDzvURcTM36Mcb47Aj19Ou6TxToJpj2PTcegPZVxMu598VpKShtrRTIM8PimmnVIebyrvALoWfxzdZKiZ17g2k5rfce05jnymPWi84xBqHO2YvWwq065IHaRXjw+Sx8e1SekocDgfZt9uqfL4oJZvUpw4Dnl8EGMoqZq4dDlcUukQcQ88QTYlp0NIZdqppewA3VzkcBSAdMjji8eHk4mjcobN5xxMuySnPalCdJRpY9JSVTiUNCbBQrVWumMDpKtPO4XKifv8R9HZSTLUaa9gpF0eTxVp5ZR9xnXiALny+KBDGbVcWpI8Pgm5NLW8DpDbh5ebiaNiIL3uIaoiUJzMK9WhjJq5B2ikzQDdXOSuHi+5EF0STDtnqgpHTju1PD7OeJtMeyZD38FC2nj7yeMpmHbKoJzpYFMFQDhIG7/xpuqIYdqUcjbXQnSKikISTHucg14peTxVpJWDaady4oDc9ynxkEcth0uLPJ5DcsUpj68mpj1ovKPc52axS06mnXO8qeXxcYuAUh3KzN+RzrSnoeWbn6MZdbzTJI/3G2+JTDvXeU3a/sDBipdi76PYDOpyRKW0lMi0J5EOwbFeaCE6RWohvS9r0IQD5BWiozycmAfwTIZ20eZs8SeNeeWQx3My7ZTVxP0O9RzyR2npEFRMu3kdnEw7B5PCVU0coGvhRHH/FNvkZNqpDrgSg7B+jiYQz5mhWi84ahj4sbnSW76ZNiW3fKNmXuPaLBUIoGLaqYK6mUzu88a15zj535Xa4q9UZf8ogUMtRKeoKHAxcUlUk4xrkzLyFsS0S2ReuQqTxbWZFnl8Ekw7JTPDGVmnqGEgmWk3xzMJpl1SNfEgp51aSRMnCFBsUyLz6pdqICndKchplzC/zUM71drLwbwCyTDtXHU1OJx2KX3a08a0u6kQVGc1QP5532tuc9h0nGiBAOlQp72CIV0uUyryRp03E1f2ycG0Sy5UlUTLN4ny+CRbgHHIZys5p526EF1STDvHeFMfwqkOUEkx7VKKXwH+1aUlMu1UqWhc8tnia+Ns8SeJaTcL0VHYTEtOO2WqCifTns3mu6lQn/8kOu1c85uSpAtqAWv+vJKgTnsFQ7o8ymuBNQuwUEs0o9oMkvlSM+2UTBy1fBagd9olyuM5mHY/h0tSkCYN4+01NtXCtFMXt0uCaafYH8zWg1Q2ufu0c9QwoO6SIG28/eYiB/MqveWbaVNKMcwkCpMBNEE5SiUNNXkB5Meaamw4mfYkWr4B9CRdVJvSoU57BYPLafcqRCcl34xTgkPJEBdH1TnklNSbPiBXLl2N1eO5nTiAxmnnCKikjWmnCNJwB2GlMe1e665pUxLTnkROu1R5PEc3Gar1nKOauPl7rh3K/ZvqTEAdWOAKylHORY4zJfV9DtAH8ZOSx3O1fItr0++8r0y7IlVIkmmPc2DmzmmiOpxQHUaBdMjjqcebOucV4JHHczDtSdQwkCqHo8qRB+gL0SXNtHMEaSQ77XHmt9e6a9qUIskF/KvHS5THczLtVDUMqFRtXMqKJJn2SnfaKeciJ9NOdQ4ybVIz7ZQSfq50WG6mPW6KrXSo017BoGZ7kpjEpk2qTTpu5C0oQijRiaM61CeR0y5RHs/BtHMwcWlh2iUXouNi2v3k0hxMu2R5PMXYJMG0c8njo9ZRAZJr+QbIqB7vF0Dj6BYQd//2+y4pgjRU1eOpnXav85+0+hIc3SE45PFB6TRR1guva4x7ZklCWRF3DeIIBEiHOu0VjLTktPst2nGYM8rIW5KFyThavknJYQu6f6JW+uSQx3vZpDrUU81FgE9ZkbYgDRXT7sXeUztIklu+mbnjEuTxaWLa/YJycWxyM+1x90Wu80DxtXEQA9IK0TU25n+32ph2ygBaqflNFZyiJkRM21Ly7oPk8Rwt36jWcy1Ep0gtkshpT0NOE2fejJQDmfm7VMWQkmwBBtCpIDiqx8dlZtJQqCrJnHbKgAoFm+tX7IzKQeKQx1Mz7aZNaqadKr0C4GHiuOTxcWxy57SbzyXM71LyeI4gjRR5vDvWAL+yQprTziGPl860BzntUdbzoGuMWzyXu/B0nECxFqKzRENDA2bPno1p06ZhzZo1AIDFixejrq6O9OIU8cDNzAA8CyzFQY8jb4aSeU0i55WTaY+T086tgohzjSbj7zXeVHOHknmlLmbDmdPOIY+XtgYBLe/1augOQZ264Me0xzmM+jkK1PJ485qjjjk3024+lxCkcb/74gAahwRbGtPu5bRzBQ4BWekQHKQNZSAgCRab02mXsj8kNd6VntNeW/othfjss89wwAEHYMGCBdiwYQN+/OMfo1OnTrjsssuwYcMG3HTTTRzXqYiAJOTxFCyX3wIrWR5PtUlLri5N7cSVYtolqCBKtR2iPtRzMO1SNulSLWMcp/BwbgPqQnQca5Bpl7OGgTSmPcgppCxUSpHj3GK8M00AatD4n4+A55cAQ4e2/MMBKF4rKZl2KiWN1/dJXQ2acy6Sjrcwpp2j+rffNQK58XGDA7YotZ7Hvb5imxzpEBKCFUDweiHNaadi74Pmd0MD3dncDfo5jsrjAQCTJk3C7rvvjhUrVqBdu3bNr//sZz/DM888Q3pxiniQ7sT5LdrUTLv5N6iL21HLpSXmvFKnQyQlj6csTEbNtFMqK6TXMPCTrkkYby6mPUgeH7cwmdQaJVzMKwfTXmBz5kxkr782Z/Opp4Ef/hDo1w+YOdPabhJMuzR5PHV9CQ4nrpSyQgrT7n5fmUz+2jgLD1LNb476EhQ57ZT3UJBDTFU9Pu56wSnhpx7vJII0FKSIVIR22ufMmYOzzz4brYvCdP369cPnn39OdmGK+KBuQ0N9qC91KKM8hFNXoKXe9CmcOGoJdlBOexy5q9cmAMhQQZi/kwTTXslyaU5lRVLsnhRpKiC/W0BSY0PKtM+cCYwdi5o1K3M28e3Ff/45MHastePuV2gy6nUC8uXxXuNDEUCjDLgnXT1eSoAcaPl9cjjt0uTSHPcQx9gUr+Xm9VIFvKQFdTkcbA6STjpCO+1NTU1o9Ph2Fy1ahE6dOpFclIIGxQuD+yjtkMcxibmj9VzSNYny+CSqiUe1ySmPTyKnXSLTnkROe1SbXH3auZn2uEyK4yTLtFPloFMEYNkKVTU2ApMmAY6DLHLGmp12Vw4xebLVHyoOcJqMadRDuHutUpl2riBNEukQ0vq0U89F81o4mXZpZzXOQnSU8vjiQEAmQ6Mw5XDakyo8LalmhWSEdtqHDx+OKVOmNP8/k8mgrq4O5513Hg466CDKa1PERBqZGdO+lEAARzVxDqZd+ngnXT0+rjzey2bcDZByvKmZ9jTVMEgz0x5XAULlxCVR7Z1DHk/WEmrOHGDRotz/kTP2V5yAOnTIvclxgIULc+8rAep6L2aOs1SmnboIKGehKupDvd/85lC1RblGM583Caedoz2bFOY1Kek5dcCL4xqlOdgc95B0hHbar7rqKrz88svYYYcdsH79ehx55JHN0vjLLruM4xoVEUHtxFFvLKUib9I2fkrmlXrTB/x7BVMy7XHG22vTNwuRSZDHlypERxUAiWvPcejls0nntKeBaedw2uM6cVIL0VEz7ewB2CVL8jaRN3YlTiv8JeN9fqCeO2Y1caqgnHR5POd4Ux/qqYPuXKmHph0Op5067dC0GccxpEyp8RobqgC5l00qVRIH0y7NweZS0khG6Orxffr0wbvvvov77rsP7733Hurq6nDcccfhqKOOKihMpyg/kmRepUhTk2baqeXScZx2vxoGUiR7Xod6V0ba1ER/cIzLaFLZBOjl8Ukxr5KYdi/2yLQvxVEwf49KHu/ltEsb76SYdjJ2r1evvE3Daf8S3Qt/yXifHziZdqogTZLyeA5WnJLN5So0KeVs5aUYM/daqpo00uTxHBLsJOTxpn0pTHuaahhQ2pSO0E47ANTW1uLoo4+mvhYFMfycdvNAEAZcOS7cLd/Mv0G18VPnxLlj4zomxd+JDahbQlHLwoI21KYmOnm8+zzKd+mX0059KIt7aPRi4qQxr15OXByn3U8FkQamPa7Tnqbxlpy6UDDee+2Ve9LY2CyPb4FsNve+EqBWoZmfjauauPlcwngneainWs+L5zelipFibEw77vOoAXL3GjmVGnFtcjLtlPUGqCvSe83FuGpQanl8OdIh1GkHcOeddwb+/Jhjjol8MQpaSM9x9nPiqoFpD5LPNjbSOu3SJHuUOU1BY+PaDPNdutfg9vostilFHu+V85qGnHazh2ocp90roOIGfqKMNzfTnsk0+4exDsyuHYprlC6P53C4Csb7lVeaX3CQn+xfY9PCX3jlFWC//QLtBq2VcVjNVq3y65A0pj0Nqhc/Jy4ugcHFtFNJsIOc9vr6dChppDDtHCx2kjntcTveUMvjKc/7HCSddIR22idNmlTw//r6eqxbtw6tW7dG+/bt1WkXBOnV45Ns+UYdzTPZXMcpdPDC2PRj4syF0hbFGwGHEyctoBIkj3d/Hua75GZmqOTxaWBevZw49/8NDeFt+h1E4wS8kmLa3eeNjfHk0lRySvP3pMvji8czzj7ml9PeXDUewCp0KfylEDnt1Ew71aHevA5OppTa8TD/zyGPj/tdUu21ScjjzeeSgjSUDhcH087ptFMFaaiJJTOoTn3ep1JOuQ0+gmxWItMems9bsWJFwb+6ujp89NFHGDJkCO69916Oa1RERBKF6KRJW0pt/FQLonnNFNHbYscjCoojo1ROHKeEC6DPg4wjRS51yIvLvFIHVLJZOvksV/qLeW/HsVmKaQfoxpuDxabIcaasYJxEkMa8J81Dlg04HK4Cm0auuimPz6DoQi1y2oP2xjjjTRUEMH+PUx7PEXDnKHYWl8Dw27+j3OdAsvL4uDbTXHhQCtPOldNOVYjOvAZq0oYqQG5eg/ZpD4mBAwfiz3/+cwsWXlFecMnjOYtnmDalBQK8FsS4Nv2Y9rDg6OPMdZCgZDVt5PFx7QF8THtUe8Xt3ihsJlGILo5NG6Y97GdPkmmPs65RMzNAemoYsK0XQ4cCffoAmYy3057JAH375t5XAtTyZuqAqXkd0pnXJOXx1E67+bMwoFZq+AU4qfdvaTUMSrH3aWDaJRSiM6+Bs8K9aTNOEJ9yvKWDxGkHcsXpFi9eTGVOQQCuQnRplMdTyzRN+1GieX6FycyfhYH5uYptcjDtlONNfdCLc4AqdXCUIo9357Cbz27alhKkCZLHR7HJ4bRzKyuoWEjqwkVm4cckCtFFscnOtGezwNSpuf8b7Hqz0+44wJQpLW9gD1DLm6mdOPP3vBRjVNJz9xrNTg9xrs/8P2UQn9Npj1vDwAWVPF6q086piuQO/HCmHlJ9l3HslWLaOUg6DqZdnXYAf//73wv+Pfroo7jppptw9NFHY++99ya9uMbGRpxzzjno378/2rVrhwEDBuCiiy6CY+iPHMfBueeei169eqFdu3YYNmwYPv74Y9LrSCvSUoiO8sDMsUmXksdTbIA1Nfm8+DhMHEBfiI6bSeGKMEexyRH0Ma/DSx4fRU6ZBqY9KXk8x3hzsJrU8niqQlWcQRrOuRgl+NzC5ujRwEMPIdM+36622WnfdFNru9Rydmq5vXkdnPL4OEEaDmlzWrpDpEHVRh2I9DsPUASS/JjXSpfHU+83ph3TPgehFnV/8LKphegMjBo1quD/mUwG3bt3x/7774+rrrqK6roAAJdddhluvPFG3HHHHRg8eDDeeustTJw4EV26dMEpp5wCALj88stx7bXX4o477kD//v1xzjnnYMSIEfjPf/6Dtm3bkl5P2uDnKEjLaU+SaafOFzL/ZhSbxRtBQ0P8yChVH+ckDnkAfUAlToVyLmam2KEpvn8syDxPe5RMHFdOO9V36ce019RE7z+cJNNOLY+nYHLN6zJtUgVpOFQQcfKRfR2FdXXNz5ud9uXLgbFjgYceyjn3AUgr087lKLg2wxQB5ZA2J109HpAx3kmx2NLk8RxMO3WwAuBRTpk2TNtR7nHzGqSSNn5BfKCymfbQTntTgqGLV155BSNHjsTBBx8MAOjXrx/uvfdevPHGGwByLPuUKVNw9tlnY+TIkQByLel69OiBRx55BIcffnhi1yoRxRuBtOrxpZw4yY4hNdMO5K6xoSE+006VN50Gpz1oI4jS2oaLeS2VDhHWaec4SCSd/hKHaS/u1lBbm1MfSBnvJOXxcXMWOZl2DuaVdC1vbAQmTUINRja/5zH8FHXogI7O2tyNNnkyMHJk4CSlZs44c9qpZL5BThxAr3qh3HO4CtGZPwsDLnk893eZhsCCaVMK086V025+7jj3uHkWMPdazvFWebwdyHLaObDXXnvhmWeewf/+9z8AwLvvvouXXnoJBx54IABg3rx5WLp0KYYNG9b8O126dMEee+yBV1991dfuhg0bsHr16oJ/lQi/jSVKvhlAX2yH48BcKpoXJepYimmXkB8W5LRLYQupxztIHhV3I+Bi2qlrGFCNjXkd3OkvUW36bfpAfPY+SaY9yni76RBeNQwkM+3m90otjyfZH+bMARYtKihEBwDTcELuieMACxfm3hcAanl8EPMadQ1KomVXHJk49XoB8AR+3Dav5rXFuc/N30lKxSjhzMIx3hxqDU55PKeyIs6Z12s9M/8fJ2CaZCG6qpXHn3rqqdYGr7766sgXU4wzzzwTq1evxvbbb49sNovGxkZccsklOOqoowAAS5cuBQD06NGj4Pd69OjR/DMvXHrppbjgggvIrlMqSkm4zAOgDYJyFqUs2hwtXpJo+WY+p4qMSiumxSmPomZzKdUfgL/qBYgXSKIaG46+rNQHRw6nvRw57dTyeClMu9dnzmRy/29slJGq0mK8v+3BXtzmbSW6Fv5iiV7t1PL4pFu+SXLaKQ/gHPeQ+f2715rJ5JVyknPaJTntpVr8UfZprxamnVoeX5zewqH+0EJ04WDltL/99ttWxjLFmsWYeOCBBzBjxgzcc889GDx4MN555x1MnjwZvXv3xvjx4yPbPeusswoCEatXr0bfvn0pLlkUihcwc0Oorw/vtCd1qJeUN+NnM07etHkd1IWLKOWUQe3UJKRDBC3acW1yM+1UTjs1s1d8bRLl8cVjA1Q+0069XpgBWHPbppbHA7nrbGykZ9pJVFPf9mAvZtrD9mqnVqFxyuM5lVNx6ktw5jhznDGK7cZx2qnvH07pOadSw/x/JTPtSTjtFPsN5byhVr0EpcvFCdJIh5XT/txzz3FfhydOP/10nHnmmc256TvttBM+++wzXHrppRg/fjx69uwJAFi2bBl6GZvqsmXL8J3vfMfXbps2bdCmTRvWa5eAUkx7VHtULUTSskkHXWfUHHRq1oM6Um/+HmfLGIAm0kotuadmXoudLvNwGycSTq3UMK/RtCldHi9tvJNkNamCAOb/41xjsc2o1+l3/5Cqpr7t1Z5Z5PMLmUyul3uJXu3UTDt1kMb8PW55s1tfIg3y+DiBH/PaTJtUThInq0m1nkuTxyfFtMedi9ROu9fnjsO0cxJqVDb99m5A+7SXDevWrUNN0ezLZrPNxfD69++Pnj174plnnmn++erVq/H6669jzz33TPRaJYLLaadmXjlavlEtDGb+WlIbAVWhqrjscBLMjGlTgjyei3n1OoRTb6pUTLv0QnSU8vhyMO3U0lQqpY9pn5ppj2IzkZz2bBaYOrUlsw7k6ZsSvdodJ70t3zgP4VRBOYp9llsebz5PQ067BDaXs/CgXxs5CQSL+XtU8ztIHi9hbgOlAypUe7dpsxKddiumvRhvvfUWHnjgASxYsAAb3Qo532LmzJkkFwYAhxxyCC655BJsueWWGDx4MN5++21cffXVOPbYYwHk5PiTJ0/GxRdfjIEDBza3fOvdu3eL1nTViOKJ50ohHYcumidtY6GOrNsUu5B0CKeSNpu/Rx3952gBRm2T0lEwf6/Yad+wQUZOe6m+rBxBOcpNWlpOexBTKplpl6SksZFTOk5LaaSNzYJrHD0aNb/eCrgx/5KDbxn2KVNKtnsz9wjqlnxpy2kH6OciRcu3YpsUDk2xXUlBuTS0PislZY+T084R+KEKVgDJyuPr64nWSYZrjGPThmmvRHl8aKb9vvvuw1577YUPP/wQDz/8MOrr6/HBBx/g2WefRZcuXUgv7rrrrsPYsWNx4oknYtCgQTjttNNwwgkn4KKLLmp+zxlnnIGTTz4Zxx9/PL73ve+hrq4OTz75ZNX3aAeSiaxzRFolMe1BjiH1RkAtj+c85EkbG2o2N+iw43iQcqWQJqY9qfGmlMdzMe1NTdHGO4kDLifTLlkeb9qnUtLUfG+3gv87Rx8DzJtX0mEH/FUq1ZLTzh2U45THczjtEoJypQgRqgBIWuTx1ARLnL3b/D3OGgambap1koJQo1ZiKdNeAn/6059wzTXX4KSTTkKnTp0wdepU9O/fHyeccEJBXjkFOnXqhClTpmDKlCm+78lkMrjwwgtx4YUXkv7tSoDfJl1fT8/uSWHa/RabqJF10yHn3gikFaKT7rRzyuP9rtF9T7FjUgpBTjuVg0SVU0lVmIyr8AxHITq/+8d9T9jx5pLHe6mcOHLa0yCPd/9mmLHxs9mChdpqK8BfEV+AUioVaqY9ij2zzSu3PD5ukCYJuTSV006d353U2FB9lxzpcpxnSilOu1dQjuv+cW2GWSc5FIdJKu/iEGrSEZpp/+STT3DwwQcDAFq3bo21a9cik8ngt7/9Lf7617+SX6AiOriYcWp5fBIt3yQ5huZ1UB3KqFtCmexiUsqKOEx78aGbWnIVh90zf8dPvhYWQYWLJB92AHoHO47NUoEF8++GQRKqJOr1x/y/JCfOLwBLaTNO4xvzGqgO4dTKKb99TKLclVLRxt2BwLxvqL9LjkJiUdeMcgR9OJh2KlUkFdNOdf4LKkRn/r2w9tIuj69Epj20077JJptgzZo1AIAtttgC77//PgBg5cqVWLduHe3VKWIhieitpEO9aTOJvGlJ8niuyC3AH6ThcOLiMu1BThwVc8Ylj5d2gKI6MHPK44OYdqlyVwplRbHTTq3+MP/PEUCjzpt2ESYlwi+1hDp9geL+Me2Y9iUFYf3GRoLax7wObodGktPOGfThdrDN/1Mz7Y2NdOlTXPdPFJulzkES5qIN017VTrvrnO+zzz6YNWsWAODQQw/FpEmT8Mtf/hJHHHEEfvSjH/FcpSISpLM95Wj5VqmF6Khbvvkd8iQFaWzk0lSS3LhOXBJOu7S5SB2k4ZDHl4Npp7JHwbQnGTClCqDFmYu+TLtT6CE4jfYegzt/3TaOLiiCsNT3T7FNifM7CbUPR2VtSUE5LpVTsU2OoA8H0059D8UN4idJqAF0AXLqezyOzSCmXeXxAHbeeWfsscce2GmnnXDooYcCAP74xz/i1FNPxbJlyzBmzBjceuutbBeqCI+g6BvVoYw6TzOOTT8Jl2mTkmmnPoRTM2cchzzqz2za5GDaJRS/Mq9DOtPOfdgBoq9BaWfauXIWOYKbkg5lXkyc+xqJ7HPmTGR+O6nwjTfcAFh2wvFSOQF8QRopTDvXep6WQnTVyrRz5vGb/6c8U3Ix7YCM7i9e9jKZ+GQV5T1eai5GvSe9gvgqjwfwwgsvYPDgwbj00ksxaNAgjB8/Hi+//DLOPPNM/P3vf8dVV12FTTbZhPNaFSGRZDRP0iEP4ClER8XeA8l8lxyHvDg2k5JTmq9RMe3m/SSBaQ+Sz1I62JIOzEky7eb3IMnporZH6cxwVQfmCNI0f+6ZM4GxY9F2+eLCN65ZA4wda+W4+6kWKMYnqSAsh/MaVVnhF+RzHLqDvaTP7WdTktNuE8QPKxOndrD96vAA9MqKuE67130pKQjLsT8kFeQz/0ZVO+1Dhw7FbbfdhiVLluC6667D/Pnzse+++2LbbbfFZZddhqVLl3JepyIkHCe/iHktsnEWGm5JbtxDXpBNCcXOTLtUzBmXE2faobJJ1UaEQx7vK5/N0MhdpTLtSUpTJRWi87OZyeTvAQnzOwl7pk0JgYCgQ1ncIGw2++0fmDQJcBy0wYaC9zWf/ydPLvkFlyrqJynoU2yTI0eVWu4ax0FKihXnsCmJxS51/0SxWSpAHlbaHETaUBMsHEw7x9ob9YzBcY9zBfEpSZs0IHQhug4dOmDixIl44YUX8L///Q+HHnoorr/+emy55Zb46U9/ynGNigjgjKxTFyajYihspOyUC0Oc6C1XoSHqA1mxzbQ4cdQHR4A+fUFSTjunNJVKoWLjtFNK7CSlv1A7cUkykJLmYsF9PmcOsGgRAKA7vmz5ZscBFi7Mvc/CJgfTTn3/FNvkUMpxsXtRbJa6zylZbEn7A3Vud6n7B6Dbv+PuD142qZn2bDZP4kia31SfO01BfErlXRoQ2mk3sc022+APf/gDzj77bHTq1An/93//R3VdiphIKgeJw1GI62Cb11VsM+pGQL0wSD/U+wVAJLF7HPJ4m/GOItvzkrumgWmXxLwm2afdfC2sTb/aGlzyeAlz0cYmx1yMdQ8tWdL8+vfxRsH7HBiyKuN9JW16XKMkZQXAn5NMPRcpmHbJMl8/m5zF8qhUjHECKn5j07p17jFO0WCOIA134IfznpQ8bziUlnFb8klGbem3eOPFF1/Ebbfdhr/97W+oqanBuHHjcNxxx1FemyIGOJj2pOTxcQtVednkYNolyeO5DvWZTGFaACe7x8GSShhv83N5Oe2SnDiqWhAA3/ymHBvOFAvThvlcQpCPs9BQkkx7LLVGr17Nrxe3aS9w2o33lbRpgCtII8XRpL6HbFr8URXUSlP1eA41QJw1zSvoE8VmqbGJw7QntY/V18t22qtVHh9nvKUjlNO+ePFi3H777bj99tsxd+5c7LXXXrj22msxbtw4dOjQgesaFRHg58ByVY+XEB3kKESXJNMuUU6ZBnlU0KJNqayIOj7m+73mIlUhOqnsUbUx7aUCppKCchxMiuTxLrA5dCjQpw/w+efeVbQymdzPhw4NtJkU88qpcpJwD/nZc6tgNzREPxOkmWnnKEQXdWyKg/gUTHvxNVIw7UkoiLjS29IQQEuLEquqmfYDDzwQs2fPxmabbYZjjjkGxx57LLbbbjvOa1PEQKmDo+Q8WgpGM0mmnTrSKulQX21Ou814x2EppM5F6vxz8zqSGG+pTHsSQTkJc9HGJuWhjEStkc0CU6fmqsRnMkb1OaCZe58yxfuG87NpgHqt5GDaJbH3pdbzKE57OeTxVOMtSR7vZ6+m5tup49AFadzPvXFjNHteNjn2MUnpbaW+S6p5Q3HGUKY9Hqyd9latWuGhhx7CT37yE2RLbGKK8oNTHs9diI5CHp9EBWOKwjOczHga2IQ4NjlymjjG248BSNOmLyH6z+G0l4Npl6DMqRR5fOw1Y/Ro4KGHclXkF+Xf53TqDNz+UO7nYW3GvEYg3UGaqGeCJNOdJAUj/WxyXGPcsfGbi/X1spl2jgAI1/4t6SxNfVbjsKlMuw/+/ve/c16HghhJHRw5c+IkFCKxcQzjfJemvIyC9fCSSzc25iLhxS3rgsBRPZT6cJs0007hxJmfXWL1+CTl8ZRzUZIEOyl5vCRpM4dNzgBawX0+ejQwcmTBacj55fHAaLs6vUkxr5JYcSBd67nfNbpFI73usbDXmSZ5PLUUOYrTXiqnPSzTnmTLN4A+ECAx1ZTDaU+yJWglOu2xqscr5KJUDpKkjYU6/5yDmaG0CSQTaTWr7lItiJIcQ45Dno2jQCWXlsS0c7RGSkMhOhumXao8XpoTR+28chaiazG/vXS/IW1yS88ljY2NTQ65K1VBLYq9MSmnXYIKgnPtpaoeb36mYoKC47vkSo+UoAbgCsACspVYaYA67RWKpCLr7qLQ1FQYTaO4RgmsOJc8nvoQ7iW3dzc/IHp+GCXTngZ5PHf1eCqn3asQnWvbbDkW9ho52IQkCpPF3fi5mHap7TaTLDQUV6GSVHeIqEjKIZaqrKAOwnKs55S93732WvP/lSiP50wjomba3Tx7E5We056U6oVTHk+p/lCmXZE6JCXpidNDNQ05r+Vg2iWMTTmYOA6mnfLgGPdwUqx64dr0zZ/bohzVYiXMb06mvfjwyOXESQioAMm2dOSY3ya8isn7we86JSkrqOsNBNmUpJzicNrTII9P89lKUj0a0y63086hnKImLyjUZ1qILh7Uaa9QULPYjpM/yHA7hpJYcRubEiKtSTntFOxeEot2XPlsEo4h16YP0N3nHPJ4iQfHJNrIcTlxElQvHDY5C9FVK9POMd5JrufUDjYQfY8wbZj/jzI+XsopDpVT1DWDs8uGnzw+DtNejDQVouO4RurzAKU8XgvRhYM67RUKTnmLlzweoM+b4ZA2S5BLm79DFVn3Gm+3vy1QmfL4JOWUAH1uLlchG/PncewBvPJ4CYXobAIBVN+lpBoYSfavliSP52Dakw7SUKa/SAoEJLmem/+XyrSnRR7PFcxubAx3nyfZnheg6azilT7FMRfLrbTUQnR0UKe9QsG1oRbbjBOxTlOhqiSqx3NUi6WWR0k85FHKKZO8hyQx7Um2AJPItFPmanqxZub/qeYOh5wy6vfop8QybVIFu0yblEHYqEiaaY9ik8PR5JLQJiGPz2TktMPysymxenwSa69ZiyfMZ+c+q1E5xH42JUn4ufZuL5tR9zEtRKeoKCQlbzHZXOponoRCdEnmtFNs0sWOQlSpWSl5nYS8So5qw5wt3yjldV6OIcWhnqNVDlV3CE6mPQn2XlINjCRb+qSRacfChdaTKOmc9ig2OdUASeaoSgrCJuW0c6heJDjtpfYHINx4l4tpl+C0cxWio1rTzP3Br0igMu12UKe9QkHNYgcdyqS1lUiKaZfotFNtLJzyeMnyKJvxpma5qMY7juQzKQk/IGt+cxSzSUou7X7mOJ070pCzSDk2vjZnziz4r/Pgg0C/fi1e90LSQZooNpO6xjg2y5XuJPW7lCSPT7LeQFSmnWOsgXQ47Umd/yjqF/g57VHvSWplhXSo016h4Mpx8bLJ1UNVAhOXNqbdbwOU5LRLlscneTjhqGEQl0nhqCYu2WkPchTiqlS45dJRD7d+9oD4Kqcgm5SHMtLxnjkTGDu24H0OMsDnn+deL+G4V6s8Pg1BuSRtUgflJMrjkzhbmf8Ps/YmLY9Pk9Ne7sAUR9E4LmWFdKjTXqHgmnReNrnyZjikcBzMK9WiTSGX9hsbDscjTLEmW5thwCmn5Gj5xr3pm/+n3qQp5fGcheg47iHquUN9qAdk5SxKlse3+NyNjcCkSd6LmZuoP3ly4I2VlBPHIY+X1FbMhjnjWDPKzUL62ax0lZPf/M5kopENaSpEFzS/JeTdl5Lbh1V3Bd0/cYkllccrKgJcizZAL4+njg6mgWn3crKjOglA8vJ4ILwkl8tR4DjkJSHB5nDaqZ1Xigq5aTw4AvRMOxcTB8hJTQKSCcqRBWHnzAEWLQr+pYULc+8LeZ3UTpwpLZXEtCeR3qby+Pj2zP9T3T/maxzjHWbtTUvLN7P7AxXTztXz3u8eB8Jdp43TvmGDvT1AC9EpKgxpctqTaPnGIbmn3gg45fFRe54GOe3llmDbbPocgR+qAw91ITrzb1B9bo5DfVqCctSpJZxy6XK39LFx2kWO9+efe77PQVHipc/7AP/r5GDOpKh9groFRL3GpAvRSZEO+9l0r89x6PacqE57ksFsINp4J6mKjGPTT7VKsT9wn62iOu1B5+i4Z1Rl2hUVAS55fCbTspCEtLYSSTFxFJu0uQhGdRJMe9SRVr+DqPmesDap70kOZiaJe0gS084pj09ivNPAtFMf6uN07uCsHp+kExd7vL/80vN9LZx2n/eZNrmDNHFsUqvaOGoYcCqn0si0m0oaKrKB8xxEOd5R1t4k6w8B8c9WxTYlXaPf/RNV3RV0Nm/TJvdI1eEIUKZdkUJwSc+TiIJrIbro9oqZVy62ECj/YYfjkMcRrU8qJ878v4Tq8VwHx6TZHqnyeIC+pWPc/cHLJsehnmy8u3e3+8WA9yU53tRMO0Vh2jTM7zQ67RxKGo7zn5R0iLTI48vhtFMrcwC6seGQxyvTrkgduDZp1vxCIntJXKNpU5LT7rfIUjse5ntskaSygoNppw6ASGTaOeTx1GxuUn27pVePB/hyFqN+j15KLM7Cg7HHe4st7H4x4H1J5bSbNqkP4RLSIcrVp5263kucGjemox6HaS/H+Y8jNYmqenwcxVgp1plq7nDutZT3uLu+UzHt1IFnQFu+KVKIJA/M1A5SWnJeJVWPT+pQLymnPenq8VEjwkk67dRMO8VhJ+0Hx3I7xEE2qeWPkuYix9rbwubQoUCfPi3eVyCP79s39z4flEol4jiElzv9hcNpV3m8Mu0u4jDtlOk0QHJMe5z1groQHfV5P8ieK4/nKESnTLsiNUgqUg/wsT0chegkMO1+1UMlFaLzs2d+D+XOaeeIrAfdQ3Fzryiddr9CdNRMu3uNjY3hWvyZ93iSeZUSmHbqIoFAepj2oEOZBCalhc1sFpg6taU8wEUmA0yZ4r0gFNlMIkhDLY/nzGmXcMbgkEwnpaSpqclft5SzleS112asKTvzUAe8KrmTAwfTroXoFBWFcjjt1AW6KK8xKmvGWQyp2C5nn3aqz53J8OVVlntjMW0mkXvF2dKHo1psmMNo0KE+rqOQFNMuvU87kI4ioJJa+njaHD0aOO20gvc5+HahO+203M8DkGQ6hESmnUphUC55fLn3sSCbUircJ61yoq4eL6nIr7k3mteahvQpINqaYcO0ayE6O6jTXqFIgzy+1DWGbXXC0VaCk90zbQA80eC4El+vz+3+jTBjY7K0knMgqfPsgNLBKQk57aWcOCDaJg3ILlSV9px26nuS02nnYNpJbM6cCVx5ZcH7HGRyN/GVV+Z+HoBS7THTwLRLl8dLrIMhOSiXpBNHfU8C0c4tNnt3UxNdwIti7ng57RKCPlwBlaCxaWgoPDckfY1pgTrtFYpSxTM4+p1Ssz1AuMWGU4LD4SgU201DITrztTCbXxAzIykH0kbmW4k57aUCC2Ftchzqk+4OQZ3TXsnyeA4mhSOA1sJmYyMwaZJ37of72uTJgYtdqQAIB9NebkfTJihH5RwBsuoiUKsWOGymgWmnDsrZkDZhbQLyVRA2NinPQVxOO0BXeFAL0SlShzRJkf0WQyDcdaaRaad22ovzaKXICoOcOI5IPUeEmZp5lcS028jjo8zFIJvlvidNmxxsrmQmLk3yeI4AWrPNOXOARYv8f8FxgIULc+8rYTONQRpJtV441XxJMO2cxc7KfY3lSk2ilscDdMFDKQFTQD5JZ7OWA3RBGi1Ep0gd0iSP94vUh7Vpc3AMK4/ijNQX201DITrztahMu2R5vA3TLsFppy525je/zWuOMhe9bHI42O51SkqHSEIez7X2SpfHkzHtS5Z4vq+genzA+4B0pUNwO4UAT1AuDYXoogangmxyBeU4gh+Uyoo4heiC7p+wNgH69LZyMO3lPlvZzG0g3NxRebyiopAGpr0c8niAvvdn2O/SfH9S8niOHLYowQ8vm5Lk8TZOnGR5PPUBKpOJNj5JF6LjdAxVHl8aHF0XbGzGZtp79fJ8Xwun3ed9QLI57VI6tXCoXtJeiC7qGhRkk9rJlhikSaKtWCbDp5yq5P2BKtgVNDY1Nfnvstxn8zRAnfYKRRqcdj+bUVudcOQ0cUbqi+1yVDjlqJrPldMuIQeSg2kvJa+TUKiKWv7IybR7XWPbtrlHygrlXEw75XhT1+rgLOgX28H2sBn7c7t92oNavkXs054mpt1s0WiDtLRX5ZDQ+n2XUfeHIJtcedMSgh/Ua2/QWEe1adqVGjANsskRpKFm2oFoc0eZdkVFIc3yeCCeo0Apj+IuZGOeFSUWoqMeG4DuGpNs1wXQOx+cTHu5e95zpkOw5jgb4GJmojhxXAdHP0czrBPHIY9PhGnPZoEjjvAuROciYp92icxZkKqNKn9YSh4twNO7m4Np90t34qphIF0FweEYcnV/oQ6oUAb5op5RqcfbNqASRR7vZdMN4q9fH7y0pxHqtFcokpRLc0iRqSU4UeVRNsyrZLm0FHl8kBPHIW1OA/PKUXiQU0kTZS5mMi1JTA62J+pcTHK80+bERRlvSnl8IqoXj3ZvgCGPJ+jTHmW83d/hXivjdodI+jwQte0kR+DHb2woc9qlVLinDtI4Tt6ZolLScDHt0lOTAL5CdElUjweijU3QNXbqlHtsaIgWRJMMddorFGmWxwPxclwoF4agg0RUx5DDieM65FHntHs5cRzX2K5d7nH9+mg2pQdp/MabszVSlEN9Uqy4a5NyvKlz2iVWjw8qAko13nGrx7OpXhob/du9ubjvvpILXamcdkrmjLN+DFVPbCmOQlBbOoB+PU+DPF6KXLpUQIWTzQ0zPubSkJTT3tQUTuVkY7Pc4x00twF6eXyHDvnna9fa20wD1GmvUKRJHh90KKNcGKijeaYEJwyopeymzSRbvkVh2oMOT/X1dHmV7th88004eVQ5cpwl1DCglsdzSJs5Amgc4+0ndZVYPZ6KaeeUx1M6XAU2A9q9NTPtJdq9AaVTDeIEaYrvIa41CKCXx5fbUUjaaecoRJeGwoNxnDg/m3HOahxsLuA/vznW3rB7RFJBvqg2g+wB0YKwQWtQNpv/W1GUL5KhTnuFQnrkzbRJLY9KmmkP67RTs6QAnxMXxLRzVPanOji6Y9PUJIchTjIdglK1EOUQzhGk4ZDHJ5nTziGP5ypEB9DNbw55PInzGtDGrQAl3pdkjipn0Veq8ebIo6WuowJUpzxeSkAlyBmOapODaQ+6h6jnovl/KcoKyfL4Uuf9qOo76VCnvULB5bQn3V5LSqSVQ5IbtAmELZ6RpBMXJ6c96PAERIu0BsnjgRzbbgsO5tWmejz1eFMWbKIuCmmON1XOonkAl66skCCP91vXzP9T5bRzyONJmPaANm4FLd8C3gekI0jD5XSpPL6lPcnyeGmFyfxsRiEbOJx2m9al5U5NMm1KVVaUGps48vhSNpVpV6QC0hdtgF5SyVmhkpJpLyVlN98T1mYSTlycnPZSTDtVpNV0DMOMj02QhrqQDRD9UJZkOgS1PB6gC9JEDQSUI6ddMvOaydDXMOAoNEkSQHPbvXmg2Wkv0e6thU0DaRhv0yZVkEZKsdtyFaKTLI+XxrwCweMthbQBkqseX/x3w9ikKkRHPb9tx4ZKHg+o065IGaTLo0ybVIeyUgtD+/a5x3XrwttMMqcdoNukOZgZ6kN9TU3eJtWinclEU0KwF78yEGe8kyxERy2PN4M0VOPtzsWwNpNsGyiJaaduZWkTUKGsWUGSDpHN5tq9eaDZaT/8cP8NxcumATO4SaWk4VzPy93yjbpuTikJdiXL40uxueUO6qo8Phl5vBRlLacKopQ8Xp12RSpQatGWUIiOWppaamFwK0qGqSbJybQn4bRLa/lWaoGlDNK4Evkw8vi0Me3UNQyo5PFB8yaToVe9cAQCqqHlWxLjHbVmBWchumwWuS/h3ns939fstFtUj7dhzqiqQUth2qntlbIZV9pMuZ77BUxde42N4fZGx7FLoQoDLieOWqnhZ1NKyzcOeTx1fYkgm1JUL7bnP2XaS0Od9gpFkos2R/SWg2mP4rTbsHtRi535OVwAPdNe7sr+HNVDS9mMElThZNrTGqShZuKAeJu01zXW1OQ/O/V4UzPtlHLpNChpOFMXYknuiavHJ8GcSZnfHPL4IJtxVHJ+NrmYdoBOxs8ljw9bN4dLLg3ILnYWdJ2cqoVyF6LjGm+OgIo67YqKQDkirdLl8VxMOxDOUfCL1Gez+R7mUeXSfjnOlId66oJ+pk3KjYCaaedgXqOOd6lNmqpYnmmTiokDeCLr7nhT1TDgymmn7MPLKY+nZl4BuqAcCdMeUBW+oBBdierxpVhSQHa6E3X6S1xnxstmnL0byK+zJuIGYf3a8YW1GRRcoD6vRVV/cOW0ZzLBY0PpxMXJk/eyyxlAk1KIjloeTxlQUXm8oqJA7bRXuzy+FIMUxVFIIo82bUUCKYM01Ew7R3/xuONDXYguCbk0EO27LGUzSpAmyZx28/9h2fYk5fHULFc2m3+dg2kPwxgW2CSuHl98nVELLpo2pTLtnEH8IKadau8GeJn2MPe5ua5yFxaNGkiiHm9O5V1SbC5HGkjUFCq/NUiaPJ5DeadMu6IiQF3YJOlNmpNpr6sLb9OvgFoUSa6fwwXQf5dxqyxTMc7liLRGcdqTZNqB6OPtp9aIyg5zFSZLSh4P5J12qkKTXPJ4QLZc2p03lAfmOC19gpw4wD5I4zh5Bz+bRb56vAfV5+BbCtCienxQkMb9PqjuISlrEEdOe9B4u3t3lLlNzcQF5SS7c1xqsbOoa1DSOc4dO+Yeo6Qycsjjkzr3RgmQt1jXYtoD+Fr8KdMeH+q0Vyioc1zKVXiG8uBILY8H4jmGSeQDSguocDDtlPJ4G6a9sTEcU8opJU2SeeVg2qOoIPzG23XkqMab2kGSxLzaKIio1jSAvqWP6bTbructCpNls8DUqbkXvDS6ADBliv+HKrrOJPKmpTgKtuk0kVUQRTD3blubSTPtAH2Fcq4c57A2k2ZeXad9zRp7m0lXKOeci1HOF14206DEAnj7tIctFC0d6rRXKKTL482KqZJz2kttLlKcdr/r5CxERyltliKPt2FeAbnReimH+nIy7dQ1DBobw+V/lqovAZS/N7QN087htFMdmLPZ/HhHcdqbbY4eDTz0ELDFFgXvddp3zL0+enRJu0k67dKY9qDzAEDnGLpBGsexvy/L4bTHWde8bHIy7VSdHDiY106dco9hVJGcKXhJBNxNm1HmjZdNKS2ebcdG5fGloU57hYLaaaeexGa0PGl5PAfTTuV8cDlx0gvRRblO27GhZtoB+U47ZSE66pxXgLcQXRgJrQ2TAtB89kyGr00kZToER70BDiYlbLqTebgtsDl6NDB/fsF7ndGjrRz2UtdJ7WRLy1EttU5S1RNxxxqw37+TlscD9BXKqcc7k4mWN51kTQQgGtPOqeaTLI8P6j4QNbDAVT1e5fHxoU57haKU0x62gjHXpu9nU4o8noNp98tHBujlrlLk8ZxMe1LVxKMypZwbfxKF6Dgi61IK0SWtrIjrKFDP76BWllTzBuBhUsKu54G9oYtecEIcjajHO+g6OZh26vW8Xbu8zeXLw1+j13hns/nvMux4U8tnOQPaxVkaHMpIaic7SkCu1NyOw7T77Q+uWoPKJgeLHWdsAP/9obGRLlUlTotIyrmoTLuiokBdiIRaHhW00AD0DDbAw7RT539KKUSXppx2Dqbd6zozGXpFQNSNn7oQHXU6BCfTXupQRp3TDshx2pNgXjnGhiPQF7ZYVak9x0SUAy61Q+NlU0oQNmg9z2SiFRKzdbps57dtkI/SaaeeO5zKCiqmnbp2DMCT077pprlHqkBS1J73NnORigBLS+HBKIUmlWlXVBSonXauHBc/m+4GHWUSS2fa/VhSQE6OcyVUj3c3/ijdApJyNqWNd9JyaUolDXX1+Gw2/31GYe+p8sXN+h9JjDd1q0SAh40LK48vtedEBVfAy8smRxA2ztgkmf4Sdv+2VWKFmdum3STS+qS0+CulrABoK/u7TPs339ifU0uNN3VFelN5Z87ZUuCq5QT47w8A3XhzFB6M0tmp1HkgaiqadKjTXqEodagH6ApLccjj40hdy5HTTsW0x23ZlWQhOg6mnXIjcDf+KNF6Dhl/EgEvDrk0h8PFoaThYHziBPrSIJcOGm9Kh4ujeGVUJw6gZdptKvFLLUwGpE9JY+sc2nabCONsAsk67Zw1iKjOf1EUTrZ7NxA+HYLq/illk6PnPafTXs7zPuc+63cPde6ce1y92t5mGqBOe4WCSx6fVE67FKedk2kP+i6pCxeVWx5fjurxUZx2jjypJANeHIXoOA7gHI4hx+ExCgNAzbQn7cRJqx5PxZyFYdqp6r1wHcKlrOel1knKPSKq014qyLdhA914S1diAfRBGo5gaevW+bOq7f7NEaSxye0Gyuu0m/euX00EgO4aOeXxlIRa1665x5Ur7W2mAeq0Vyj8FjDzBpcij/daEONsBOXo0y51k05DDmRUm6XGJkqkNQ1Mu3moL06xiKusoGILy1mIjjIvjlpSKYV5LVeQppzyePN79GvL7oI6p51aHi9lPS9HUI5aHg/QK+XCfJd+LSIBnv2b2sl2x2X9evvgR6n7J5ORoaywlcdTnaWpAyrZbH6to2LGo6xBnGdzP5vqtCtSBb+JHLflR1LyeOoFFpDDtCdZPV5KIbpyVI/nZNrL6bSb8zaJII00pr1UkGbVqvA2q5Vpp6oebzu/yymPL2XPhFSnnYNpl5bTXmq8qZw402mnOmekQR5P3WUjSvCj1Lpr2rW9Tur0CiB4zTBfkyCP9/vccXq/U3cX4QiO+91DXbrkHlUer0gFqCXYXPL4TMab9ZDGtHO0qkiSaXccGcVSOFpCUcrjk3Y+4rZ4kSqPL0chuu7dc49ffhneZrUx7TaBBY6cdso1I2yhyUB7xYujY6+X5iwslWSNEinzm8rpsnFm3IN9mDUj7fJ4aqY9SvDDJoAWtVtAUvJ4s5uMZKed+ho5z+aULf6iFpqUDnXaKxQ2C4OEHBfKyq5hIvW2Mq6kC9FxtXwLazNppp2D3eNg2qXJ46nls0kVJuNg4jii9VEOE0FyVynMq03xNEomhcOJI2PaZ84E+vUrfO/j/8i9boFyOHGUhQc5AioS5PGlHAUA6NYt9xhGQpuk08XptFN22XA/NxUrDoQ/AyYtjwdkOO2l1skohQdtgjTS601Fuc/TAHXaKxTUGz+1PJ66J6tps9QBPIxdDnm8a5Myh83vs5t5V1QHCY7CRRyLNgfTLiFIkzTzKoVpp2ZegeSZdmp5PAfzyimPt10zzDZ3rC3AZs4Exo4FFi0qfPM33+Ret3Dck3Ti4nYXSbM8Pux6buO0hw0EAOmQx1M7XdSsZiXI44F4Sjnquej3Xca5Rqp6U7bBccp6U8q0K1IF6o2fSx5fasJRRkXdRRugy4OU4MQF2YzbpzMpZoY6dxiIVojOlu2hYinitN/xskndMhCQw7RzOthJ3ZdxmXa/oJyUQnRUChUzp7zUeIft095sr7ERmDTJM4Hdwbc5W5Mnl8wrShPTTiWPL7X2cjCGrpTdtmaFDZsbNk++lF1p8viknC7qyv5A+DOgLdO+dq19zYpSnzvO/i1ZHp900Mfcu23HxrZmhTrtilRAuoSrHPL4mpq8XaoKtBKc9qBWRtls/tqpxpujnQ9HpJWDaadmZqg3VM5CVdIL0VU6057UoZ6j0JBrM6zUFWDMaZ8zpyXD/i0cZHKnx4ULc++zuNYk5o6U6vHU3SFsxjtsENaGaY+j8JJ6tiplUxLTnqQ83r1/Ghrs78s0yONtajcAdIXoqNMrgPxa7jh0ag112hWpAtfCENSvsr4+fJQsSXk8QF9xOErRJpvq8VH7dCaRvsDJtHPI47/5xn7Dsr1O6rYxVAEvKcxrWuTxaWLakzrUS1BBBKkLXLiH8LBy6eZrXLKk4Ofb4b/Nz5uZdo/3FYMrXzxppr2c8vigwLOLsEy7DZsr3WnnqB4f5WxFnT9sI48Pe522QV2ALvCTBqc9DUy7qYKNrJzysak57YpUIMliF6YEu4SS0Or6AB6mHYje2zep6vFxigRy2KQ6iHIw7bY5kAD9RkClCJCw6Zs2k5bHU+ZNR2n5lqbq8ZROXNDnjsO0UwXlbJw4d37bHsBbXGOvXgU/Pwz3598L448Wvc/PblqZ9rAqiFL2oti0CdJElccnybRLaAlayian0xWWFU+Saa+pya/nYdcMyUw7RyG6oLkTJ+gTpIKlPpu79jZuDD9/JEOd9gpFOSRcgP3k4Mhpt2Ha3YMelRNHLSWN2yKImr2XzLTbsLnuZ498sC+CBKadOggAJM+8uvOb0jHs2jX3uHGjnV3HySuD0tCnncOJow7SlArKhT2QAYxM+9ChQJ8+nj1HV6Nz7vW+fXPvs7jWJJ04SqY9SmCq1Px22y9+8UW46wuyGTYoF0Z5R92nnWruRJmLpWxyECIc8nh3Pf/6azubNuMde80oggSnvdS+SF0szx3rhgb7QIDN2LjrENXYmKTNggV2NtMAddorFNQHvaBJF8Vpty0a0thIFwgAwufFcea0U7WE4pDHJ820cxQRA+g3aWpmRsLYAHZBGo72TZSVfDt2zPtfNgd7GzaXi4mTLI/nqB7PwbS7h/rly+1strgns1lg6tTc80wGGeRzu1Zgk9yTKVOCNxTwzZ2kxjtOYKoUKx523QVKH8KpAu4AfVAujtNFdR4wbVI77UnK43v0yD1+9VU4m0HjHVudU4Q4Qfck0mkAPnk8QBukiVpYtFTxUwD48ks7m2mAOu0VCupofbmYdoB2YXAPE2FzmpJi2qPkyNvK48vZ8o0zp91mk7Y9PNo6m1TBBepIPUdhMg7mlaNnbk1NPkhj03fZhs1NSyG6hgb7eiJA8tXjw36PNoXJNt8897hypd397vmZR48GHnoI2GKLgveuzG6ae3306JJ2k5w77trb1GSfilbKJkfhwajMK8BYeNADm3wbm1mxws6maZdKWRFU4yZOAM3PZlrk8VGDNJRBfNs0EGrlFOVeS93yzf3MAF3qAhB+vG3m96BBucdKKkanTnuFIsmWXdlsfsGgqsrZpk2eNaNcGMJK7DiZ9qBNn6qPMyCjEF05qscD0Xv7lrpOKmeTWrpmjnU5nTiOIjE2m3SYvNcwTLv0QnQAXc4ihxMXtac6ULrQJGB3H/l+5tGjgfnzkZkwvvmlFR36WDnspl2pqWilbHL0aQ87v23k8dRMHABsumnu0VaCDciXx5f6Ljmqf0dl2m2Y17B7t41jSE3aUKUacDDtUVLRgj53TU3+vpTAtFPWRUgD1GmvUCRZ7CKTiV7p02+BzWR4NgIupp2qenzcyHpQkKacEmxbpp1SognQp0NIb/lmSsKonDgO5pUrSBPGaS8H005duNJ04qhbOlIGacLObxumvVWr/N+zGZ/AQ302i0z//s3/Xb26ZZ67H5IM0pjzW8J4U/ftBuiddhtHQWr1+DgBND+bEph2m707KvOaZHokdX0ADkKEI0AeVUljk9NOGZRTp12RGiQdzYu6SVNGyTiY9lI2uZj2qJH1IAl2OQvRhWHabRniMJt0OZl2m8JxVA42JxOnTLsd3LH0ylGNk/5SyomjyquUUD3etZfJeNaJa/5ZmPvIZr2IgiT7tEuZ37bsXhSm3W+83UP9hg12n53DUTDtJqFa4Khxw5nTTimP52DaqeXxcQqqJpV6KKHwIMd428xvddoVqYHNwkDFvALR5XCUTjsH017qc1MzZxzSVAnFzmwP9Y5j/9nDyOMriWnnYOKSznHmKEQHpIdppwqAcDpxlGtQ1Jz2Ug52mPvI5lBvImzwMInCUtls3qmV7LSHXSfDyGdt7ZazEB3Vd8lR44aDaeeUx1Myr9TyeAlMO0f9GOrPzaGsUHm8oqIgXYJjs2hzFDcJK4+i3qyA/GenYuJsq2hSR/85qksD4Q96aa4eT12pO64Tl3QLsPXrC5mhODYBGUx7kkG5TCb/OlWKRZw1iDqnvZSDHcZuqWssZnht18skHeJMhr6QbBRHs9R3udlmuUfbqs02e3fr1vk902Y+hmHapcrjTeY+7DrpZ5ODaeeUx1Ox4kB0pj0pFpujvgTneFMqazkKTarTXgb069cPmUymxb+TTjoJALB+/XqcdNJJ2HTTTdGxY0eMGTMGy5YtK/NVlx82GwtHtdiwk9hmwlG2EQlzqLexKT3nFaDPm3YPyg0N4Q+2ft9jNpv/7JTsDDXTTl2IjrqKeiaTP9hSHxwbGuwPjrZBPoBnflNXj//mm8L329hNitWkbsnHLY+3YbBtmfYwTrttIMAFxToUxYkLqnli2pTAtPt9l25Vdqp9FsitbWEO9mF6Q9vuD0B55PFhbJZy2sM62AA988rhxIWRx4c9D/hdZxoK0XEw7W67TZt9FuBVVgTZPOUU4P77gYMOsrOZBoh32t98800sWbKk+d+sWbMAAIceeigA4Le//S0ee+wxPPjgg3jhhRewePFijLas+lrJCJokcfJwkpTHh3WIOQqR2PYXt43cAnxyOI5Dntd4R2HFbTbUqL2ck2TaqVu+cRaJodqk4xwcS9WCAGij9VGY9qC8afNep1jbONJfqNcMd7wbG+1rLdgy7U1Ndp/dVsoexYmzZdoppPxxHGIvJRZAz7RzsHumksYm2GUbpKEcbyB8EN9xyiOPB+zXjFLBSI4cZ47zH0fLNy55fDlz2kt97rDj7Tj5wKqfzbDzJkwAjbKGwd57A+PGAdtsY2czDRDvtHfv3h09e/Zs/vf4449jwIAB2HfffbFq1SrceuutuPrqq7H//vtjt912w/Tp0/HKK6/gtddeK/ellxVJSnIBXqddQqS1VNuh+nr7hTaISYkjPQ+qsgzQpUO0apW3SRkVjSqhpQrS2FSsls60A+Gj4KbNIHk8YH8YLTXeNTXR1wyqvDhbeZ3rzFHclxxMO/V6bjoKVC08wwb6wsrjKcY74xTKSNatsZNWJJ1aQs20m4d6qiKg5njbOAu24x3mYB9GmbN2rV2AqlRKDWeLv7BzsabGOxgZJ6e9HNXEN260+z4rSR5PGdTlaL8Y9hzEcd4Pq5yqFKTq427cuBF33303jj32WGQyGfzzn/9EfX09hg0b1vye7bffHltuuSVeffVVXzsbNmzA6tWrC/5VGpJmezhymqJOYkr23pZpB2hyrziYdupCdABPjiqHsiJMXpxNjnMUpj3oHuIoCuR+j1RMe+vW+cNfWLYnaLzDfpfULZxs7GUy4fPapTvtpZiUKEEam/QX9zqpxgYgZF5nzgSuvLLgpbU//Enu9RJIeq+lZtrdedjUZG/TxokLE+yyWcuBcIVkbYL4rj1bm6ZD46WEoGbaM5nw9xBnjjN1eqTNWg7QpUNETZdL6rukltsD8dovUitrky5EV4lIldP+yCOPYOXKlZgwYQIAYOnSpWjdujW6utTSt+jRoweWLl3qa+fSSy9Fly5dmv/17duX8arLA9vIelh7SRamiNrb12YjoIq01tbmF1rKQz3lIY8jT4qjGnTU8aZSVtjkOLvXWF9vHwSxOTBTye2BePeQl02ztRZlQIVDncOR40ypAOGUx0eRz3rZrK3Nv07ZyYFjbMI47b42Z84Exo5FZvXKgpfXfrEWGDu2pONOvdcmXVjUrC9BNb/Drhm2B/Aoyqkgm61b5+dP2I4TVKmHQS0igfCBPmoH27RJXYguaGzMs1WYoHuS6XLUTraE9mwcTHu5CtFVIlL1cW+99VYceOCB6N27dyw7Z511FlatWtX8b+HChURXKAfVKI/nYO85AwFJVY+nLkQH8DDtHPJ4LqYdoM1x5mBeOaq9UwZUwmz8jhPOJlXOK0Cr+JHAtNvc51EdhXKNTWTHsLERmDQJcBxkUKgNX4tvJ/vkyYGJ2UkzZ9SBHzPdiaP7C2WQJkoQtpTNqG0ig5wuynQnLqa9oYGuZoVrkyrt0EWUoBxVupxpMyl5PIfyLg7TTqU45Dybq9MuFJ999hlmz56NX/ziF82v9ezZExs3bsTKouTNZcuWoWfPnr622rRpg86dOxf8qzSUSx5PKZfhlMevX2+3YXHIesrFtHPI4yspp92GaW/TJv+zSmFeAb4gDdWh3sy1pZLHK9NeulAglaMACGXa58wBFi0CAPRFYfB+HdrnbryFC3PvK2GXinml3ms5bHIpK2zl8WEKTZa6h9z9O8x1AskxpWEDaLYONkCXztinT+5xwQI7e2GDclRMO5c8nqoGEYcKNg7TXo6Wb1QqiEpFapz26dOnY/PNN8fBBx/c/Npuu+2GVq1a4Zlnnml+7aOPPsKCBQuw5557luMyxaAS5PEckTczT4pKtheVaadmXpMqRAfIYNqpN2mbCLMp+6QIUEVhXm0le5TdITjSIcJ8jzYHCYC+urRpk7oQHVXRL06mnVIeH4UVZ68ev2RJ89NxeKDg/WvRwfN9Vna/BUeRtygtu2yVNOVaz8sljwfCsePlcNqjBtBsOndQtWhzM1Qp5fFAOEIkrDw+TOtJyUw7Z057Gki6amPafbJoZKGpqQnTp0/H+PHjUWtoirt06YLjjjsOp556Krp164bOnTvj5JNPxp577okf/OAHZbzi8iNosal0eXypHLba2hzLXldXWIgmyCYl0x5UPZ5jbDgK0XHmtJdLHm/rGHbokBtrSieO0sHmYHOlHOoB+vGmrFAOBOeouuPd1JR7n1kdutR1loNp55DHl8tp97zGXr2an2ZRKIEvcNqN91nZ/Rbu9+g4uaCpWeSvlD3JTHuY/ZtSWRFFyl7KZpggSJicdsfxbyXpZZM6VcXPXk1NzuaGDXRMe7Hk3i8/39aeiyhMu43yrqkpd6+bXQ6CrjPpnPYNG3LXaOOQUgf5wjDtlOc/LURnh1TEKGbPno0FCxbg2GOPbfGza665Bj/5yU8wZswY7LPPPujZsydmWlR8rXRIZ9o5nHabg14mQy+5omTaOZg4jkJ0nNXjKYM07kawbl1gWioAe8eQUsbFmdNO2TaQsoJ6sU0KWaqLKMqKJJl2jnZq1IXogPDBpDDjTZWfCuTHJvJ4Dx2a0/Z6eFfr0D73et++ufdFuFZTikz1XcZx2pM8hEdx2svJtIdx2jMZb4fcrHlCNd4cqSphHTlbdRdgd522Y0PdwrN9+/zPKQIBXEw7QF/DIErLN6rWt2HP+xQqiEpFKj7u8OHD4TgOtt122xY/a9u2La6//nosX74ca9euxcyZMwPz2asF0nPawzjDlI4CQL/xU+a0m5ufrZNtK4/nKETHUdCPMkjjjo2NXXOzCmJIunXLPa5YEWyv2C5VkCbpirZAdGUF1fy2VUGYc7HU98nFtNuMN1A+p90mOBU2mFSuHGeXAP/8c3ubBeOdzQJTp/oUouuQu4mmTPG9EJu+3e5aQiUdjlLszHY9L5fc1fYAHmXvtmXaw8jjOfLFkwygRc1ztnHawwQ/bINyVPdQJhMusGurMKA6S0e5f2xVsGHt1dT4n4M4z/uOE24uqtOuqAhQO+1pkMfbRm+pJXaU1eOjHOpLfe44THuSfdrDSJtNm0Hj3aZN/nsuZddmswKATTbJPVI47e5cdOXSce2ZNqUXoqOu7G/adOWPNjaTZNqz2fz9WG4mDvC/z12bHE4cZY7zppvmHotq0cay6aJAHu+DUqoFs882lYMU9hDuOPkAVimblPObQ1nBKY+ncNpra/Pzm9ohLqfTXsrpciX3tjbLJY8HojntSTHtce6fUoEFyrWcswUsQFuTptKgTnuFohLk8e6mT9VT3UWUCrRJMe2m016uQz1Q+nNz5LRzOO1mZL2UXdv7h9Jpj8O8UhXHMQ/1VEEaamVFmHoDriNKNd7UqQHUOapxClX5Oe3uPW7jDAPl69Me24lrbMy1fANaMO116Jj7ggJavtmkGoRl47jyz4NscspdpReio24rRs1ic/RAj+rIBdkMsw6VSx4PhOvVnrQ8PopNLhVs0mfzmhqCGiVVgCr7uNWDtDDtSbVSM8HFtFNcZyaTZ8apqsVyBGmiOjJUTLspfaaK1tseJCgPuBxBmjgtXkoFaco13rY57WHkj+Vg2gF65iyqPD7oc4dZIwG+GgZh1vJS6RCen9to+VaMOnQs2fItjNNerkO4zTWWu/tLYkEaD7iVz20CVOVw2qntRbFpI2+OUhvAdu2lqj8ERGsDS8VimzaTCvKF7WBhM2822yz3+NVXdtfIEUBTpl1RUUhLTjsl82q7aIdhkcLkTdteZ1D1eIA+n5Sj2jBHe7aozKtttJ6KeY3KfHjZNeXSVOMdVo5rIz0vN9NuXqNt32Vl2oPtBX1uDpthvsewB/D6+tLX6nmNRiu3DIDDcF/z/+vQ0fN9XtcJ0M3HcjrtHN0hKOXxHDntrtNuo5wqB4vNwYqXOxBgu/a6zuGyZaVthmXvwwSLbVQQVIWDuYJ8gN16bjPWbvCMuj0bRx2MSkOVfdzqQSXI48NWk7Td+Kkj69QF86gLz0QZb9tq4uWSx9vmOJt2S42P7aZPHaCK6sRRFcexkZ5zdgugbM8G0DPtYT67Tf6wFKfd5gBerj7ttmt5p055iX+k8S5q5XYfjsAdOAYAsAadfN9XfJ0A/XysFHk8JWtmOu2RlBUeCBPErzR5PFXetGmTUh7fvXvuMUxAhaOYYamxaWy0L/RLfV6zlfDb2rRxht3PvX594Vks6jW64DoTVBKq7ONWD2yZdqqK1RxOu3v4bmiwO+DaLgzUkXXqXGzqHskSmHZOuXTSzCs180HtdHHI4zkO9WHSX8JI4WxrDnBE/22+yzTI4zkCAVH6tJca75qa/H1USjLtOd4eLd86IbdQNOe0B7R8K6c8PuzaS2mTK0hj63A1NJT+PqtVHk8tZTdt2ow3RYE3F2HOLuWQx5ssNrWygiqgUlub7yBEUWwRKPzcHIUHly8vbVPl8YqKgo3T3tREFx3kbAEB0EbeqOXxUZl2r+rxAP0hPA7TTpXjTM20c8jjuZj2ckXWo8jjqeoihDnkUUfV3ZZ8pTZ+zkJVQXaplTQcUnYOJo6jEB1gn+fsOd7ZbK7lG9DsuHdEbqCbmfaAlm82wcOo6SqlHAUJQTnqdCfbuQiE6wYShLQ47RLk8TZ5zl9+aW+Pw2lPUh7fqlX+Z5JrGIRZM2y+R5O9pxyb3r1zj/PnB7/PpnhupaLKPm51oJR02JxwVAc9M1JPJWXPZvN2KRZYF9SbNDXTTn2oD+tkclQTp2bao8jjqXPaqQ5R1Pai5tBy2KQqNGk7t4F8G7Cvv7azScnMmG37/IJy1HJXjp7qHOw9R44zYD8+vuM9ejTw0EPAFlsAMJj2bNfc66NHW9n0q8SfBnl8uVu+hVFW2FauLpfyjnp+c8jjo/buDrLpzkPKfOQo7fiSlMdnMuUP4lPXWbD5HmtqwrUFtV3Pv12CrQOw7rVUE6rs41YHSm3SUSpW28rjAdrqoVEcOcrCM9QFtQD7Rbtc1ePDMDMccsr160v3LOeQx5eLaafuvBA1HxlITg0A8PTgBeiZ9igVq4PscgVpOJh2Snk8RwswICbT7mL06By989xz6HjZuQCAum59Ax12IF05zpmMf2CBuyaNrb0wNStK2eVQ3nGMd6lzS7mLxtna5OgOEUYBYnv+i9Kn3Sa/m0plysm0U7LinAEV27MaoPJ4RQWg1MExk+GraAuEO5RROVwAL9OeZPV46kJnUe0B5WHaAfsDGWAf+KE65EWVKyZVxDFOkKYUW0jJtLsbtE27rjCHemqmndppp64PwJF/zqGsKLc8vqTNbBbYbz90OuwgAMCaNT6TwcMmx3eZpFyaMwhL6cQB9IUmzfOA7TpUbfJ4ru4vto4hZWA3TJ92aofYxma5axhwKA7Dpi7YqqYAZdoVFQAbp8s8MNug1ETOZvMLA3V1YIBWYmdbqMrWJjXTHtUh5nDiksxpb9MmXzAlTKS11KK9+ea5xwUL4l8jEI4htrFb7pz2MBJfyoOjm7/2zTelA2hhmFfXaadi2t1D/erVhXPDC+Vk2ilVEBzV4zkK0QFETLsBd29cv750ykEYB6nc8ngOxyPpFn9Afj7ajret8m7jRvvidmlQVlDJpW06YgA87brcPeLrr+kKD1LK4wE+p71c85uj3gD12CjTrqgo2Bwcw7DNAP2hjEMeH1YOt3w5DcNnblY27S+SlktHzV8D7AILYWoYJF3pHQAGD849fvQRjU1bJhewO/CkyYmjtNm2bf7npT57mPG2lceHZdoB+/syyC71eIep2mzas+nTXm75bBimnWq8u3bN1yP46qvg93JU6i6H017ulm9hmHZz/7axaVOx2v27pc5D5WTayyWPtw2Qc9Ss2GSTvN1Fi4Lfy6nepJTHS69hELYVKiXTHja1DVCmXVEB4GR7qBdt2xYQlPIot/fnhg32kukgm6asmyKSSS2PNzfoMA42UFoe7zi0fVltD3phDnlugIq6cFG5c5ypc+I4Dia2qQYUDJcL26CK7Xi3aZOvA2IrwU6SmQmTk2tjD4hemMwmuLl2bengZpjxfv753ONFFwW/z3a8M5l8Jewvvgh+bznk8ZxMO4c8vq6Orqc6kD/Yl1LKhRlvWxKDmsW2sckx3lHk0qVscqRDZDL59ZxqvKO0fJMsj6e+Jznk8WEJkVLBUpXHKyoKNotsuQuRcLbnKDWJO3TIf/5S7UlsWUj3b4a5zlLVpank8Wa9gTAOdpBNd6wBWuaMumicaZMqp93c9G2VGkByQRqOauIcOa+A/TrEUYguDJsbVgGS5CEvLEtq813aHp7C2DTXDMrxdh2uUoii1ijlKJRbHk/VqYWz5ZtNYJdDSRNFcl8Opp0r3alcTDtl0WDAPp2RUx5fDqadIyhHybRz5LSHDbjb2Kw0qNNegQgj0aSUu0qRx9tMYpdtD3LabTerTIZWCshVPR4IFxUNspnN5p1DynoDHPJ427EJe40NDfY5r0F2qQ9lHNXEzUM9ZTpEWKY9bCG6oGuNEviR6LRzqCBcyXnYNpY2MnGg9B4RZrz/+Mfc46BBwe/jyJMvZ45zU1MuDzuuPdMmZcs3M1hMqZyiduIA+44ynONNpZziKkwG2CkOudIhbJn2pIsbl3s9DzPelKy4e64KozgsNd6uwmn58mA1ljLtioqCOemoC0tRVwemdNrDRG/DOu22sm6b6yxVPZ66R3I2C7RunXsedpNOuho0pXPkwh2bjRuDD7lhNyuApsoptdNlMu1UTJx7jbbpELbjw8m0b9gQbLdSmHb3O6yvL90q0fYaOZQVNTX2zmGUdIj6ejubNuMdtvd7OeTxAF1hKQ52zxxvqoApEN6JC6PWkJjTLkkeT9VFh9Npt5XHr1lTOk2nnIXoytXyzXZsbM7QLmzP5u5a3tQUHAzQnHZFRaEcGwsQTYJj68SV2vQdJ9wm7Ub0guSfYaJ5lFFmjhZOYYI05tj4BX2AaOkQtg4x5SHPdLKD7NrazGbzBwnb9Iogu1yF6AA7Ji6stJky/cX2s4cN0rhdCIJkdpwpFuVgZgA6+WPUQpNUwc0wAdiwFYfLxbRTreetWuVTq6gO4e54r19fuO/5IWyNEkplBQfTblsXgvocZGNTkjw+yCa17NwF9XibNYgo7styM+1c423blcfGabfdH1q3zq8ZNnt3tTnsgDrtFYly5F0BPNE82+itebDkkMfbHk7K6bTbbCyUfTrLWcMgzIGsVat8IbEgu2FsuhtWmIIpSeW0u58VCMeKB33ubDZvl1Ji57Litt+jzdhkMnZ5r5XCtJtBGqr57c7tpia72ghhx9u23oDNWh6WFefo/Z50gDwKU2orZefYIzjk8Rw57eWUx5eDeaWUx1P3P3dhq4KwHe+2bfNBLwolTRqcdk6mvVSxTtOmzVwMQ6ip066oCHBGg6kijtROe9gcFxunPQrTTrFhUcvjgWhMO0egohzyeCB/0Fu2zP89nDnOQXapD2VuKgRAK2UPk/dq+12aOWwU9lzY9GrnGG9Xnu5XZBKgP5RlMvTzm0tZQV3ZHyjsqx6kLAnjxLlOO4WjwNE+j3qvDVNvwNYmEF5ZESbgHrSWh7WZBnk8ZfpLlPUCsJPHU1Vld+HuEUuXBr8vTLcASnVOufu0h7lGykJ0Ns51WJu2dsOeByoJ6rRXIKgXbVubUapJUjtxAB3THsZmFAfW72DPKY+vFKY97KLt9mr/4AP/94SJ3oZtTZfJ+KcaUOe0ZzLh7qGwfVnLWcPANrLuMrpBzmEU+WwpZ7Nc+cPU89tUVlA6cWFb+tjK491A1ZIl8a8RAPr0yT0uWBD8vnLI4wF6p72mxl71AoRvj2nrDNuM95Zb5h4XLbIrVpW0PJ6rerytTa71ImgPA/KO8IYNpetLhAmgbbFF7tG2/WKYlJqg9cLWphSmvVyF6CjPA4Ay7aVQhR+58lFJ8viwkXqgPIXoKKPMnPJ4yrHhdOKo2rO56Ncv9/j55/7vSUs1cZvrDHMP2X6X1P1tAb4gjXvQ+/hjGps9e+YebQ95STvtaZnfrnNEITt3UVMD9O2be/7ZZ/7vC+MouAfHcsilqdtM2X6XrtMephq0bd4rRb97F7175/5ufX0w+1pupp26sKitzXLlOJu54pRKOTd4WKo+S5j5PXBg7nH+/OD3ce7fVJ2dqJW1HEF86kKTmtOuqChwSrjSII8Pw7Q/8YSdTdvDaKlDHpB89Xgg2iZdjkXbNkgTVh7fq1fu0YaJS3uOM8DDtNvm+Zo2y5UOsd12ucegQ1mY8e7RI/dI4XxwMinS53fY/FTb8d5qq9yjjdNuY5Mypz0N8nggGhtXyqat0x7mEF5bmw/KUQVpbHPaS+3dAL083kx/oWbaKce6tjZvlyJX3IWroim1DoUZb3c9p0jTSUP1eA6mnSOoC9jtESqPV1QUwjjY0g8SYZk4G5um3aYmf1Y3DHtvm6sJ8DHt1GNDVek9jE0u5rV379zj4sU0NimrYHNs0i47Qcm02+b5mjap0krCKivcQz2VssJVGUisHh/WJuehrBxyacDOaQ9j0/ZeL0eOM8Az3pzsPYViwYSrfKGS0NoWtyvXeFM77e561tBQeo+IEvwolWIRxqb7md94w86mzT1ke15Lkzy+XCpYLqY9KNCn8nhFRYGaebW1aduT1bRn68QtWlTIfBcjDCsO5Dd9wH+jjnLICyMtLBVppZTHp4WJcxUQQc41EH7Rdpn2ILtpY9ptDhIU3QxcRGHayyWPd3OSqZh2CeOd5KEe4GFSwhZ4qwSmvdw57WHbL1LuEVzKCptUnSjF7Uq1rypVjwYoP1Nq87k7dcrnp1MGVMx6A1Q2zTXF5gwYJv1FYo0SjkJ0YQLuYc9/lGcMABgwIPf4v//5v0eZdkVFoRx5V0BeclSqyqdpr9Skc3MVAWDhQv/3hWXad9gh/9zvIB5mobE95DlOvj1dkvL4crd8s7XpOluUOZBAnmkPksdHOdSXo2WMzXW6c7FUhWVbe0D+AE6Z8+oevm2dI9sgjVt48MMP/Q96UZQV5WDaqSWaEuTx1OPt1qygCtKEvc5KkMdzsPdcygqb9TcMm2s67Wb72GKUW1lBtX/X1NjP7yjkBaU8fuzY/HOb7i8212lbELMc8nhzrIPuxWJ7QZ/bttWmrT0gvyd+801wQUjHiVZ4UPu0e6MKP3Llg7M4TpBNV9ZCWaiqffv8wd5GCgcEVzg14bIzfnajyMJsDycAffV46uqhlZTzaua0+20w1HlXps2kmVdbObdpz5YlpVCTuHCDKUEy9jD2XGyxRW4daGryZ8/KzbQ3NJSusmxrs9zdIbjk8bbj7QZ3qdIh3Ht948bgddjGptm/OogpdFFJOe1c4+1+p888U9pmGKd948bgOR7WwbZxuqhTqKj37yhpRLat1GxrGGy9de55UPeXKPL4N98Mfh+1PN6GtHHtNTbS7Q/uWHMEdYHge8icAzZjo9Xjg1GFH7nyQR25NW0GTZIwcpkwi7a7YNu0Zwsjl3GllI88Et9mWGYmyG65mfZy9ml3v8dvvsm1jolrz0XPnrn3NjT4R+vLLZ+VXhSSoxCd62wFqWhMe7bzu7Y2f1jwO+hFqS5NkfPqjg1QnmrQnEE5KuY17Hi7QZUPP/R3lMIGadzgb9D9Hoblchy6gBfHeHOoNbjG2/0ezblUjDD7d/v2+fvdJpfWZmyA4D0sjM1y5iSH+R5tnfaw57X+/XOPQUx7mPndqlXu8fPP7ST31GMTZJOjxR+HiqZdu3ztHFtCLUwA7fPP/QkWlccrKgrUm76t9DxK30YqBynKJHYXsilT4tsMW302yC6HnLLc1UNtv8vOnfOH5SAHKeym36pVPt/uk0+CbZaLaS8lM4tiM8wBvBxMu+vQUAdpTDz+eHybbrrBmjXB89Lmc7dqlf851SGcUx5PmbPIJZc220F9+KH3e8Ks5zU1+UCAjdMeZLN167yTQLU3Vrs8fpddco933VXapu0e4Va6D0rvC+u0V0JQLgzB4s6VSy8Nfl/YsQnTotfmOl2VJWDXWixJp7116/xn4NgfSqk/bMcmk7HryhM2ddUda8BfCaFMu6KiwFXYpJRNrsIUNtLUKJO41GfndOKA0pFWDua1XIXobL/Lmpq8PMpmgw4TpHE3g6OPjm8zLINkMzYAXYu2MHK4sEw7ZTEbl5kB6INyP/xh8M/Dyj5dVsGG7QmymcnQB1XKKY+3kXy6oKzKbmLQoPzza64Jthk2bzqu0w7QpxpwOu2UjqG7Tn75ZXxG04QZ/PZbM8PadBV9c+f6v8c2KOemvlG3aONw2inqdLj429/sbIbNSXb37ief9P55WAn2rrvmn0+d6v8+LlUb4H+dYVv8UZ8xwuyLrtNuE+gC7MbbDHr5BdyVaVdUFLg2AcBOHr92beloXphF23XagzaCKJPYLXgBFB4Coth08/nr6rxtubBZtN0Ftr7eLqcpTLcA6Uw7YFdELUqQxo3a+lWYDmPTDSwsXhzMjpeLmeFgXqMw7aW+y2w2r9CJK0Muxt575x79lDRhbGYy4e5LDlYz6fG2TX8J0xrTdeLWrQte28Ku565iAwBuuYXGJhXzCqTDaefIae/XL+fArl9P124TAH73u/zzF1+ksemeB9I+v22v0ay1EIQwZ7VSgVIXYQMqr72We3z66WB7QHj21Q00BNmlZrHD2CyFsGcMysKDHEy7iYsvDrapTLuiIsDptNvI45uaSudySWDa//nP/PP33otn03VogGAWyea7NAt8UG/6lJH6MDntUSr5BlUPjVLDYOLE4J+HOeRts03usa4uWF5nc53ZbE4SB9Axpe54U6ogwlSPp64PEGW8FyxoeT0mwh7q3TaRFE4c16GMkmmnrNPhokuXPAs5b15pm5SHsrA2w1SkrwSnncNmbW2+6JdNupPt2HTtmn+vXz5tWJuuA0Ix3tRBNA6mPWznDpt10g2mmN154toECnPkvRzjMIFDF27Kyk9/6v8eahbbdq2kDqDV1ubX81IdZcLsi2H2RMB+bNyAaSmb6rQrKgLUTlxYeTxAK7kK47SHOdS7bCngzcaFsVlbm79OGycO8F9wouY0UVWPL6c8HsirFoIOeVGUFWaenVexoTDX2Lp1nt1L2onjyrMrB9MO2DmHUcb7lFPyz73mZNiNv1xMe7nGO0rKj42ywi0+GFTwK8p4+7EyUW2q0x7fJpBfJ6mDsEcckXs891wam+513nST/3vCqhaogmgcTrtte7YwAXc3heg//6GzCQD33JN//u9/+9sD7Mf7j3/MPcatnWOy2Lbn3lI2OUgWd/8q1eYuiuLQ5jsE7MdmxIjgn6s8XlFRCLPQrF9fuviV7aEsm80v2pQVSV1G11y4ixFlEpvvNXNro9p0gwp+hc6Aws/t15rOzHmlkp6Xu097mO/SpqdolEirWeDkhRda/rySmFcp8nib79Idl0WLStsLM95m3uJll7X8edjxLrc8nupQz1X528amaTfIWYgy3j/5Sf65l+2wNt297Oqr/d/D2WlDqtMepoYBYMe0R5G7PvZY7rFUYVHb+e22nwxCGtbzcjLttpXzw46NuZaPHOlvD7C/h9waBh9/7P8em/mdzebPQrYtQYHku7/YpJmGsQeEI1hsbQLAr3+df+6VRqVMu6KiEGYTAOgkPYB9Bfkwm/ScObnHoJy4qJP4nHNyj9dfT2dz/Hj/n7n57uWSz6aBaXcPE88+W9pemCBNTQ2w1165517S3LDj7TrtQflc5TrkRSlEZ1s9fsMG2mI2gwfnHv/7Xxp7Lsyg2N13t/x51PG2WYfScKinrvwNlFc55baFAoDvfKflz8PeQ2+8kX8et40cdSoRZ067V0DTy56NTYCPaaduK3bQQfnnfkVQwyorqII01IXJgPA91W2+xz33zD+nCGZ7wUv5EkUev9NOucd//Sv+/LZZ04D8dWYy/qQNwDPe7hpEWcMgzNwGgj+zCTdgCnjXINKcdkVFgbowRZhIWdiIo82iPWlS6fdElcuYi03xwh3VJsVhlFpex3GodzeBdesKF2YvhPkuX3kl9/jcc6WvMezYuAczLycuKvMat68vwDfelCoI92AC2LMzYdqp2Wz8UTdpr8BK2PEeODD3GBRcSFNOuy3TXqqNZViWy3UWgoIBUdZec0+jCMpdcUX+uV8bOWqWy9YmR9G4zz/PPVIHabi6gZjj41X8NYo83g38+Mm7OVOJkp7fttcYZt7U1ORrA1ArK6ZNyz26yg0ve4D9eG+3Xe5x9Wr/aw2rWqAKJHEy7ZRnczf3/P33/d9jjrWt0/7d7+afexUfVHm8oqJgsyBms/mNIEweTqlJ5x7Ag9hH06bNpDMncNyIaDHOPDP//A9/iGfTza0LysfhcOJsFjDbBRuwv0ZXGgXYH+xtvssJE0q/J6rTvvPOucd//7vlhhg1xzko59X2cCIhx9kmH9lWUhml80Lcgn5e2H330jZtx9uVaL7+un+HiDTktNuOjTsu1PJ4N6c9SJYaZT13C0v5IexBz2Tr4zKvXPJ4Sifuxz8ubcu0Z2MTsOuxHWW8J0/OP//zn/1thlkz3MCcX9u3cjntnPJ4asVCmPS2MGPj3p9ff91yr4gij2/XLp8S8a9/eb8nbECb6rvkCNKEVQPYjI153i/VejHM3Db9DK8AmsrjFRUF6uI45gSxddpLFbuI0vINAD79NPgawx7q3QMk0PIQGfaQ5wYXKOTSZs2BUrCxGcZptx2bVq3yG38QS2ratPku3YNTEKKOt3kwLZZdhR1vVyZ93XX+70mTXNrmc3OwMzYSu6iR9TvvzD8vvvfD3kM77JB77zff+Oe1pyGnPYo83qatoY1NID+/XWY3yGbY8X733dyjuw952YzSNvDtt71/Xm6nnXJ+u+kfbnX/UvZsbALhnPYw421ep5vmFtem2xXEq9hZGJvuOlkq4AWUv3o8ZSE6IL+eUyjQTGy5Zf757NmFP4sijwfyJNDw4d4/t10zbNvnSWDabUk6m+/RVSsA/ukQUfdutw6NVzqaMu2KigK1007NmgHhFm3TaXeLzxQjziR2Fwe37ZaLsIc8N2prk/Na6mBEfQjnYNqBvFStlNMeRS4NxGc0i9G2bb4dTfE4hR1vt68v4L8RlsuJC5PTTt2eDQg3Pjby2aiR9UGD8s+Lg2lhD6M1NaXrGFRSkMZ12h0n+GBvm6fpwmadjJqz2LZt7nHZMpp0J3d9ixuksc0ntbXJMd7umtHQAGzcWNqejU0g77Tfe6//e6Lu36ef7v+zKHuE2zFg6tR4NsO0x+QKypWLaXfnzFtv+b8nyvw2/35x3aCoTjuVIpSLaafcv8PmtNuMd/v2+SCNn92oe7dbc2D27JZBY81pV1QUqKP/YSYdh9NuvsdPAhlHLuPmsRUzr2E3K9eJW7LEP8fb1qZ7+KSWx2/Y4F2NM6w9F+4GbaussLFpRm/9Dj1xCtksXJh7LD6YhT04mukUjz/u/Z5ypUNwyOMBewYpisTOJi8uTmR91qzC/0e5h1wHpFRv6KTl8RyH+rZt83YpUxdcp52DaTe7gBQ7DVH2iCFDco9+nQ0qiWm3bdka1mk3ZdLU6W2m81YcaIhyD5nFDL1QjfL4sA6Sm9Nucw+Fnd/u2lHsxEW9fx58MP/ciyCw3Xe4ctoplVNhc9rDKiv87vWoe/dee+V+Z80a4OWX411jJaEKP3LlI+xBgrI9m63THnUi/+Y33q/HceL8+vFGaQHWqVNu8feT19lWj6c+hJtqBcpFm4NpN1UIcXNJveAGLYpVG2E3ApchBoAzzvB+T7mZV6q+0C445PGmsuLVV+Pb88Oppxb+P0q0fsGC3OP06d4/L5eygqPwIMBTb8B02v1k91H3B1cJAbRcg6PYdA+kXoUrARlOu58jHPYaW7XKB4tt2vEBdnNn333zz/3uz6jr+fbb559/9FF8m+a1erUsK5fTzlFN3LZPe9jv0a0bQy2PB4Abbsg9Fo9NVOb1Zz/L/47XWaOa5fG2Y+MGX/2UFVH37i5d8oFEtzixC5XHKyoK1JI9Dqc97ER23+f3/jiT2HXaFy8u3AzCXmM2my989cgj3u/hzGkPus7a2vyBjHK8XceVMqfdxMyZ3q/HcdrdAkbFfXnj3EN+PWnL7bTbHOo55PFhbLrsNeBfECjOeJ94Yu6xmEWLYtN1EuIWqqIe7yhOIZVyKuyBeautcmvR+vWle2xHCdKcckrusbiAURSbW22Vf+61Ftt+durq8e794zjB/bBt7bkIU0TMthq0WdDPT6ETde0131+cbhHFkTMDsV5dIsrltLtOYalzla090+bq1cF7RNjv0V3P/eZ2FJvFtovtx7l/3N997bWWP0+DPJ76vB/2u3QDSb/9bbzr84L7fZoFo02byrQrKgLljLxxyOMB4Lbbco9+1aDjTOLNNstH9EyJfBxmxqu3JFA+uTQQvnpouZh2E+edF2wvykbws5/lHuPmtAP5lAjXZjE4qseHyWkHSgd+wnxu21zNMDbNMXQDS8WIE1A57rjcY7EjEuXg6Fap9uvtWy6n3R2XtWtLp79Qr+dh52JtbT6A8s47NDZNuMXEiltGRrmHzP3mxRdb/rxcTLvZ3q7UPRTmu7RJdwo7NplM3hkule4UZf92AwcPPeRtM8x4m0GIoUNb/pwzpz3IpqtGCqr7EcYekJ/bDQ00bWpduGPtpzaMYtOF2bHGTXMz7cVx4t57r+Vr5ZLH26pgw9h0z3+lUhmpHWIqVtzcb5VpV1QUuHLaSxVPA/icdrd42Btv0Ngzkcnk2Xazv2+UxcutQho35zVMTnvYRZuSaQ/rtIcdH79CdHEKkZhVaM2OAVE2ggsvzD1OmxbPiaMO0oQ51FMz7Y6T/y5sv0uXDf+///P+eZyDhFsj4csvC+/TKPekKQ32yskuV067u5YDtOlONhLaKN+juz/EbbXkhf/9z9t2lHvIdb6AePOb2mlv1Sq/H3M47UHreZTv0Q0ixlWoeMEtIOuX7hT1YO+1T4Zl2sNUjw/6PjmcuPbt8+MSFAwIOxfN4p9uN4eo12hrO855wN0fzj+/5c9s73XqAq1h1gvb8XFTh8wzbhx7Lo46KvjncfZuM6XNnI9aiE5RUaBeGGzzsIHwOe22k85sA3bPPS1/HneDdmWvXhtBGJubb557LFWYLOnq8QBPn04up/3oo/PPvWzHGW8z79WU2EXZXIYNyz8vzqk0bdo6cVSHstra/GE2TEvHUrA5nITt2w3k1QAPPxxsM8p4d+iQD9SYYxRl43dbgAHA5Ze3/Hm5ctpbt87/TUqn3YZBivI9uu/16q8NxDvo7bdf/jkFO/OjH+Ueg3JeqaSpYWzaFquiTneK8j26suZp04JtRhlvt/uLG9h3EfdM4IVyyePd+2fjRlolTZh2fGELkwHAXXd5vyfOeLu/Y+Y5x9kf+vTx/1lYZUWpIA1nkK/Ud+mqm4JSX8LYc7HHHvnnXjVK4oyNWcPKVEaqPF5RUSgn88rFtLubIOAd2Ysbedtxx9xjXCfOZDiLC9uZNilz2qnl8WE+N5fT7toFCnttR7VXjL32yj2aG1iUzcVk7YsrnAL21xmmRRu1YxiFeQ06nJhstO3ccat0A97sTNxNesCA3KM5J6PcQ2b3iuuua/lz2+uklsdnMjzjbeO0R/keTSWSF4Md56B38MH55+Z9GvUecrsa/PznLX9WLqYd4BnvMEx7mLFxHeonnqCz6cJNYShmEKPaNLuCFKNc8ngz3YmyRa+N0x52LpqExNNPe78nznjvs0/u8YEH8q/FOf+de27u0ct5t10z3PGmOvdyrBfu2XzDhuBAX9ixOeKI/POnnvK3F7Wzk3vdZgcPZdoV4rF+fU4a7uUYFINLHh/WaferDBzWJlC64E1cJ86rlVMUm6Yi4J//bPnzclWPB3gKkXA57RdfnH/uNfZxx9uN0ptV36NuLt//fu7Ra6w45XClrtM2EEAtj4/CtJsOkVcV2rjj7bI/5qGKY+O3/S45W3bZHuptPjeX024GPB591N9mlLFp2zY/3iY7E3W8f/GL/PPitTNNTnuYTg5eAedie2HG2yxS5ZUSESdIs/XWuccFCwpZ6KhrhumERG0j9//tnXmYFcXV/793dmAcQJBVQAy4soiiiEazyAsa9/iqMW5AolERJYsao1ETF1ze+FNjgjuaqGDUoJgIBAFxieKGLC6AgoisIrKJrFO/P9ozdbrn3uF21Wmn78z5PA9P99x7Lbu7uqrOqbPRPLlpk4xlvKzMKsOSJXqTsLQD1q15zpzwJm60TZf+zvb++MwXVKIuW1nHfD0jSe6tT0t7PkYbej6SiUW5Z8WPfpS7PV8Dy3vv2c+S8KIpFFRpLxCWLQvcUAYN2vlv61NpJyWuujo/wT7OJMvjmaIZc6WU9hkz7Gcukw0JEABw6aW1v48rkO1MGeZt1kedznyUdpcYZx6jmy0rqdSkzeOSXRcXsr4OH177u3wX/UIR6vOxILlY2ktK7OLPlSTCd+HPlhW7Pt1nkyjRlu8mTZz7plCSumqqu8zlJ51kz0eNqv29b9+QIM5daGnDNJ/cLJyrrrLn5IpNxF1rv/qq7s1sIP6m3M7mjDhjhzyH8lHi4vQNLzn6i1/kbtNF6WrXLhhP1dXAwoV+1wmEvbyilsN826TNLkBugzOJEr0k90iXZxs2zJ5TEmGOz4ZptvnCZ32gkEYgd3Lanc0Z+brH53vfScgDRUX5eQTE7e/ovcycmb09181xyjfF5yTXubwhoEp7gcAFMqm6rEm4x5eX23alF/777rPnL7+cvT3XiYH+O1472LdNn0RVFH8UXUSykZR7fFxLe673kitxrkI4JZeKtuna3u23B0ee9d21v0lByEa+nhVJ7awDcslxgPws7a79zTMD52rTdSxSrK6E5ZUTHeNxhfo47rP5CnqS45tKnklbXrmgzLNAE76bNGTdzBYHGVfQ4yFPtNlCxC35ZoxcDLp0xmrAyhmS2eOB8Ga2tCdNJhO2tvu2yd9N7oIdp82SEjse61Lk4ijt+W7SSMe0u8yTpGgBwPnn1/7ep7/Jm5FvjPjM5Tz08uqrw9/lu35zpb0u+TxJzzup8FWXufeuu+z5xInh73xltWx5NtTSrqQeXpd1Z3HO+U5gSSz6QHZXc982gXDc66OPhr/zFfJ697bnJFS5tkmLVP/+tb+LK5AlocQl4R6/dWtuC4CE0s7jVHmbru3RwsoTn7n29+9/n/u7JC3tOxvfSSSFTFJpf/FFex7NIu+qcBEkRPLa3a7vEBfkeXhFnDbz7Zs4bUonQwKspV3aEgdYAfmDD2q70Ppu0lDeEx7nHCehahSqE7x8efjzfO+9SRMb5iOldElnrAbsBkU2xdqlPSIa4hR1Gfddv+k9XbHCfub6XvLfR8v8uWxwSuX/SMIzMo57fJznWNe9uHjecWjzYv16K3P4zhfE6NH23Jj830uaz6urZcrnJSEPAPFKeMZ5ljxhXFQO9B3b9I7yfBiqtCuph+/wS7lHJbHoA3ZnTDK5CZFrt9l3EFOiKt6260Jw2mnB8bXXan8XNz5VctJOwj2+WbPAuwLYeZk7wF2Ji5YKklLaASvMu/Y31WoHwuEVvG3J/s537GSL486GiyC6erW8ZwV/jscdF/7OR+EC7LvJhXBX68ypp9rzyZPD38VVsLdsyX8Ttj6U9nzcZ12f47nn2nNXt/NcUFIpvgb5bPzQpk/U4yCOayqNcSlPiCTWb3pu3LvApz3OD35gzx98MHubrkqXpNIOAHffHRwPOCD8eZw244YS1Yd7PHkVSFvagXAf800a7l3gkz0esEkifRVDisWm/DS8TWDnc0ZFhS3TK5HEkfp606bsOQFc2gSSs7TzTbkbbww/O9+xTWsQf+9VaVdST3GxVY6kYhbzrSXqammXTm4CWOH96adl2iOKimrHmbpODHvtZc+jdeXjWl4lY16TsLRnMjuPa3dV4qh+KmDDBaJtuk7afGeY4pxdF36eiIXc7okk+jvfe88Wx50NF88KAJgype7rA+KNx7qSTfpa2vl1RMNfXN4hSo7DFZE4beabFIi3KeVZEWeuJKF+48bcbt2uz7FbN3vOE08C/qEL2TYwfDZ+coUJxLl36fCFJDzlaHNi48bcCdRc+5uXao1uaPvO56S0c08In3eIDA/jx4c/d1Ha87W0S1lfXbLHJ+FJw8u2UvlR3p5Lm0DYwELrpe98QbkvuLxG8wWw8+vMZOxcKfEseU4fyU2apCztAPA//2PPs41D17F96KHBcd06ayhQpV0pCPLNDhzX2iNtaU/K5QoA7rzTnkvU4OVEFSfXhYArcVdeGf4uDTHOkpZ2IDmlvV074Kc/zf7f+U7a5eV2AaPrdl2sMhmrcPJYPqB++ztfpT3OfXOPn1zJyXz6ZswYe57NG8K1v3lSSBJYfDb6KFzDNeY136RAcdqMmwwpX88KsiBFXcOj7bk8R0oyGd0Q8B3f2dY2CUv73LnuGcqlM0wnYWmn5wbkXr9d+4YUa6B2GU8p93ieeNDnHeLeL3weSoOlXXL9zkfRdO0brqhzfJX20lLrAUEeeL5Gm8GDa38W9zol5d6KCnsvSVR3ymcjKW7f8KSNvqWTOVTRYtu22mu3Ku1KqpGuy8oX/XySZ+Qr7NDkxV3VXK8xypAh9pzXAJUYxNHEMa5t8pqqU6eGv4u705pPtuGk3OPzvW8S6nOVI/RZpEeODI6LF4fbkehv2mwg12kfwfFPfwqOvCwJEN/Svm1b7TJDUfJVkmiBzldpz/e+e/YMjrnmIZ++6dPHnvNQA19Le5Mmdr4joYra5LXX84VbiV3LREor7XEt7fl60nToEJznSorp099csOcVQXyVOOprPh4lLO1AONFSnHunTTSp8phJKO3FxdZFnud/cG0vyimn1N2mq2DfqVNw5O++z3WeeKI95xtKcd6huDHtUhu7rjHtOwt3cumbffap/ZmvezxgvfAeeCDcput88b3v1f6M900+646k0p7JxC/RKxXT7vosMxkrC/Lx49s35eV2LK1cGRx9N/ELGVXaC4h8ywTFXfR37Ki7zbiLH7kv5Vr0AXfrDBfyXnjBnksocWRNoeRFEtb7KHGV9nyyDdenezwAvPlmcPzjH7N/7+ouDQRxziUlgTLLs0xL9De5QJLS5SOcUCzcCy+E7zduTDsgJ5TlG9Met7/nzAmOF13kd33Z4Fmm+ZwksUhHXUF92jzhBHv+4Yf2XNpVEajfmHbACmLRfA2u7XF4tuZsmb993eMBW3nCZ+OHx3jzzYU4955vecx8+zupnDS0KZerYoBPf193nT3n1l3f+ZwSyXJvEJ82mze3/53rRkA+m3JxFFhav5NQ2rdsyb256yMHcc9Iui5fSztgN01JTvJ1j6eM9IDdvIjjHg/IuscDyXjCkpzB+yVXey7PkjxU+BrkO5cD9hlQ+UDfTfxCRpX2AkK6Dm/Tpvalr2tiiCvc0v+fK9Wu15iNc84Jt8HPfSYGKt0VtcS5tEkW4ij53jcXEvPdpNnZdca17PlmYs3WXl1xy9koLrY5AhYsqN2mjxJHblck6PkIJ4ceGlhst2zJvrmws8WltNTmrJBW2iXd4/PBp4ZqaSnQt29wLpVEjIgmXfJps6LCVofIdp1JuEvnO76l2iNo8/U3v8n+vY/AXFlpXZtdNz+yQRtyAPDcc8HRd+OH8mrwzeg4c0Y+m2hxSoDR+7yzsqBxn2WupHuu7XF69LDnn31mz32Vrk6dguvZsCFoN85zzEYmY8ena9lAct2O5mvgUHs8xCoXSVja+Wbx66/X3Z5PbgDAKrMSSvvBBwdHqezx5F0CWE+3+nSPB+TDaYC6q0IQPnJQNHGjb3tRnnwyOKp7vFIQSCeyyWTiuXDlO0B4+bRsNXhd2uRQ6TdX4SkXUUucT5s7cwPMJ+ZVui5rtgy72ZD2MPCdYKmf77vPfiZRY5uylZPS7rPwFxdbDxOe6T6OoiAtlCXlHn/jjcHxqKNk2otCVg8u1Eta2kmo8m0zm2WlobnHA7Z8GncR92kvCs1HFN8OyLnHA7bffTd+yAOLl4mMM2fESQIF7PzeKWyhLssebzOu0h4tq+raXhQaN1JWcSAwQNAm7MqVMoohzUMLF9rP4lzn9Ok7/02c9qTlP4IU6yQs7QceaM9pnEu4x0fHku/Y5rlayAWbb6jkc500z/zrX7l/E2dDO66nRj79Q6UrgWTCIXhugGjSOAmjwOLF4TZVaVdSTRLucHHqLuc7QA4/3J7n2q33WQjI4iHtLp3LEucy2ZAAAYQz5cZZXOLGNOVreV2/PizURIl732PH2vNsrvy+fdOrV3B86im5NoHaSpdUMiQe4+yySO8s5jXfDYu47vH59jcJeVOmZM+34Ns3pBzyWu0SlnaymF1/vUyb0fAK3mZ9uD8mkYgOsHlEcuVakBKgsm1++Ah6Z5wRHGk8+W7SkEDKq4NIh0PEUTaTco8nFi/OLtj79jf1M89PI7FRzMejhNJOm7qunjTRZHvZiNNevp4VcedzKnfGk4dxfMci5SmJbo77tBm1Qvt4dwHhvCYU5hd3viBPoXnzcv/GZX2oaz6Pq7STLAUkk0h26FB7TpubSSjYqrQrBUGS2WIllXbAWh3vvbfuNl0mbXJl4pY4CSEvamn3mRgo/gwIu3XHWQgoBrIudysg/3vn1qe6ygTFve///V97PmqUf3tRfv/74MiT2ki6x5MFwPcdyjY+41wnKf1SljPuHp9Posl8n+XAgfacuzS7theFrB4vvmg/8xXKAOCdd4IjCb2+Spyv0h53Pt/ZvSfhTgnYpE/Ll2d/j3y9Xv7wh+B49NHu15gN6h+JcAjAbkbz8LQ410njMVoGlOOitK9dKzu+uTKdTUH07RtaG7k7uMT6Tf39xRcySnu2cmhx7p0UJJ5fIUqc9shYQdZGiTYB69FH49C3vSgUdpjNoy1uuBzBrdDV1TLrAxHNgeEiB+VC2hMr7gYID7uk5I1RfOZzLvdGS+n6jO3zzw//rYnolIIgSUu7dAkIEmwee0yuTYKU9vXr7XVL7NRHLe0+bWYydrF68EH7eZz7JqFByr25rMwqRJLZQ/nvHn7Y/fpyQZYtboGWEOpJSSZ3OKmwgGy1XvMRJqTHNykJ27fX7XLv6j4LWCuNT3tRKKZdsk3AZvinzR9fJY6UZNfxnU9/V1dbhSxfS/uXX8oqcbR5CNRdGsm1b2hT4Mkn7XVLCHrR+by+N2no/z9rVu7fuCjt27fXnaw0bv/QugMAt97q314UKg1FOTwk2gTkLe3R9wdwj0nO5dlWn/IAceSR9pyHAhC+Y5E2Ba65RqY9IFi7mzUL3v333pNV4sjDIu76QGGbADBzZvbfuGzySXnmAPltkviORVpfyROW+salSgtx6qnBcf/9g6Na2pWCIB8FG0iHpf3QQ+15NoHCR0Eit3HAJk+RGMS5LO2uiwtlws6WSVPSEhfnWZJgk0+GU5f7pszi2drzFZY//9xuBkkq7VKWdooxzRbzWh9Ke5MmttpCPgu/y7PM5kLr2zc8KRC5bEpYUuj5kneAr6BHSX14+IqLUM89caLEEcqove3b605WGvc959aZbC6/vv3NBUnJmEVJzymgtuU+bpvZwmaixLGcVVba30iv38Rdd8m2B9h5cuXK2ps0Pv3NS3imwdJO4xHIrcTFUWCTkP8A4Jhj7Pl55/m3F+Wf/wyO5LUhMbZLS+1m/mefyawPhx0WHCkzfdz1oarKnj/ySPbfxGkzn0SyLu/5zpRn37FI66trmEE2aCxFvaZUaVdSTSFZ2q+4wp5HM6nzsjauChLthkqU6yJyWWZcF4JbbgmO3BU9SffZfO6d7pELkFFcJm1yYQfCCeP49fkKTwDw9tsybQJhpV3inaTFnivILnV9892k2dl1ZjL5Lfwuiyp3+eRjHfDvm333tecUdyfR39xiDPiP75//vPZnca6ThDweBpCrPWDn18mrgeQj6MV5ltztMZrI0nfc9Otnz6m/JROLUg1qatM3h8HHH9dOspTPdfJa0Lnih+PEqBYVJbd+c3Jtyrn2Nz3HrVvlsn/zdqXc430t7bw87dy52X/jYmBZvz57LhGXNoFw2NzUqUF5VY7v+OZlPF2uLxd8bZNQ2n/4w+BIYynudWYytg3aqIgSZxM/nxKRLu85D2mrKweRa39T+VsqFerr0QZY2WrVqmDOkGizUFGlvYCQFurzbdNlgHBB7Prrs2d6B9wnbnLpimb6lIhx/uqr4Hn4tkkxQ8uWuQl51DeS2aDj9HecSZsrbr/4hfv1ZaO0FNhvv+BcUomj/t6yJXgevm5c3LJC9UpdFum6NlR4m9K79XGeJV/4b7stLOj5LqglJdbqIbWBBoS9f3bs8H+HqOwQULtMUD5t0jvNFeIocWoFZzJ2I4pXMIjict+0WQbYsB+f9jhdutgNjOj4ltiEXbVKRokjCzEA/Pe/wTHOvfNqC7nKocaNUU3KU47nrTjppPB3vhsqPFP3p58GR2n3eC5juMZN12Vpz3ceoljcXJZXF6W9ulrec+qee+z5VVdlb8917uVVCCQ2xwmu1EoocfR8o7H3cdqkUIAlS/yTOJJ8UlfiQRdZmuZFwK4X2dp0HYuXXRYcKcxNYu2uqrKbYNyTRi3tSqpJMhFdkjv1APCDH9Ruz6dNcqGlRV/CMlNZaZ/H0qX+kw1NiFu3WqUpzkJAwvHOssVKx0279Dev9woAs2f7tReFkvpIutg1aWIFs/nz/fv77LPtuUvG6nxL8rm4aOYj5MW577Ztw8I8L3Mj4Q6Xq5KDT5vRRIy+/d2ihRU8o+M7n+uk3AAbNuw8M3u+bVKyqrqsMy5zJbVL8BwJEnPvj38cHN97LzhKelZ8/HE4XMC1v7n7K1mI4yggmYy9n1zX4GollV6/J0605+PHu3uLZYMr0bTZK6HI8cStfNPHVWnPZmmPO2dQfO+LL2af1+M8y4oKu17lyvwNuD1LnujrttvC3/nO57wE8Jo16bW0k0z09NPB0eW+zznHnmdLOOmSw0AyER0QDi9dv7722uO7YUoyh1TCVyAYw/Q8eElHVdqVVJOv0h5nAiPFMFc9dcB9gIwebc/5brVEnU5S2qXikQla+L/80n9iKCuzEw1tLrhkj5e0tPNNiVy4ClBc0OMJ6SQmWLJyRXfBfSdt8ob44gv/hb+kxO6OR8M28mkzH6Wd797n0z/UVi53PcD9Wd59tz3n76hE35DATNcvIZSVlVmBZfFif+tMUZEVUFw8QHbd1fZhLiWbW9rrc1OupMTWKQeA55+v3Z7P3Nu5c3CMll/0aZNvJL7yij33eS/79w+OtGkR91leeGFw5M+SE7c9ukc+9/q2CQRCMvcA4RnLJQVm2gyQSFZF79B778nmRFizJvDGAuLPQ3yzK5uMFfc6k/KsiG5skAeja3uc8nLrBbF0aXqVdl7KEXC7zuOPt+dvvln7+zht0tjOJ4lsJuO+OXXQQdnbdO0fWhMXLgx7tPm6slNFqnnzNHu8UiBIlwgC7EDIFWPH24s7QM49t+72XNokcpXzSdtCQNku3303OLrEvNZVni1umyRE5BIaAXcBirsLk8Us7vXlgnIYSLrHA1aJ27hRpr+jGabjLC7R0jjZiDt2aFw//vjO24z7LKlPAODKK/3b41Ct9k8+kWsTALp3D47ck8anzR49gqNLQsyiIrsxlysxZFxLSlLhL0DgGUBz0gMP1G5PYpOGnoPEWOQ5DOLkBqgLer60yRL33mnzkfKdRHFV2pNINMnfIWml/dhjgyOFwUiMxb59g/9+1SpbDtanPZIFAOD224Nj3Pdy0CB7nm0zNq6XCo2/JPqbhzzx0q0SY5E8QWbMSMY9XuIauTeoMW7KJq+IMHx4ePMDiPee09iuy9PSta+feMKeR/Mt+HpO0RoLBO+pVDk+MtRxTxpV2pVUQwoGueblIs7EQEr7okW5k5u4LqiZjFVWgdqZv13aJMiiScqnVLku7toj6aI5dWpwdFHaeXbqbMRZXEgZqitu2nWS5ULOf/5T+/okLO2S7vFA8kp7nL7hibNyEXfskFDMM4DnatPnWbpmWM4FbS5JZo8HsnvS+LRJ5cpcwl8Aax3MVXuZP8t8LCn0DiXhOcXbnzzZfiadNA6Q6Ztmzex/zzc+JfJgUM6AuM/y5Zfr/j5ue1RysS6ZwLW/MxkbAsNdfSXGNyWrioYR+fR3kyZ2/iUF2eca+X87fXpwjHudPATrhBP8k/pRbgm+aRbFtX9oLgPCpd8k+pue2z/+Ibd2kyfI44/LvD9cfuHhU3GvkzZygdolMuPcO3djz6W4uz7L004L3kcim6ec66YK99CRVNqz5ShRpV1JNSR4r1yZu2QMEE/g6dQp+N2WLbldpn0GCI9nInchCasHJXFavDh4FlLu8VTG6a67ZCYbEhZdLO35lniJs7iQUPPaaztvz+W+uXsYkWZLO+1mL1pU/5Z2Eu42bLDumFHiKu0XXBAceQ3ZXG26PEuqvQu4JVvMBSmz0ps0PMZfwrpHG2tkFmV8KQAAPQdJREFUlYz7DpHCS5t6UeJeI1k5cm0CAH7Psq663T5zbzTpl5T7I733PBGjT5tU2cD1vaQ8BoB/jDNgFY26vLF8+ps2iq6/XqY9gjZhySIuJdiT+zhtBkgJ9ZRY1OW95JuwueKH822Pnk80w7tPm5yjjw6O/DolNtCoznanTnJzOR/TUps+xDvvuF8nDx3iGwFAvGfJEzZOm5b9Nz4bpr/6lT3n3n1SBjAAuPNOubk8W3UIVdqVVMMT4eTj3pzPC11Skj3hCkdqgNx8c/j6fNps0yYQEo2RdZehXdKSEpk2SWikXdM4bZLismhRWFmL4hLTvnFj7lrOPpPsX/9q/1tqR9rSLpmBlkqezJ4ts/D7WAxbtLC/y+UJETcfBL13SdVxvvRSey4ZqhItdyMl1HOlXUIYjbqjkzCdb5tUv/nOO7N/H/dZ5pMXwUcoo8RagFvG/FxIl9skou7sPonJABvC4lq1hCu/f/hD7e/jtkchTNzzwbdNzlln2XPJTTnKJUIeIUn1t688QBmwSWFwuU5KogrYqgNE3Gf5f/8XHLksGMVnfA8ZEhxffNF+JqF0HXFEcNywQW7tPuUUey71/hA33OC+PnTqZF3to2FpLrIaEC4fmK09l2dJfQKEq1lIGcCAwONSKqadh65KtVmIqNJeQPDyDPlki833hSarQa5kSFIKMcWx0QTrI0AVF9vJf/58uWukOPzdd5dZCMiyQvFicfqmQ4fgGe3YkZ/LdD5tUow9kNuF1ue+27cPdoh37LAupBKLPintmzbJlOMjyA17l13iK1zZ8LG0ZzL2vydlLkpcSzsJdzxMJVebLs+SWxL+/nf/9gh6DuvWBcqhtKWd56yQUDZdLYa8jFg24s7l+SjtPs+SW4ppfEsI4Tzp17ZtckIZKXFklfNtL/p84z7LVq2stf6ee3K7S+fbHt94zeV95yOEc88pWi8kPWmibUpZ2qm/fecLShxI4QcuayN57wG2jjeRxKacT39Tv6xcace15HwuWa6LJ5pcsCA4SilxJ5zgtz5873v2nHvNxZUHqKpGrpwnPrJaUZH1zJIOb6PN3R//WG5DhWQNnsNALe1K6jnwwOCYREzyhAnZP/cdxBR3R8kvpHfJ/v1vq3D5ZJ8FslvifCYG6ifaZHH1gsgnOVm+StzO2vTpn+JiGzcvXZ6NZ+qWWvhpE2PDhvqPaQesJS+XUBZXaadFeevWnbvc+z5LiteVii+kDYcPP5Rb+GmT5sMPZeYhUmIpbCNuEkeKlQVssitOXOGEh5Hk8s7xEeqbNrUCGeUbkPKsoA1cHv7l+05KW15JaSJLu8uGBfeqiFrI4z5LXmYymvTKtU0Of4/JU07S0r5undzcC1iL5D/+ERx9+zs6H7tcZ3Qu4N5SSSrtLvfOM4m/+mpwlPRAW71arq9prQWsLOPb5lFHBcdJk/ye429+Y89nzLDncduk+ZyqD0XxfZY/+1lw5OFUEpuwP/lJcFy7Vl5plywbWIio0l5gkNtoPkp7vi80ucnwWsscX+GWYnyo7I6UQNavX3AsK5MpGQNkt8T5TDbHHWfPq6vjTzb51GqP+zxJUc2Vw8D3vmmBJldAqQmWFjCpJIFAurLHA1Zoeued7N9zgS+fNjt1shltd7bw+z5LcgmU6JuiImv1WbFCrr/79AmOs2bJ3Heu/s73HeKW61//uvb3ce97992D/t66Nb/kdi707BkcXZOxZaO42Crtb78tH+NMliTf9igRHYVkudw7z/PCs4sD7u7xADBlSvbfSMWoksIo0d+VlbZvliyR62/auKBNfKl7JqXQ9Tqfesqe8/J8cfuGrmf+/NpeGoTUJg3VK5e0tH/+uZyBpbTUeipReJLv+0MW+86d/d7JZs3sXMHzgLjM50BuTzlf2ZwMLI8+WrtNifC2iRPl1m5qU5V2paCIConZiDuQKY6JJqxc7bkOEC6kAHILNCVNWb1axrUZsLt5UpZ2mhQBN7funZUB4/HdLta4bPj2DyV0cUm+VxfZrIi+bVKmUylrD7coAPHHIgkho0ZlD4Hh1tN8QksyGeuOO2tW9t/4PsvzzguOlIFWqm9I6OGWV9/xTc9XqkwQn4+NiT8P7ex3ca+xuNjWG/7gg+y/8e2fbt2C47x5wVEqRpW8ICRjFknopdKBvu8krQ/GBOPT5VmSpxPBQ2F8+iYaLy3RJgAMHRocJd2lAWtt/+QTq4D69vf55wdHChvwfSdp/f3882Asus4ZPP768svteVyvFx4iOWlS9t/49g+NGfLSkhiLfJ6UktUAK19ReJJvm8OGBcfNm/2fI3kk/fvf9rO4z5LCKnk1Ho7vxjOtsYBdvyU2+WiNWLdO3tIuKf8VIqq0Fxg8g2Iu4g5kcrkHsies8h0gf/lL+G+pQUwTzqpVybjHS1xnebmNvXLZIdy4MTiSYhSFW17zvU5alK+4Ivv3vvdN1iNpJY5vYEgr7dKW9lmzAkE07likewTCte4Jl/smpZ1beHzb5JCSSG6ASSjtUm2Su/S2bTZcQMKCtG2bzDtE451wuW+Kv+VePr5tciixFm0CSfUNJe2U7G/y1iCl3XfNKS21YRs+WYz5hgpfH13aI8+He+/Nbn2VUuJck+/lgpR2nlRXKtEklUn1vcbddgsU6urqcPiBy3VSBnW+2Rr3WdL8BVjPRY4x9h1wvfdjjgmO0SSgEvPkjh12Q9tXVgPsBphUTDuvBuL7nvO13HXDi4+NaOUB3p7rffMkibTxIZGIjjwG166166xUyTcg8DSRaLMQUaW9wMjHPT7uQKYdVQCYMyd3e66TF6//yXfJJOs2SrvHb9tmy+hIufXQbj2Q/72/9FLd38eNcQasNRgIEu1EBT1fxYMWAmkhj4cKSLvHS8Ve8YVlzpz4bWZb6Dku903v9IMPZveu8H2WNH/QpkCaLe2VlbWFEZ82mzYFKiqCcx6vGWce4nHJZG0mXOZKXmP5tttqf+9rSSFF+PXXg6N0f/NQIKm4V8nERbyygeu6w7PwP/igPXfxWuBZph9+uPb3vv3zne8ER+lNmiSUdtqElXKPLy6unWwScLvOgQOD49y5Mpn4b7yxtgde3PCpbHA3ZECmvysq7FpL5csklPY99wyOUp4atCnC67S7tjlypD1/7LHgGHce4uP5sstqf+97jdTXgPVOkehvPidJJYVs2tS+Q7RG5Mqq35BRpb3AoAXk/fdz/ybuxMDrQR5xhH9G2yg8YQivhy2lxH3yiZzLVbNmtg3K2O7bJgknn34aX8jjsUbZcCmfR0lCgCCD8ejR2dt0ve9oHL50pvePPpJrk5eSI88An/4mqxQQCHlxr5OHU0T7BXAT6knoBsKJhgjfZ8n/O2Pk+oYnXZJqM5MJCxSAnGLommTpllvs+erVYUHcZa7kHhqXX147AaGvJYXXM16yRM49PluCTCmXSqn2gLDSTtYvCQUEcHvPuaV+6FD59ZtyoJDMIe0FkYTSTkhs0tA8xKutuFwneZIANmeJ77Ps0MHWkOftAe7jkeYz3zj+KBTeRrkwJMZidC737W/yipw61b9v+Fo+dWpw9JEH7rort4HF577p/ab3SKK/S0vts5SSowFrICCDmirtKWTp0qU466yz0KpVKzRp0gQ9e/bEW6yGhjEG11xzDdq3b48mTZpgwIABWJArOLsBQFazl1/OnYjEd9BRQilCYpGmNl97TW4RoAG8dKmtt+0rPGUy9hnTZCNlUVi6NP7mAsXtA8Gzi8IX6Thx0yedZP/mtYMB//4hRfjLL4PdWykhjxRiSSWuY0e78JNbse97OWBAcHSJm+b5H7Ip7S73Hc0w/dxz/m1yeHkbl42KXCRhaQfkBT3feM327cPK5eDB9tzlWe63X/hvKlvl0yaH7hGQLeFEz4CXH5LycpJqj7f5xRd+YVl8rJM7t497PHHtteG/ffuHNvXXrZOJ9SVoXeSeIVLuzYRkf3PvRpfr5N4V0YR5cd6fMWPCf1OmfMDN8y5Kjx7BcfbscJtS4S9keZXY6OLhAoD/+8M3ZkimdL1vHgbhk8TxuuvseTQfhoTXKlUiuOmm4Ci11kYrd0is3SSbE1KbpYVEqpX2L7/8EocffjhKS0sxYcIEvP/++/jTn/6Elqznbr31Vtx111245557MGPGDDRr1gyDBg3CZr792IDg9bqzxZ8DbgOZ4piAoAwRxQACMrt55MbErc0SVhTaTaaJR2IQ0+tFi7TU7v+mTfEt7VyYz5ZoyHWR/tvf7Hn//uHvfPubL6TvvCO36NOCRZmbJdoEagt6vv3Nhfq41xlNLnfxxeG/Xe57t93C93jCCf5tcni9XMlssUnEtAPygh7PM+LqLs1zlPCkQ65CGZ+/R48OK9q+z5KEeiBYg6Syk9O44Uq7hBLHr0va0u6jtJ95pj2X9EqKbsL6tknKNRCs39KbsLyqha+3BlnvCaqc4QO55PKEgb73TgnPXGShaK33Z56x5xJKO3nKURI0qXBGkoNorkuj0v7Tn9pzSQsxJaNzeZbcq3b1auupAMiG/VAJT6lQU+ob2qSReI5Rzym1tKeMW265BZ06dcLo0aNxyCGHoGvXrhg4cCC+842/pzEGd9xxB66++mqceOKJ6NWrF/72t79h2bJleIbPZA0IPqlw4YbjMpB5/A0AHHqoPZdYpMnFbtUquUW/uNgKzBSrKzkx0KaI73XSNT31VPxFmitxvPYn4bpI77KLrbvL3RMB/00Vfs0PPyzX3xSLL/kOAWGlE5BV2l2eJY87jyZxdFWQopnouZeOr1BWVGSF7a1b5RNNFpKl3ec6r746OB5yiP3MVSjr0gV45BH799ix9lzC8kql8/g9S1na+ca0b39zzylA3tJO7vEuwuMll9hzEldc+4YULMKnFngUngeCJ1P1VbCzCfX5VMSoi8rK8DsjIdRTrK+kBwhtqrls+rRpAzz+uP173DjbJxJKOw8xWLZMbnzTxrGkEie94d6yZW2PH4k5g3JFuTxLSvRK8ISIEusiyRiU8V0q1DRqaZd4jlGlXS3tKWP8+PHo27cvTj31VLRp0wZ9+vTB/fffX/P9okWLsGLFCgwgf1QAzZs3R79+/fBaNl/ib9iyZQvWr18f+lcotGplY4NyKe0uQnjv3jamFwhPDBIKErkH8aRxEpM2WV/JUiFpaSd8r5PqJVdUyGW5J3hMe1wh6vjjg+Prr4cVd4mddXpHmzWTV9q3bbPxdhILAVlSiCQs7XHa7NAh7OJ833323FVgzmTC1lxKIsbb9HmWw4cHR0lLHM0Zn39ulSOJOUPaOsPdZ33mtjPOCI6zZsmU1/r+9+05lWcDZOZfqi8vWXeZBDL+nvoqhrxdIF2Wdm4F/u1vg6Nrf++9d3izg6xmPm1yqMLMRx/JeVZE488l+iaTCY9vCaWd8oBQZYfiYvfNBcogT7haNc84I/xeRyt3AO79Q2MbCEIXpCu1UBhaGi3tgN2EJRlYQsYgXJ5ltMrPqFG12/O5b0oUTR4v0u7xErmCiKhsrpb2lLFw4UKMGjUK3bt3x6RJk3DhhRfikksuwSPfmBBWfOMT3ZYXG/zmb/ouGyNHjkTz5s1r/nXi/l8FAN3uj3+c/XvXndGoBYqQmBiyZXqXGMSkyJEgkYTS7jtpUz/NmuV27zfcYM8p7ojgi0BcQYJKgQFBkhNCon+GDLFtSS36TZpY90daCCSE+iSVdtexOGGCPf/FL+y5z7Pk7zUXBCT6h/pFUmnfbbfgna6utkq7hAAlnaxKqgYxWVS2bLEukD5jkSdFfOEFey7h/sjvWSoZW7b4c1/LKxBWbiTcpaWUdiCsIAF+Y4cnfL3gApk2CRLsP/lEXokjpMo3cTlGQqinBKgS7tI8DNEYv/mClw2kc+5h4bo2ZjLAAQcE52++KSevRa3iaVXao2E6Pm3y7O+uSVorK4N+pfeQMtEDMl4QtHYvXhy8j1KbsEn0jVraU660V1dX48ADD8RNN92EPn364Pzzz8d5552He+65x6vdK6+8EuvWrav5t4RnnygAKM8e31nn+CjZF11kz0kYk1ikeU11yTicaGKOJHbzfNskR46vv3ZbpK+6Kvs54Nc3mYxVWHk0iWS9cl/rY652iTS7x3NX0rhtkpWZICuPb3+T0sIXP4nxSAoiL+koEVYSVeQk3iGuLGQy/hs/2d51F2GC39uxxwZHn2dZVGSTX/H/XmI80mYp36jwVZCi8y6V0vOFv+sSShz3rPAVcMlqRsnkpMYOz2kguSknGZokvVlK8DlDYpMmmpjW5zrJmwYI1gef+aJNG+DSS4PzaDZ6wG9eo4oTkvlEomuahMKVZHUICfd47lmxYYP7XJnJhDcAovKAz33vuWcwTjZtCodDSFnaCY1plyHVSnv79u2xXyQV7r777otPv/HjaPfNLLCS+3J/83e76AzBKC8vR1VVVehfIcETzfDyPoSPEM7LgUnW4SWlffVqW1pC0j2eSGIh8F2sjjrKnrsu0rwNXnvZV+EihSNb4kEJpd0nOVdd7RIS75C08MjdfF37J7oYUYiFb3mtBx4Ijs8+az+TGN/0DL/6SjbfQBLZv/l0L9Fetnfd9x0iS7uvUEZx0//9r03WKRGzSPe8apWcZaasLDwWk1DaJZQ4UmAXLLD94yo8UqUNshv4jp3TT699PdKb7lLju1mz8DsjpbRTIjVARqgny71EFuyKCjunuVSTiUIeENLlVc86Kzjy/vbtn2hstkR/R5xsRZV2Cff4pk3tPOZbIvLII+05lZCTWG+Ki+0mzWefya1h0blWYq3V7PEpV9oPP/xwzOPBeADmz5+PLt8UL+zatSvatWuHKVOm1Hy/fv16zJgxA/2jKbEbEDyBDd+5JXwGHa8lSkKexELQqpX972mBSavSLm3d40KE64bFQw/Z88svt+e+C+of/lD7M4lJm57hlClyiU14u4SEYB9V2n0FPd+YdoJnEaeYcV8FiXINAHajRmJ8U+1uyWoBQDKWFG5pl/T+WLXKbqq4tnveecGREr35bsrxuYc2bCQ20cizYskS2TwdfHzzevA+SFvauZcB4Xrv1D9r1wYlPX3Hzu23B8f582U95WidlbS8ZjLhqgZpdY+nTT5SbKTqlXOrpuv7Q5Gd5B4vnT/m88/lE9EREvNFs2by87mkezyQPZTI972cPj04SnqtAkEoptR8/u674b/V0i5DqpX2X/7yl3j99ddx00034aOPPsLjjz+O++67D8O+qZeRyWQwYsQI3HDDDRg/fjzmzJmDc845Bx06dMBJvBB1A4PH+c2ZE046A/gpCpkMcMopwfmrr4bb85kYiorsruhnn7lfX5QkLK/SLtjcTci13EnnztlzGPj2DcvhWDPJSijtXDmkGsRJbKhICPZk7SKoLrErEjHtAPA//2PPaSz69g1/flQfWWJ8c8GJkhomsbMubWmXnC94GhXXdk87LTjOnOkeA8nh5f26dw82FahygM+98xwGkko7F8qkLO3S7tL0rpMSB7jfO7+2IUP8+7t9+0CRqa6241DS0r5iheym3MEH2/O0Ku3Sbr70Xk+b5r+hTUnyFiwIFMIklHZJzwqOlJWUjyFJpV1KIab1gSft9H0vaXNOyguCoH6XaHPw4PDfGtMuQ6qV9oMPPhjjxo3DmDFj0KNHD1x//fW44447cCYrcHr55Zdj+PDhOP/883HwwQdj48aNmDhxIiqkVvyUwhMLUakGwneyIdcbSk4mHdNEJa3SWgKCT1wSbZaVhV2kAP98AxRfJyHkERQOIaG081rO5OqbROiCxDDneShLS+UW6a++splyfRcs2qH3VZB4tNHkycFRYnyTZRiQrW8b3VCRtrRHBUkXeA4DwrV/uILAvRZ8yvEdfXRwvnGjnGXzG2c3LF0a5OoA5Md3Wi3t0QRqPu3yMJfDDvMfi5mMlQco943E+N5zz+D40Uf2HZJYv+k9kmoPSM7STvjOQW+8ERxvvdV/Pm/XziYqk8z0zkN+pBRD6dwxBFfa0+xpuXy5f9LO6Kaj1MYCeVxyg6DvfUcimxOR99XSnkKOO+44zJkzB5s3b8YHH3yA88h/8BsymQz++Mc/YsWKFdi8eTNeeOEF7BUNnmmA/PCH4b95bLvvJMutpLw930FHk5ekpT06wUpM2tFiAhLWmWj5C5fr5IoRZZGXqKlOVrPZs8Nt+vR3JgP06hWcz5/vd42cJCzt0i65zZvbe+Vlglw48cTw377ulLwPJD0riott0jNyK5RYUKMxi9LZ4329KoDa7yTg/iz79rXnN98sMxbpWh56KFwi0meubNMm6N/qaptvQVpgTmtMe7Z3xqd/vnEcxK67yqy1pBhQ0lKJNkkm2L7dhgVIjEW+SSXV31xpl1y7Cd91bMSI4Ni7t8z63b17cD5/vpzXC7cOSymG0XuUspLy8R0NdXNBOo8KbTzzHAaua+Mvfxn+Wyr+nAxVZFAD/PsnWo0qiSTRamlXCoZMJpw8LFtJH9fJhpcY27xZ3tJOSXeScJeRLCNHpMXFjt8rWbck+obqc1ImY6mFgDZpKIdBWi3tfHGRUNozGbmwDV6Kb8cOmfwAxx0XHCdODI5SiQJpQaUEPhLjRrqSQ7RNCUt706a1FTkfIZx46imZ8U15NFq3DivtPs+yqMhubiblSZNWpb2oKKwclJb6labjSd58E00CwLp1wXH27CAUQqKuemmpnSdpPpe2YiehtEtcY9Om4WfnKwdRuqVZs2SUbFLaFyyQV9rXrbOyhsTc27u3PW8sSjvPYeBraWdOxvjgAzkvCJJ5JUK8iCTW7mbNwv2hlnaloOCuZbR7C/gPZJpYANkSTqS0k6U9iezSEgtBdIcwCaXd9Trvvz84SiYRiyK1ENCkLZXQhbdJSAh6vE0pl9yo0u6qLPAiGOvWyQhlP/1pcCRhRypRYFRpT2KTxrc8GxCujS0h5AG1+1viOgGZDTQKq1m+XDbxF3no+HgPReGJRZNwj5dSDKNKuw80P/797zLzOd9053W7pVymaf2WtmJL9Q1vU2LtzmRk82BQiBxgZS2fNr/zneD48stySnvLlnYOI0VO4lnycSOlcHEZMFvoik97gP+zJKVdwtLOww4//FA+7n75cvuZ73uehKU9kwn3sVralYKFJhpj/AW9ww6z57Nny00MpIBQnG9aY9pLStKbzIbq+b7zTtDXEov0mDH2fMsWOUs79Y3v7jKHP0eJ+HMA6NrVnpNVwZeot4argMvfvbvukukbyvy9Zk0g1Etb2jdtCo4S44aP7+JiP4smwRd9KUWBK+2+ltfrrguOJ50kG4/83nvW6p7J+I8dUtoJifHNc2wkYWmX2gjgSpzve84TyUrWVAfCmzRSyclIsJdQ2pOwtPN3SEqo5+uO77rIraX0LH2uc+bM4Pjss3JKe3GxHTe0JkrM59yzSULBBsLjOwml3XfOIPd4bmmXeJY33CBvaae8LEVF/hvPFRVhg4jUWOTPTiK8rdBQpb3AGTkyOH7xRdgVDnBfpDt2tIr7xx/LTQx8MQXkFgHejlRyE2mXyuhi4jqB9e4dXM/nnwduqRIK1+mn23tcvlxOaU/CPYpvpiRhmSGlxpckQiz+8AcZoYznbFi4UM7SnoSHCn+HpKziXFGgDNu+SGYwpo25zz6TmXv33z9YCzZtkg1NiiYJlBDKeA4DqfHN3yFKtukLXx9875syQQMySd54PWfyegH8+zya8Datlnae+4Xfvw+SlvaqKjtfkBXbp81jj7XnkpUcot5DEvM5nyejCf5c4YqbxBrRpk1409X3Pc9maffpH1pnN22St7QTUnI030CMGq5coTxBgFralQKED7Zly6yQB/gNvMMPD45JuMcTEot0JiMrQBHSGYc//DD8t2vfVFRYyxmvkezT15lMOFlKUkq7tLt0EvFMFA/qSxICDyDT39w9fNkyWwJMyg2QkI55TWKnnsfw+cD723fcUP/wDTTfRHQ0h0+aFBwlnqXURiQniVAV6Q3YaJu+992tm1USyFXeN/6clCNyZafPfYiOb4lnSV4/gFx/8+sirz5fpF3uo+7IPn1zzjn2nCylaayiA4Rj2qUs7fy9lMhRUloqu5lEstWqVTJeaJR7qE0bOVlNOmM+wZX26Ka+K/QMGyuqtBc4Q4fa82XLwomGfBZ+Wkw/+SQ5pT2NAlS2NiUW6UjRA6/rpOfI+9v3vgtFaeeWOCkFOwkkLe2XXBIcS0rk+ps25Sjzt0SbPB5Zoj0gHLog2d80l0XDa1yRVNrpmr74QtZyBtjSPhJCWdSqJa20S1leMxng/PODcwo98IULub7rQ0mJbY88IXzbpLjp55+3n0mtEYTE+k0VRqTaI26/PZiDKYO+L1yJk3DJpTEukf+jqsq2R2X+pPNLADJyEPdkk/KcOu00ey41n0t69O22W9Afxsj0Ny8hJ+UFW1KSjBzNvXOklPYDDpBpp1BRpb3AKSoCDjkkOJe0tJPSPnFi+pV2SddUgguPaUpEBwBU0XDuXDnXZhLIxo2zn0kpH1LtAeF3kG9Q+UKbX088IdMeV+KKivzGzv/+b3Ds0kVOiaOMw3Pm2M98+yc6TqTHDY/P9eX55wOF4Z//lGkvGtPuA81nmzcDa9cG577P8tBDg+PeewdH6Xr3gKwFEpBL5gcA99wTCMw/+IFMe9ICLm1GSintBIXPSeQwiFraJTZVeBvz5vm3R/zyl0F/800BH7iCKaG0kwJD49t3PNLmJs3nSVjaJd5J8uoC5NbviorAir1ypdy4kVTai4pkQ0NpHH72mZx7PCC78UzweVJKaf/ud2XaKVRUaW8AUCKbG26Qs7STC7Yxckp7s2ZhQU9KaecTjFTcDHfVk1iko/FbPm5clC2WT9q+izTPhUD4TtySGxVJ8+CDQcIdvmvvAxd4fN9zcjFbskQm2zBg49ol3WejydfSXI5l4MCg5BIps75wgcfXzbey0s4PFHPv2zdnnx0caS6XGItJWNq5NZdcfSXIZGpbDn3gG8WSSjuV3/QdO4MGBUeKb0+iqorE+p2EKzshkbSSGDvWnkvIA9Jr4777BkdKSpdWpf3kk+25lGIIBNcqOb6lc+dwD0HAr39Iaf/6a2D16uBcutRxEkq7lGfF9dcDF1wAvPKKTHuFhirtDQByhXvrLXmlfcsWm/hBYjePW9ullHYqOQTIxUnxCUYiTioaM+TTJilcUjHtgBXyKKYSkLfMSC7SSSDljguEF0BfYadjx6Avtm61Qr2vUBYtvwj49w+53BNpVtqlkVTaMxk7/5L10be/SXiSLL+YRDgEV7TICplGkra0+66NJ54YHCXL8UU3nqWV9oce8m/v20Ai9l6qmgxBG7uS5TaTcI/v3Rs466zAWnr88f7tJYW00h4dOz7PskkTK09S6V+J+ZyvYVKy+U9+EhzPPVfOc6pFiyCuPypvNBZUaW8A0C4rYC0pviUbdtnFKm20EEhM2kko7UcfHRyPOEKmPSCcrEuCqHuUj9JOoQvc0i7lys5dFH3b7NIl/LeUpZ3CA9IMXwAlYl5JKJs/337mA41DUhIkSrwkUX4RsHWn775bpr0k4JtyEkIeubtKxajS+7h+fXCUEPKic6S0Jw1daxqRznlCCpJUeS1qb+nS4JhE4kGJ9buoKKhPP2pUut1eH3nEnku6xxNSm3KSSntSyVT//vegpnyaPe+4nCqR5T5qZZbYyAdsTpq0GtR23TXw1n34YZn2FCDlti8lH5591ioyZHX3HcSZTKBofvaZbVO6Dq/UxHDNNcEkdtRRMu0BgfvNCy8AP/qRTHt819o3xpkr7Vu2BOe+fbP//sGRhDxAPsZZapF++mlgyBDggQdk2ksCnhNBwlNjr70CV2mpmEWy7JGlXSrGuajIhlpICXm/+x0wfLhciaAk4AKuhNJOnhqUfM+3v5Ooqd6xo2xyxChRl9I0kZR7PCGltEuu3UlY2oHA8pp2+va150m4x0tn/5bob14aFGhcnlM82ZlEyKV0pY3ddwdmz7ZKu8T6zT0jJZNCKrKo0t4A6N49EBpXrwZefTX4TGIQH3CAbMwrEN7Nk1BmgMBd6OKLZdoimjUDJkyQa4/vrGeLH4/D7rtbd2kppWvvvcMKF+BveY3GFEq5x/foAbz5pkxbScGVdp58xxVSCqVK+tA4lFS4ou+PlJCXyaRbYQfkk/hEhXDfZxmda6WSQrZqJWvdA4LN0jvuAO68U6a9JOCWdgm3T2mlXTKGlmjdOhiLNJ81JsGeb7onkR9AytJOSMy93JOmWTPZxJBph/IGAem2tNOmroSlXZX2wqARDcOGzYYNwZEscRKDWFpwBMJKe7T9hozkgsfrLj/9dHCUSCLGF/6SEplEPjxuLc3ucNJwJYm8IXwg6w4t0r5KV1SoTyLfQGPqb/48JTaUpC1nUUuPVH9LW5yBwGPquedqewekCV5v+r//9W8vOh59heYk8g2UloavszEJ9nxtpBAlqfYA//HIlUxApr+5hTnt+Wik4SGnEh4/0aSa0uUXpS3tkvl9FFlUaW8gnHlmcFy2LDhKDOIkYlQpqV229pX4ULZYif7m1mGpRZpbIKN12xsyfMNDIjaXlHayZPuOxcrKsJunlMLFhZ3GJNTz8SJR2kZaaY9ai6T6W7LUXSHB79XXcwqQt7RXVYU3iqX6hisLjUmw589SYm2k0ouEtKVdor/5xjOX2xoDHTsGcdiPPFK7VLELJJ8T0kq7tBdsY1q7Cw1V2hsIlLiIXBUlLO1RJUvC0k7x2IAq7T4kMWknUfKDC/WNybOCs2mTfxtJuDfzRVpKqKea8kD6XdqlGTo0ON57r39b0cSVEv1zyCH2XGp8c2WzsY5viWcprbQXFYXnDKnxLVnKstD4f/8viPO++Wb/tqLrt0SZSI50JQfy7GtMnHsucM45Mm3xtVbCizH6/khsoHHPijRX7mjsqNLeQCDlaMWK4CghSEQVBYmF4IQT7HljU9olLRO/+U34b+mSH1JCPXdxjWajbehQDXCJSgTRRVQ6+VUS/S1hcS4kRo0CPvjAltvyIQl3V+kyZUCQV4NobP29ZEkQe8+fgStJlNeikDlApkwZEM7P0diU9hEjgpKb3bv7t9WqVVhx801ul4SspsghvUGehNLOr/Gdd/zbU5JBlfYGAlk5Pv44OEpY2qn8DCEx2XBrjHRZtbQTLYHmQxLurnzhl1LiKAYbsN4gjYXrrw/KED75pHzbabW083J8jU2JKysD9tlHpq0kEkvxuVdqfEuW2Sw0dt8duPRSmdwf5eXh8SKtEEttGC9fbs8bm9IuSXFxeCPFV2mP5syRyHAPBNZmAOjVS6a9xgpfa6NytQtJKO0VFTZXR5rLLzZ2VGlvIHDlCJBZUKOxPBKCY0VFkMhl4cLGFRMHBHWmW7UCxozxbyuqtEuV7JJsDwhboRpT9lkAGDAAeOmlcLkgV37yk/DfabW09+0bXNvuu9dOfqbkTxKWMx6mIdXfF14I/P73wIcfyrTXmOHWdom1dvBgey611t59d3AcPlxms6Ixw8ejlCcEIVWZZ+TIwMPgb3+Taa+xIl0ub7fdwoY5qfH94IPAddcBzz8v054iTyPLCdlwidYol1Daf/CD8N9S1jgJ97JCZMAA4PPPZYSd6CIv0TfdutlzCU8NALjoIuCJJ+RiwxorSdTh5ZtyUkJj06ZBXo2iosa3SSNJEuN73Dh7LmUlbdoU+OMfZdpq7LRtazOTSwj53BonNb6PPDIwEOiGnCwSlvGTT7ZjXEppb98+iOVX0kVxcTBfUOJpKaX9oIOCf0p6UbGqgdC1a1hIlhjE0RhkqYWgMSNlnYjGQEpYzvbf356vXu3fHhAsLB9+CPzudzLtNVaSKNHG25QUwlu2DCe1UeITnScklPbrr7fnqnSlm2hiMReSsMQBgZeXWtn94WuihGzF51wp93glvfBNOQ1VaTyo0t6A2G8/ey6xSEcFO2kXLsWdPn3Cf0sI9bxagERtcUWOXXeVL9HGcyzo2E43Ev09cKA9V6U9fbz8sj2X6J+TTrLnjS0UrRDgSf14Vn5XeB+rgSV9dOqUXHs6vhsPqrQ3IHiZIImdN91NTy+lpWElW8Iy01hLNhUCmUw4M7uEks1j7SXK0imynHqqPZcQwrllRuf29EFJvwAZpZ0L9ZpNPH3QfF5aKhOOduGF9nz7dv/2FFnuvjsY1zxMyQe+6a6bsI0HVdobEFwok9p5k9gBVpKBhy9IuCNHM5Iq6YIv0hKbNHxsS2S0VWQ54AB7LiGUdexozx97zL89RZahQ+25xPjm64NUuJMix+DBQfWBRx+VaY9neNc62+njhBOCfBDcA8YHPr5VaW88qNLegOCWdiml/eSTZdpR5OFx7dFs8i5ICIpKciS5s/7978u2p/jTo4c9l+hvbl3/zW/821Nk4RuvEl5PmYy1sF9zjX97iiwVFcAddwCnnSbfdjQfkZIOJD2cNm+256q0Nx40e3wDIglL+//9X+C69dOfyrSnyMEtpRJKOxAoCnPnAqNHy7SnyMGV9mg5Rleeew4YNQq4/HKZ9hQ5Dj7YnkvN50uXAlOnAqefLtOeIsd++wWZm9u3l5vPt2wJXKXVPb5xMH58UK5ryJD6vhIlaU47DbjhhuBclfbGgyrtDQjpmHYgmAz++leZthRZ+G66lJD3yivAokVh11wlHXD3Zj7WfTjuuOCfkj74xoxU6EqHDsBZZ8m0pchSWgq8+aasNY5b25WGz/HHB/+Uhk/PnsAllwSbcrvuWt9Xo3xbqNLegNASEI0Lbn2TKrHVvLkq7GmFJx6MloBTGh6ZTFCHd/NmuU05Jd1ogkBFUfLlzjvr+wqUbxuNaW9AcEF+6dL6uw7l24EnNOFWWKVhcuSRgYv8GWfoplxjoX17oGvX+r4KRVEURVHqG7W0NyD23NOeb9tWf9ehfDvstZc918zvDZ8WLYLQBbXGKYqiKIqiNC5UaW9AcGGel/9QGiadOgFjxgRu0xJ1XpX0owq7oiiKoihK40OV9gbGs88GipyWeGkc/OQn9X0FiqIoiqIoiqIkiSrtDYwTTgj+KYqiKIqiKIqiKIWPJqJTFEVRFEVRFEVRlJSiSruiKIqiKIqiKIqipBRV2hVFURRFURRFURQlpajSriiKoiiKoiiKoigpRZV2RVEURVEURVEURUkpqrQriqIoiqIoiqIoSkpRpV1RFEVRFEVRFEVRUooq7YqiKIqiKIqiKIqSUlRpVxRFURRFURRFUZSUokq7oiiKoiiKoiiKoqQUVdoVRVEURVEURVEUJaWo0q4oiqIoiqIoiqIoKUWVdkVRFEVRFEVRFEVJKaq0K4qiKIqiKIqiKEpKUaVdURRFURRFURRFUVKKKu2KoiiKoiiKoiiKklJUaVcURVEURVEURVGUlKJKu6IoiqIoiqIoiqKklJL6voA0YIwBAKxfv76er0RRFEVRFEVRFEVpDJD+SfpoLlRpB7BhwwYAQKdOner5ShRFURRFURRFUZTGxIYNG9C8efOc32fMztT6RkB1dTWWLVuGXXbZBZlMpr4vJyfr169Hp06dsGTJElRVVdX35SgOaB8WNtp/hY/2YeGjfVj4aB8WNtp/hY/2YXowxmDDhg3o0KEDiopyR66rpR1AUVERdt999/q+jLypqqrSAVbgaB8WNtp/hY/2YeGjfVj4aB8WNtp/hY/2YTqoy8JOaCI6RVEURVEURVEURUkpqrQriqIoiqIoiqIoSkpRpb2AKC8vx7XXXovy8vL6vhTFEe3Dwkb7r/DRPix8tA8LH+3Dwkb7r/DRPiw8NBGdoiiKoiiKoiiKoqQUtbQriqIoiqIoiqIoSkpRpV1RFEVRFEVRFEVRUooq7YqiKIqiKIqiKIqSUlRpVxRFURRFURRFUZSUokp7gfCXv/wFe+yxByoqKtCvXz+88cYb9X1JjZaXXnoJxx9/PDp06IBMJoNnnnkm9L0xBtdccw3at2+PJk2aYMCAAViwYEHoN2vWrMGZZ56JqqoqtGjRAj/72c+wcePG0G9mz56NI444AhUVFejUqRNuvfXWpG+tUTBy5EgcfPDB2GWXXdCmTRucdNJJmDdvXug3mzdvxrBhw9CqVStUVlbilFNOwcqVK0O/+fTTT3HssceiadOmaNOmDS677DJs37499JsXX3wRBx54IMrLy9GtWzc8/PDDSd9eo2DUqFHo1asXqqqqUFVVhf79+2PChAk132v/FRY333wzMpkMRowYUfOZ9mG6ue6665DJZEL/9tlnn5rvtf8Kg6VLl+Kss85Cq1at0KRJE/Ts2RNvvfVWzfcqz6SbPfbYo9Y4zGQyGDZsGAAdhw0Oo6SesWPHmrKyMvPQQw+Z9957z5x33nmmRYsWZuXKlfV9aY2S559/3lx11VXmn//8pwFgxo0bF/r+5ptvNs2bNzfPPPOMmTVrljnhhBNM165dzddff13zm6OPPtr07t3bvP766+bll1823bp1M2eccUbN9+vWrTNt27Y1Z555ppk7d64ZM2aMadKkibn33nu/rdtssAwaNMiMHj3azJ0717z77rvmRz/6kencubPZuHFjzW8uuOAC06lTJzNlyhTz1ltvmUMPPdQcdthhNd9v377d9OjRwwwYMMDMnDnTPP/886Z169bmyiuvrPnNwoULTdOmTc2vfvUr8/7775s///nPpri42EycOPFbvd+GyPjx482///1vM3/+fDNv3jzzu9/9zpSWlpq5c+caY7T/Cok33njD7LHHHqZXr17m0ksvrflc+zDdXHvttWb//fc3y5cvr/n3+eef13yv/Zd+1qxZY7p06WIGDx5sZsyYYRYuXGgmTZpkPvroo5rfqDyTblatWhUag5MnTzYAzLRp04wxOg4bGqq0FwCHHHKIGTZsWM3fO3bsMB06dDAjR46sx6tSjDG1lPbq6mrTrl07c9ttt9V8tnbtWlNeXm7GjBljjDHm/fffNwDMm2++WfObCRMmmEwmY5YuXWqMMeavf/2radmypdmyZUvNb6644gqz9957J3xHjY9Vq1YZAGb69OnGmKC/SktLzZNPPlnzmw8++MAAMK+99poxJti4KSoqMitWrKj5zahRo0xVVVVNn11++eVm//33D/2/Tj/9dDNo0KCkb6lR0rJlS/PAAw9o/xUQGzZsMN27dzeTJ0823/ve92qUdu3D9HPttdea3r17Z/1O+68wuOKKK8x3v/vdnN+rPFN4XHrppeY73/mOqa6u1nHYAFH3+JSzdetWvP322xgwYEDNZ0VFRRgwYABee+21erwyJRuLFi3CihUrQv3VvHlz9OvXr6a/XnvtNbRo0QJ9+/at+c2AAQNQVFSEGTNm1PzmyCOPRFlZWc1vBg0ahHnz5uHLL7/8lu6mcbBu3ToAwK677goAePvtt7Ft27ZQH+6zzz7o3LlzqA979uyJtm3b1vxm0KBBWL9+Pd57772a3/A26Dc6bmXZsWMHxo4di6+++gr9+/fX/isghg0bhmOPPbbWc9Y+LAwWLFiADh06YM8998SZZ56JTz/9FID2X6Ewfvx49O3bF6eeeiratGmDPn364P7776/5XuWZwmLr1q149NFHMXToUGQyGR2HDRBV2lPO6tWrsWPHjtCAAoC2bdtixYoV9XRVSi6oT+rqrxUrVqBNmzah70tKSrDrrruGfpOtDf7/UPyprq7GiBEjcPjhh6NHjx4AgudbVlaGFi1ahH4b7cOd9U+u36xfvx5ff/11ErfTqJgzZw4qKytRXl6OCy64AOPGjcN+++2n/VcgjB07Fu+88w5GjhxZ6zvtw/TTr18/PPzww5g4cSJGjRqFRYsW4YgjjsCGDRu0/wqEhQsXYtSoUejevTsmTZqECy+8EJdccgkeeeQRACrPFBrPPPMM1q5di8GDBwPQebQhUlLfF6AoilJfDBs2DHPnzsUrr7xS35eixGTvvffGu+++i3Xr1uGpp57Cueeei+nTp9f3ZSl5sGTJElx66aWYPHkyKioq6vtyFAeOOeaYmvNevXqhX79+6NKlC/7xj3+gSZMm9XhlSr5UV1ejb9++uOmmmwAAffr0wdy5c3HPPffg3HPPreerU+Ly4IMP4phjjkGHDh3q+1KUhFBLe8pp3bo1iouLa2V7XLlyJdq1a1dPV6Xkgvqkrv5q164dVq1aFfp++/btWLNmTeg32drg/w/Fj4svvhj/+te/MG3aNOy+++41n7dr1w5bt27F2rVrQ7+P9uHO+ifXb6qqqlSoFaCsrAzdunXDQQcdhJEjR6J379648847tf8KgLfffhurVq3CgQceiJKSEpSUlGD69Om46667UFJSgrZt22ofFhgtWrTAXnvthY8++kjHYIHQvn177LfffqHP9t1335owB5VnCofFixfjhRdewM9//vOaz3QcNjxUaU85ZWVlOOiggzBlypSaz6qrqzFlyhT079+/Hq9MyUbXrl3Rrl27UH+tX78eM2bMqOmv/v37Y+3atXj77bdrfjN16lRUV1ejX79+Nb956aWXsG3btprfTJ48GXvvvTdatmz5Ld1Nw8QYg4svvhjjxo3D1KlT0bVr19D3Bx10EEpLS0N9OG/ePHz66aehPpwzZ05IWJk8eTKqqqpqhKD+/fuH2qDf6LhNhurqamzZskX7rwA46qijMGfOHLz77rs1//r27Yszzzyz5lz7sLDYuHEjPv74Y7Rv317HYIFw+OGH1yp3On/+fHTp0gWAyjOFxOjRo9GmTRsce+yxNZ/pOGyA1HcmPGXnjB071pSXl5uHH37YvP/+++b88883LVq0CGV7VL49NmzYYGbOnGlmzpxpAJjbb7/dzJw50yxevNgYE5RIadGihXn22WfN7NmzzYknnpi1REqfPn3MjBkzzCuvvGK6d+8eKpGydu1a07ZtW3P22WebuXPnmrFjx5qmTZtqiRQBLrzwQtO8eXPz4osvhkqlbNq0qeY3F1xwgencubOZOnWqeeutt0z//v1N//79a76nMikDBw407777rpk4caLZbbfdspZJueyyy8wHH3xg/vKXv2iZFCF++9vfmunTp5tFixaZ2bNnm9/+9rcmk8mY//znP8YY7b9ChGePN0b7MO38+te/Ni+++KJZtGiRefXVV82AAQNM69atzapVq4wx2n+FwBtvvGFKSkrMjTfeaBYsWGAee+wx07RpU/Poo4/W/EblmfSzY8cO07lzZ3PFFVfU+k7HYcNClfYC4c9//rPp3LmzKSsrM4cccoh5/fXX6/uSGi3Tpk0zAGr9O/fcc40xQZmU3//+96Zt27amvLzcHHXUUWbevHmhNr744gtzxhlnmMrKSlNVVWWGDBliNmzYEPrNrFmzzHe/+11TXl5uOnbsaG6++eZv6xYbNNn6DoAZPXp0zW++/vprc9FFF5mWLVuapk2bmpNPPtksX7481M4nn3xijjnmGNOkSRPTunVr8+tf/9ps27Yt9Jtp06aZAw44wJSVlZk999wz9P9Q3Bk6dKjp0qWLKSsrM7vttps56qijahR2Y7T/CpGo0q59mG5OP/100759e1NWVmY6duxoTj/99FB9b+2/wuC5554zPXr0MOXl5WafffYx9913X+h7lWfSz6RJkwyAWv1ijI7DhkbGGGPqxcSvKIqiKIqiKIqiKEqdaEy7oiiKoiiKoiiKoqQUVdoVRVEURVEURVEUJaWo0q4oiqIoiqIoiqIoKUWVdkVRFEVRFEVRFEVJKaq0K4qiKIqiKIqiKEpKUaVdURRFURRFURRFUVKKKu2KoiiKoiiKoiiKklJUaVcURVEURVEURVGUlKJKu6IoiqIodTJ48GCcdNJJ9X0ZiqIoitIoKanvC1AURVEUpf7IZDJ1fn/ttdfizjvvhDHmW7oiRVEURVE4qrQriqIoSiNm+fLlNedPPPEErrnmGsybN6/ms8rKSlRWVtbHpSmKoiiKAnWPVxRFUZRGTbt27Wr+NW/eHJlMJvRZZWVlLff473//+xg+fDhGjBiBli1bom3btrj//vvx1VdfYciQIdhll13QrVs3TJgwIfT/mjt3Lo455hhUVlaibdu2OPvss7F69epv+Y4VRVEUpbBQpV1RFEVRlNg88sgjaN26Nd544w0MHz4cF154IU499VQcdthheOeddzBw4ECcffbZ2LRpEwBg7dq1+OEPf4g+ffrgrbfewsSJE7Fy5Uqcdtpp9XwniqIoipJuVGlXFEVRFCU2vXv3xtVXX43u3bvjyiuvREVFBVq3bo3zzjsP3bt3xzXXXIMvvvgCs2fPBgDcfffd6NOnD2666Sbss88+6NOnDx566CFMmzYN8+fPr+e7URRFUZT0ojHtiqIoiqLEplevXjXnxcXFaNWqFXr27FnzWdu2bQEAq1atAgDMmjUL06ZNyxof//HHH2OvvfZK+IoVRVEUpTBRpV1RFEVRlNiUlpaG/s5kMqHPKCt9dXU1AGDjxo04/vjjccstt9Rqq3379gleqaIoiqIUNqq0K4qiKIqSOAceeCCefvpp7LHHHigpUfFDURRFUfJFY9oVRVEURUmcYcOGYc2aNTjjjDPw5ptv4uOPP8akSZMwZMgQ7Nixo74vT1EURVFSiyrtiqIoiqIkTocOHfDqq69ix44dGDhwIHr27IkRI0agRYsWKCpScURRFEVRcpExxpj6vghFURRFURRFURRFUWqjW9uKoiiKoiiKoiiKklJUaVcURVEURVEURVGUlKJKu6IoiqIoiqIoiqKkFFXaFUVRFEVRFEVRFCWlqNKuKIqiKIqiKIqiKClFlXZFURRFURRFURRFSSmqtCuKoiiKoiiKoihKSlGlXVEURVEURVEURVFSiirtiqIoiqIoiqIoipJSVGlXFEVRFEVRFEVRlJSiSruiKIqiKIqiKIqipJT/DwSzSh8ZYJD6AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } ], - "id": "36c7dcfec1245abe" + "source": [ + "import warnings\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "from aeon.datasets import load_kdd_tsad_135\n", + "\n", + "warnings.filterwarnings(\"ignore\")\n", + "\n", + "X, y = load_kdd_tsad_135()\n", + "\n", + "# Create a time axis\n", + "time = np.arange(len(X))\n", + "\n", + "# Separate normal and anomaly points\n", + "normal_idx = y == 0\n", + "anomaly_idx = y == 1\n", + "\n", + "# Plot the time series\n", + "plt.figure(figsize=(12, 6))\n", + "plt.plot(time, X, label=\"Time Series\", color=\"blue\", linewidth=1.5)\n", + "\n", + "# Highlight anomalies\n", + "plt.scatter(time[anomaly_idx], np.array(X)[anomaly_idx], color=\"red\", label=\"Anomalies\")\n", + "\n", + "plt.title(\"Univariate Time Series with Anomalies\")\n", + "plt.xlabel(\"Time\")\n", + "plt.ylabel(\"Value\")\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "d6701c2c-fcbd-46f0-90dd-3077337123a3", + "metadata": {}, + "source": [ + "## Anomaly Detection in aeon\n", + "\n", + "All the anomaly detectors inherit from the `BaseAnomalyDetector` class and can be categorized into one of the three categories: \n", + "\n", + "**Unsupervised (default):**\n", + "Unsupervised detectors do not require training data and can be used directly on the target time series. You would usually call the `fit_predict` method on these detectors. \n", + "\n", + "Example: `DWT_MLEAD`.\n", + "\n", + "**Semi-supervised:**\n", + "Semi-supervised detectors require a training step on a time series without anomalies (normal behaving time series). The target value `y` would consist of only zeros. You would usually first call the `fit` method on the training time series and then the `predict` method on your target time series. \n", + "\n", + "Example: `KMeansAD`.\n", + "\n", + "**Supervised:**\n", + "Supervised detectors require a training step on a time series with known anomalies (anomalies should be present and must be annotated). The detector implements the `fit` method, and the target value y consists of zeros and ones, ones indicating points of an anomaly. You would usually first call the `fit` method on the training data and then the `predict` method on your target time series.\n", + "\n", + "We currently don't have any supervised detectors. Still, the problem can be treated as an imbalanced binary classification problem, and time series classifiers can be used from the `aeon.classification` module. \n", + "\n", + "Following is the list of all the anomaly detectors available in aeon." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "88276e2b-149a-4d32-aa4e-e15400c1086b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[('CBLOF', aeon.anomaly_detection._cblof.CBLOF),\n", + " ('COPOD', aeon.anomaly_detection._copod.COPOD),\n", + " ('DWT_MLEAD', aeon.anomaly_detection._dwt_mlead.DWT_MLEAD),\n", + " ('IsolationForest', aeon.anomaly_detection._iforest.IsolationForest),\n", + " ('KMeansAD', aeon.anomaly_detection._kmeans.KMeansAD),\n", + " ('LOF', aeon.anomaly_detection._lof.LOF),\n", + " ('LeftSTAMPi', aeon.anomaly_detection._left_stampi.LeftSTAMPi),\n", + " ('MERLIN', aeon.anomaly_detection._merlin.MERLIN),\n", + " ('OneClassSVM', aeon.anomaly_detection._one_class_svm.OneClassSVM),\n", + " ('PyODAdapter', aeon.anomaly_detection._pyodadapter.PyODAdapter),\n", + " ('STOMP', aeon.anomaly_detection._stomp.STOMP),\n", + " ('STRAY', aeon.anomaly_detection._stray.STRAY)]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from aeon.utils.discovery import all_estimators\n", + "\n", + "detectors = all_estimators(\"anomaly-detector\")\n", + "detectors" + ] + }, + { + "cell_type": "markdown", + "id": "d2ce2a07-915e-4d20-94cb-0fc8aac96a8e", + "metadata": {}, + "source": [ + "For example, we have STOMP, which computes the matrix profile and records the distance of each subsequence (of a specific size) to its nearest non-self neighbour. The matrix profile can directly be interpreted as an anomaly score because a considerable distance to the closest neighbour might indicate an anomalous subsequence. We have various performance metrics such as `range_roc_auc_score` to assess the detectors." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "efd5f400-41e8-40bb-8a8e-6317386c7532", + "metadata": {}, + "outputs": [], + "source": [ + "from aeon.anomaly_detection import STOMP\n", + "from aeon.benchmarking.metrics.anomaly_detection import range_roc_auc_score\n", + "\n", + "detector = STOMP(window_size=200)\n", + "scores = detector.fit_predict(X)\n", + "y_pred = detector.fit_predict(X)\n", + "range_roc_auc_score(y, y_pred)" + ] + }, + { + "cell_type": "markdown", + "id": "bcfcbfc5-8d6e-4a5d-ba3c-b952c32dc8f3", + "metadata": {}, + "source": [ + "Another example is the `PyODAdapter`, which allows us to use all outlier detection methods of [PyOD](https://pyod.readthedocs.io/en/latest/) for time series anomaly detection." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "743fbbaa-a7d0-4f56-993a-07453f6a9442", + "metadata": {}, + "outputs": [], + "source": [ + "from pyod.models.ocsvm import OCSVM\n", + "\n", + "from aeon.anomaly_detection import PyODAdapter\n", + "from aeon.benchmarking.metrics.anomaly_detection import range_roc_auc_score\n", + "\n", + "detector = PyODAdapter(OCSVM(), window_size=3)\n", + "y_scores = detector.fit_predict(X, axis=0)\n", + "range_roc_auc_score(y, y_scores)" + ] + }, + { + "cell_type": "markdown", + "id": "bb927d1a-ded3-4b94-8c03-604eb40f104c", + "metadata": {}, + "source": [ + "## References\n", + "\n", + "[1] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. Anomaly\n", + " Detection in Time Series: A Comprehensive Evaluation. PVLDB, 15(9): 1779- 1797, 2022.\n", + " doi:10.14778/3538598.3538602" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6083369f-fb43-42de-a2c2-58308a3977cf", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", - "version": 2 + "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.6" + "pygments_lexer": "ipython3", + "version": "3.11.10" } }, "nbformat": 4, diff --git a/examples/anomaly_detection/img/anomaly_detection.png b/examples/anomaly_detection/img/anomaly_detection.png index 3e8d78bcfade85fc4c2ba1cfc21366df22402548..9e950da16f6175881a76717ee15b817b8080d754 100644 GIT binary patch literal 73962 zcmeEt^_xv=d+@`B<_8(`?qf0!hI_x_U_g#4Axt> zZku9Z0Kec%PPPL7Zacn{6uDJAK(P*dxoh@D?#-=RWngTi0Xp#go}HA2kiz>Sox zw`~TUg>K!t&VDQQM#W8cD-ARCxoXulHmEGhq(%I(7(O~0H2gLi-Q$jMtdM(-9-+Io z9#9-p_p@{<#b5MKAJH;|Vo5*l;p+-CnbZNn)8wwt)kf2VoHx{5p|ZOJvg5mm^CKtc z#GU-<({#_Bx2_eqjn74}r~~l+`;Tbf>UrZoz5`d=56l4D42c4#68*Okqs_NbAtIbabZjV@zYjN1S^O@A66txz0|F z4bZH*3@rI!Qg&yo3zJvO2I3h`3^Vtkv{P&})GAKibU7-@v(<1oK<+{8K%RK8WnI5r zJzWYFLRj%GhCBnY==^+nU4rpY@Mthd@N~wpP1kd~YQcyKp?+oMc-F8dTn4@C`M}Qz zEa=i^Q@^d|W)18KxzJh5Lz~*`E5xBIw^`}9<%09vX?a3p;gN>dK(5en9xj*JKp$*2 zna^?c`*qv(6m(JB7r8`btKR70e9?4y3TrO8Jj)=_LrjeikGsR1$8~B9E-#MHne7Jv zA(~F9+?S)yD@L6*rrMnCsA|s^!$!JJxX!=0lytNrEZ8qT3qw)USitxW`?wHO)uHm& zW81$b7Wvn~slI1IO&MBi2p*W1;}uo^WTJJWp}4}7E%I!+(|uS-TY*_#@c4JrA+o;& zER%t~WC)3641})KpKS|NVp^NRsER+2Yw8eqFCY)03e7RQd(AxHbxcVrZ>L@#v<7x0 zdxpimZD@b<7|w;!8Ec(n@jdDdxk$_z%vaxd&?7UD83`RTk)P?)oZejxe3%;LHXP@S zJP$p8<`o~eB0!v8b6PX&qIH#VnLFYbELifI{y0k>nU2S=u<9Vx=0gW_+-t$KbwloV z9lDwn>Qu0eIuAN;Bi3_+DLu@4tEXZeL3X$c$rgt$-IHPh>X^Ik634F6q0jxQ*Sg_bM#Vr4;)+laZEN8aakic;pG6=h9491o^mw-{|K} z+|t(v1L(fkaKiACetl}l9ab0J1wJC3O5$<6^b*dy(vOn^@Pu zOA)X@djnyx)|u=Vdl8JaE-$dJZ|y#rQ4y)ZRshu2MRc{wp;IM-HC%?5Dl&MX{%m&o zw&?R+`1OmAfSX2g&AiIyxh-L`Y|oX{Z806&L+QCy_T7~up<$7*L<&YVe+(Boty{O>HGC?!Y10v}Ws}6BQT|*|x6)3j zeC0Rmh*7U;igi2{?c3eVr+oYE1Tk~yE(cAgjqL7AV)Vl2Jqp81uFZ&9?+o`5 zIUd^F3?C1@jBiwXGsX2g$wDWJQ}e90lgxF?(J}{S(Z=vJS9uTOYKxSEq*#&KlPSv> zZ1#p1mosw5S~X!*?@N3yH)G5MH#K_3v~1H@wx4jh!hH1{4tnTMkI{I6MaC$2EfSn( zagt{h)$JrS9cA}qiiaJTl|zlfIR~zfOMGc_(_A!PrQbPXy-*LQx?GdI31CNV*O#XX zzEqt&*01YrEBZk_v#v0mGuf%jWXs~WlmN;s>+E{Gzo1w$-fcXU?;7ssfz9yve1z@! zA*eziPq2)FPaAifOJsBpq7$Agcnrr3pDggRH=Qjum7yOMk=r(KB)znFcO@I8X0*9P zb?xRbW8anCrH5Q3o}NlQSz-5epQ^SynKYx{^@8({7*UIPuUF1J=3R~yjn246!q2m0 zSGVhTn|i{4M~qLlCVS9{wFl`5&KuHPrWosXrZzJ4YDIRXUcX*DnknO0wOU)=y>}vTF6Vn(pqCAoXr2aQatycS*mK|WUcKRS zfzokZ&+N+`?h<#oR|!L=M;Zer>%-aWsS%WqeM&?h3cft=f`spU&ALwCN(pGb{@l9Flkr?7u)lOo zM=^)-{0jLIzQ!y@*GV(O(|KHtZN1mQ?!z%f-0FJDmN>%Vzt@;*S+R?|yEK+pZMwCu zF;lyvo_BYu??lokCO`ZRc?*e9Leu&in+ba;$2gR)ora{2j(kO`u8N64@{I-d^2gw6 zco0jub^Eo-&){EANsDm zvR*5HF#c*4dZ0LyoV|5OTJ5E<h0Q&@TpRcRHC#d7pxLTBPBA&*1KDVDb=B@iq^i%66;}VaE;@O&f2+%H|he8mTDW% z8iKXxr;>e4BFK;mguLp7BN5dR25CeyFIZHn>bd8FwJMsvI5IUn%#tpERS=F%enjSF zrj?oChV=W0{_1`_7giyQMg6op(2l%t?yefhz|ESDhl3*c)FF&77jv<4t=$WKdo4ZX zlMDRI9;Hp%2Y>nNbbVNx`{Lt*3vH*7uVIdsAYw<{Zxl>5E>4rCP7VX6R)MFLnuxFC z!KVk)IG`WmSk#8b=T|7ZBp#|)Tw}K2dR%!p+mP!TMZh{s@RT)0<@%Sc&tVGkN4I{7 z>s*7og+}tN^#`(>YfK4~qGpqDfEIba3c*eXkK(>1JEUa`ugB zi)d75uYF?U?pOx5RC7->$>d=|I8``YwkDQ6VF=wThPTu4G z#pCbXoyS}-w#M-9ucx)K} zE;A2`C7?iX_E2cf3ZUHvQt32Pb2AW79b~ozc;l%HPyiKzMZ~pSgiftWi>LZ><((y` zTmH{G1!d@qPlsjL<%s=1`c+Qe;oP&mKC$g_nYK>wVLx`ibPq&-UebKpxGM)vDYMlj zAkLpEnWS<03LwF0Ddrol+F~I__YykSkATC%Q;|w-cmjB!j^hWh>FMde=c#O_ zZJWKXq^pS~_;IR>{6Ke#69m;Y{X|>HREv@DxOIEN5})IOk>ua~ZmV1wNmR5wTCj_; zoCo|k=p#9DGPszjhsg88!}n9cu$PsH=nk3toxz?v7B&o)7zk%On^fY1f(_S7PsfG@ zT-%Txvu8j-(;X$hCP%E}q~sGjx?uLjvf~ZrlUOR+K<{h}QTkP8?Cpv?(yf`H&!CCN z&G2d1)d`Z}3vM4NkB#;Lp>NMOrtOo~XGo%%cql5L54 z?l2;p(sfFVrH?SY27+p*;n6^2~kVxRk!G8Wf7S$k&np+_PH>ek5> zt&}B^4dZYw$n&m&3+}p~*T*=a^}4KyX%Xa+V5M~O_*;b$H|+(UXN_T?g)?2AUsn4r zy0F584O#<^YTlf%=rsxWR^yCAgQ~1LdveCDm#+cx57+xcc!m;tx_t8kk4$)rV4 zad3a9f3cXU1pm@IENYBT|IzmPNN(@?l+;VF%fj}gyHK6SiRFWs;6X&L*xna1yG;}iSb7x2VrRB3HJTS)Ca`_uVcX;t8! zen>U;0Eza}*}lG7-Kj5ZW z|Gc_H!LU8}p|AZyG+e&sI3{C8xBZ$RZm-o(TTOgP&ScC}nK^m<(*FdNV5SR8M-#~NQft&X$Xzj@`Qw-{d~CYRX`D-? z#HJ3&CGdzDRT})J*#cj{y7!a^lZk*8C`tvkH_|Unj0T>hnfuG_dsaJ$;JM+G2>W>X zyyOis9Ket+jG}$(YbfV8uv+Gav2FbQK6U%+s6QpQU%B^E1WyiauvGwWq^7*sF#p{C z7vpiW?P%mV)K@-Z_c>t0RhoCJdi9GF0wcJMUGG@_egGeNAQmR7ig0d~(w`(57gCg} zDrx1vhcRUv)OK8cW>ONWxOf}w_Z4C{gTlTYKd&O9iOdF7yIrKqk7QJLCV}uSEUn7V zd?!Qqy!6HeB#RRI+rg-G)co*SR8hMEZhNEC?zrHQruX%?tjR-;2 z`5#$dAmHfbtlev4&2%8n7&?jAYF2$v^#B)_jjCy7cNOggt(lTqr+uIFTCsS4y7f?$ z&-JcmRg2Vx;Izq)X~9^}Ou0)RmAlCS(VD5_l0wKRlrMuYGzkG-ZS9rf7~@-~PExby z*u-pdY(SE!GGvzZs{V)QevW`#?h|4_A!Q8fcm3;huf|PzOZ`?d1H&%7E4YJ;vNDCo zNocwOup|i6>+P&P@f+^LTRIgcF>fZ_*raWpi@!2>7#~dK!+Uzk2|T?K(1rk@_o ze)?8FVij6ViQ~TwFDrbUNke-5+MNlKt?fLj+Vjx&tZf-Zs(hQRn~eB1UdU)Ffpho7 z;9fZvnv`ANU=xY<$8q5+cT(X1yiq3+y5Kb*r-(po;v7H`w62;aSWcl=ycScVf`~Rn z=##;GT#4b`NjA~hokB*tfWe$pOmc@{cf{EeSYh{eV?-Ygb-;xBpIWwH(lBhOXH)m| zr^?WEm+(~-i*5sN#Jl^)UzEBrE6VI~HW|z%>OJKrPOF$AUPNwISsYZDLFI{`UN&lo zZYrlA#3C6GO)el(SssFy7Q026y%tL@(im0J*}F$o5ARZG>>6-XG}F(rj;UIK_b zoM6ymct#F8lNf<6B45cBRL>a%=dMVSZdX^aW^gAS=nQU9q$tsPPOQDM15Abpbn(Ri z*S`paYl|tZ9nd8CIZRPBwJ+s`#N=Q@TEs#i-f=d8hw_U(8up?sn@#|wBY}8u$qAyn zOvC;!jcix8NS&jUQ^P+|b%)#`t0d~U)yMdDy+sYcvf(UO0{rXHs9P4pkct>%S)JWS z@h>{RKFU3@?OGeSQ>U8q5q{9i4h84e0r|j%Py$YnTFUJQ%O0r00xtR1p@Z-}4#fPv zSO-2S(N|M%=HljWXX#AAViWuyK{j1Kyb;?qa7lZhq(l1_NAU5)Yrrvm#4PeDtM6Ah zU+lOgVkSlRa4a6?J!z7#BAJ$@s-^q@a-st%u6m^qjy|sK2;jt9-Mvr5IQcqSX+~W6 z#^6~BBvA6GjvN~8l4mlprmfMB-FmcPFg>hj^^z$7uOCQA+P&^~_sXz0z7(|S;7*v0 zq^g<|_^DjUPmH(h=QCKmGf5TXv16W#D*@RBKDMRGtxra#k%N|3h3;mUquEfm=e(8& z012-uK)f)b=`e4xfe1oT_SuNJtHUCfd!w?3e7h54s_1De(_Zp;Lylhd9hUy$(|%hI zM@|z+>`@{vE)-yxj@(`}T#S|s0N(sPMjisrKcC(8Nuc7k6|T=ats2)&q3UQ!q}aIq zzKo-|vAMFM7AJ+K73zC+Xngt8k5wx8z+>_&*_k(SNjmH|$(xi3sW$l`d97w3Bj^T~ zH%&v#9R~Q|N0*>V))dnRo%=7;jYL^wKKH*w6D)ZDQm~l|`YH>`fKSqQe0QRdtNZte zg0P_T_bJ@k(>c#w6eQ#WnmStLX|7Ws;$WZr`h{V0jILR*Na<0qU@HiHdjOpzzK!DO ztf6ZJAr1_>AMS|84b_qjgf>n_Y+U|g3Jhs# zK@A5$dQNXjL;GMF(+ur$ksO9BIjU{OSvd|em-@QPvxIOCMI>Y=hrolN<)N+D61lR@9q*;)tIg(Qn-gSA+cp2J@8?q^ z3gNw9XqemDHo-0?nYdE-vQJ-i05J7mPHC4|VSxYxtmS#uoC~5y;Xb*YFDl%F0gBb= zrZ*B&y!edjT9!=a$3CaGk{w+A@lo4#=QL-oH|Oc#Anz|Ncp7{%$M#LcN)Z$uoFkq%b$+rhtRF@2mopp}zRp{du{Ps-_vmr$t_6PLy zHJy7--PFO~!K@@?B$m9XQ|H?kGW^#47_s5Kzkq$Zdf7VIMq+YJG8Ne*Q(54wj}z-M zP!`HGDOzcNOEQiB3>H%|P5CHoV)p{VT2&V&A8j)r$yDri+-z6bAC{IdSzXMw2f>7i&$Y_F3M%k^>RY zht?3dz0HDm22lMSC@_qyTh?TZJUDR`xJDixn)TY@o>cHXoEl1BQU>m58ZT)$fZ#S_ zA0nH{oi0441EE#0p1OnSLnM&S?MwCpF;_PnI#^Bm+sFo%b&pwH3~Mi&J1i0z${Xm9xCN zuY~$L;{%~@f`YD>I;#L0h)_-Usc;(wxKPB$eiIDPTI=6qF6N*SP+SL&K1narGi_s4 zSt618gBJjMz+cHlJmY(P>23YaS(KOri`-}jpdKuPUEpmfnpU`ga7|^QvCqE9d{i%} zHx(D2?r8&a4 zT$7JgJ^UAO^I1m|+>j^yXMgy&w5GW(DqjJenT{)Am!)J41~tFiqvVWrfz?ZiyIS?8 zIvERb@Dx7QU$34S@-)T3iiN`}<#p@5^_bPqs_GenpMBxY%=V+1Nj^?PH5p1hjyIeZ zo*5-m7> z3eW#(fPC#T>C|OpYW@s7c=P?ULMksuk$0~yVJurFQknl4&IoqgDr=UNSq`|k_9Ds- zWoQxQBmGLD^doD!{%NQWC~w`b#A}6lT@a3FzD6`#oPS^GO~{3Am-n*uG$D3UD7^OQ zfvz0M>`Ujyk#X!;4Sn{|F!m@gpm`m#vS)rF3{Nlpscf-pIk0{R`4=B7^`XGE_x$hhXL{3 zN8D+)-lgFeJh9rUHq}nI?ksTEK2m|H7e>BwbzIQT+=9{wdl(9Cu5G~gEcwvUNi;K{p@ID%fyGR6@qGWumsHP|fOQ}5ejuvaFl7S&M8^UYUzGkR@ z9HgyCPE5Ks(K`64?Y_@h8&y0ApHKuVERMB1d7=CDia{+z+@S6I*L35p9C zHo7Ba_uX6=8%Wed$n8;?n&Cv5%k~uVM{+)Tf_KwK?eyBJB{|!Vh%g*uD||)|fE>^5 zO0jKnzv)nP0m4L+h6v1%n5UDG;)wf_uDMeBoGk$5K84%7p988~V*JxnHdOcHP{tba z_S)2fN%yw3)B^#o5(iin7IhF+tSz$N)+YuiYS{sL>^us{r^$>7QPT zgflikvuqiaW;iTpc5RyEzD0@pU4pkjfZKwTi7or02|ZVp{D_; zE(y<@a}b8=gD^ore{JOaIcQb~KB(A<&;UXavlSzG5?jE88--&ZM^CQsHv~Qu{S;U5Q7$r z+_ZR986-Gn>MIiNwUy|zNRW}(uw}v?vmlB!#14>JdMiMD2TYnq_>qWH@=Zs3tGsu3 z=^g>y_m!`@R|g5U<^8RJc&*R=(Q3cxiU*-HJ*2()^k08M4E+AtT?aH5KtlBA0Kk7A z0s(G1K~*W#?Sthu);>=!+JgEeEgZ#eG)NUL&ttm)Sq>I%crJL=EvXwVaH=u=y-P_V zV&EY#O$g3^tk0>mR`4nS>9Jb(?3_!+VWt@rmJO%DH{vi;HdghPxYb3lZcU=3|-xjA0#Q?g%qSnlkMcJYV z&J)mx;lDX#nh2O=aP7wJ0^F&4f$qUfPVw5=fuplc-m>R?# zHMjRojrwQY06er#Q%!;LUZS4l^iH}NU;$#jH)PMBO#zfol44QTHd}CzRVWZkf$AV# zg#FXT41Z0?VoSf#Fbh1XLW!;SKSsahsd?87eISf5Vi~oanY4e2-@@hX!RgsEWxN7O zN8Y<}u{Gg;-QjBEA(?}Y0w_Srux_rkzy6Oc{h1u4 zncK|oPrjc{g=hiZ^gplKLw~X!W=Xg+fZ!<8m=gb|=p6c1IUNCkjw6UjlW$h2rCt8( zIx?Mzm#Oj|z$=9K{dKTw4GV0Q82gGP762PO!>@lYxwV#1=6({<4Eyd708_xMlK-4_ z2tWS05q1(0r1pPq))Rx#4VD6t8=xd%_-hZolsX(w9SIq$ci)&$^S`D9Y)6;qE4 z`YS$Ivrcp68=$1hzYdBS4x)Bh7@}Bx19E>2yv7Tf{$IBDYm!!!MOlvI0BXJ4e?`wV ztm@|~-Ia=+|BI9_WunWxAB4^~3^t+M=U-?ySg1M6@X(}!W%pW&WD5V~P8b6}S=w6TKb3z0g!o@n z3_QNWe7#(O+TxI_zkq>+*F8u4X}oorTXrf5YI8*YnphuXC6qrO`$vZ@f9a6qMT&K` zM!D5-5E96{usC@CwXimf8z*&o@Rvz_Rc|o#_IWIsbTips@CE2x1PA-CQTz?xLQPR= z-M@$THynaE_pB*p9iYsv{ny_CD6t>ZTh208td%g=WnKkG`56A+KpaX~Q0{30U~m8l z%U`hNS7BrA5!{xkfwCH`p$C6myj@{%sMG^^5-LFrSi}1JVp}@kEFc~Z*7cr~n`5?` z{|c<+AS)>~tLkc7VeD;7V6}!X{@z77hKJdlO2B&l<-v-84`s|T0~{Z9yZ+xR4b2uL zA4cS}go!i9c>_ac3jU=()DxwDm{i~+pkFKw1|k+HMATh{4M+_B6}YV)S2ChP$G8mTK<)tOqQPiFy7f1S}$`} zLD83gqG5>cPQ9(}L9d=}5{2tbb2Ki%2}AGSNRC<^VM>u+LZP-!Uv(m`$R z9TZFhF*x%C=*kJ5ALT-&fwo`kGQdpA93Wt@#AYCw|Fim#_;5%$%Tr#a^p`$qoT!=z z2aAtYtcbc`kt$&(Va6Grdc*-4jgr(&qQo9z1o$2ohx3((&w&!2!B^ss0;zw7I9tZV zF?$Y+@&RPG2o4cy1XSpWo~%eXVN{(d(RhX~{X-`KF)U0UuN9+#Nv2Q;r`)<*-xyx%fF(p4bM#i|>z9j#h0mUH?>I8BJn6GtFdpA8W0(x9D}wZXvsc%$tRa6 z^i>?wre${Fdk(XmawLO)^)o}6_7;l;#5g4G1N#tZapOtUORd8If~z>MQ-0zcusCcP;l^RDBZ1j<`p8j10;st=yM zeIOc76kyNbYD^fIIQ*2;6v}3%@i8;5;C!^CSibkgFR5eLWp=7r{->#G`3RU&LD%#5Qcof6#>13QE@%VawsKxY)#=r8ObJvE zpX2IK_&SwEBbn3^zyLLeow|riQ!!FbZdczPXw0k&LgS#w_L>`Y2)yjb>IGOc(i=}Vcip|L4>E{ZqOMRcx^DoPj4|lJ9T&8r_@aeBkrYbA*08lcEJdVZl>DBrolYZLJHgfPe z^Y-?Ve?*SLj6f2v%VE>U}B;v=0UmgtFf*zBIAQ9aF1P6 z9+rIAuVikfUX2dH(>|GamLVac?Q*A{eB;%=z;$~PSS*N81P9kx=!xf+YLD=hz1~%L z$eUlw<4rC;4oeZ>?;3Dk?a3}F<3S;-IxcEI60USf`faz-oBhct&+<3%N1~Mgza(NmrESiM z>S}K{1~}UJX*r8ZkaadgQpK@{_7pCev~@AwY`P4-Tc|aTmHK(zdUype*P~$k@?3Fu z*llrSM~gbQk;Kpsmi*6g!S_*$O-?_~mfIKSp8LV_%*)YGzFoCo`E|G-ekVUpy*)Lr zr-nVUaD9km>al+Nqix4FTrL22?;okanj>`#4%L)!O)SJLyNP(WO0h?z+-MekFDhgX z-iw6;+^3$m{D-4ZBk-k}2MeSWYC18l(7xZIF+yjPZpD?SL@8}aedF#E{H!l12)s9y z+V!|&1r9oyNv|M-HLFm)C}F0|zF1yxpSFr3Xx%J~*vxYvgcB@To~|NakgU%5S{&Ay zM4FcXo!A0t_>Rx8yr%B6(A=^i+i9v-C%dn5^&^?whQUmeMUSnqAQY2|MZ&>SyJoeI z%l56y)OzXM^yzWoS8F%=SrV)={l{5Gr+vgsa zDccr@^%KLr!cCoL(W;UXv%bhKD&^cvyi5eii99w=SJ|2tKXoXEprD||-H`W>)JoJ$ zLxY=ux2l3eP!a1s!<=W;iq9Y-D+7!Bf`FjV6Xku%Kky>2ZBd5CTKhh z$(EEmBMRBM)e;EeD(Dl}KE`84^zoPa*4yKJFs@YaAXTZwcsOWy79U90GjKVYPPT}8GXCTrNS)k28E!(ex6^bp z(UDl;1q-UpsAyK2?za*KUeRjk^=EN$CXo4 zY?29|cv_A_erTi1huOruC&x}D*h&)d3ymlW zvcyQ)EO3SD+I))#h}hpsyy5)BbinCys%Xc7I#ypb9Q0>~oljf4GXv$hg&t9wvon4* z!4oU{`Mq-dr*mlX=l#95l`Gm{bqY{BxQB`KYO$SD`T1r+5?@8C66WmVA}@IAvG+k| z?~^k7{ivF!8dSL-gt2=rJ^(LC7+A=bs8hE&;Ls$LH2pMB#2?jmZ9GX>e^@hnqVD9Q zN~e&TI3m)*4J_x|xRSN7vilF-1YHkbJ>SgB1|{9+Jy2gC_k-D8ZIUOh!^-0H=TqYY z3SWeG^m_Qwomt4j1pH{d`! zxd9pVgJ$dVBV(czI|WkypTD7ENiu9oIj^~1kWo4I2{R+2tseDL6GSx%GYEDzrjCpb zs+pzQJ5G&9n)HSFzPkQ`R4vOR1w4m{M^m8Yp+z9a@-icrr^_TMk)o+IAarla^#`<{ zyd1gc1R0O>c`MAixRh0hh2%$l1ZGvHcKpyg0!t=dwwJTKrd3;AkC&E_TwkZ(5JmcLJINXwn03_%&Gn@s_F_Xyc6$>gwqo!?qS;+2DdCD7) z;tXzjUq{E#4*)nd01joS&B1ca7=_bYMNuucZ#|}Ydvy*CKFFde@T`1rzp~t{XO0k4 zXF&_r@YMIYCWr0Z@ba(>kN|Tl+Vu}|6s8g3yvVdQ>K-8s#;PWPP%!u_@tNYqa1!R` zdx1l^EY%uRQgD3jSNoKR6zcm@HMa3K=>j*J+#>{8?{sf&6|RL z^2uMD=2evs>j)#fg}-#MNfoi7OA=qT`#Q?9*qv9HNt7ta{1;iuJL@A>So7l|3V6KM zqC7VG_~Z4SieFn~{Jd;#Y}F@3Zx2qJVZiC0uSIGfsA_~_4R~JwhfKzne{KTBi#PL@ z@UzfV$ARtjM&r>v19g5@#m)k0ef>nG0Hvh-t=j-HO`O$0uu3$4n;0TA?yA^U^eutk z?r}kM_b~o7-d<)x@(57UM1a0ify?yZ4-9N+H=8sI(M9C{GObp|M;Y| zGyPT5kg34?s*_@_?n8A8{wmcdlipAVFH{$RBX8rO$(ok1z*Y(EWOkEke_h>3YfaQA z%b+g?dXyhpJ`rZW=`?!xkkH`w$3U41x!yQ3oq&^2>sXfjJcp;Dyj$!9qG2t(KsH=~ zS;-sTMmM7hp}Vij(-#3|frQ&%y~;MW)uwbejyehfy#d!AkJaLb!9OiXJa#`@I7=s* z>Z``_xYUVrJ{q@tvK(SY+}>MJy-L1P0e(uHLjl zOj2;1i(WurZ`;GJ-k}iAO5&hqrg-**I~x|Om5Po1G%Pmxu?j$#m|xztXud_^wO|ds}Cr zs`p!u5BSE!DHCd>Vk=@SjzDUiwVnNQ4_MZA8B(h9PVV~(ccnw4Br_$DonUIcv!VevU5(PEF>BgL#X1ER+4EZFrfm6@xXZ|^l_Xg07xmBFz8fBV4Fb; zHTJ7TYT0!Q4+PV@s7i{lO9Wp-@Sc$RUuAowh_8y3W3ar#gG5^3Yjt<`CZ9*)7mZij*t|PmbsnI?!U9n#G zg`BF~vya4og2uNXv~7kW$Y)tG0b*sA4-*U!)A4L=hjl@`rwoPvMh&xdy&PqAk|l)e?@ zLwHp6cBx#-rl6T|B(o*%z0hx!8r8aLj5QrK8@c3{Y{HPQPgF0z`9Wp(rCbQlr(rui z;Kgn_4ksMTT=c4#f=pY$HCBftwufgvD%P!Q)sA@w3j zbFOKcyW@SSlPp}~n_q8PAJ6;uo4i+D_0h2~4Zs`?wEZZUIXUy=@*P>BrfMp&L2tv$ z*rQrrVm&Xtk!p=bO~2gRR4T8mH91B^ybH0C7>QEwaiVp^lZ#3^204LvflVC8vp_To zASqa_)9t5e1f2jjLPO=4b;`2m5i163KPVn!bed(Dg*osln<0`$712AW7OKYf$v$VA ztA$cWMNp5USgre{Qc1rgR?Xy%%KcKmQG!TS9}WfxaNG!qlzNGVxhTiO4Lf^pRMvt# zFBs+^nLm3wEf1mkOj2~h{!Zr%VnsATlwQCjrzTlkw{Zo$ ztnsOa%ni{8nttpr{(5K+7bz4RL!WSZ3m;c={f{qHjbv&Z715YN@a|D5r@uIeq@*M3 zOH$r`Tf_+(PfB7M8DmEkQUE4gGbwXZS}-$iic`9Of0gy%=bLXH#!=6>wK|3?MR8clbJ+EgNn6NF z+L4{P+ggbWN2ez*^tRbnsVe0rY%wh!d+@mjJ#3q@P$KkZUVIt0LnO`s8^K}42zxm# zK(Op?^D*4Um-;Y2#BRzs zPp*fXE@=zyPOXuPPb`PGhy69p(6528b#CWq?1 z>>~1oU+$d*vDU=mH<8|jPH^yedpt8Dn9QC}{$>OO^^h z=-?C6NWrCav-6pfS9Q!^ouUyc?IbIIZ6Zsqo|fhlfQDb48kv+T0@KU_$&82fCM1mW z3X%Ej8y5NBS<`Xxeqo;paR9Yp#tALl6Q9iHcEO)&J1JpQ4t*eY6IZ4zhFHjS@2ld+ z?XFWf0s-QPn(AJr`7ljC2zr+lgB(xpmFpZNN1g+xcS8@C1l&I*^D>dI!ktLrW_|Gy zjNg3inhn=W)pR7DlL%if2CZ?E7qK)Jgm6C}WT#hPV^0SFwdhkvbZT zXrzmfEA^9Xj1WF2D`fkt`Pm1Ouy4DA2@>ErfuxsZ6S`zz+y-4B_N?H182UKR%AC@G zW`Fq#JrqdsJyu{$WV-lPxSHE8>?;-Bsgp9m^p6#%$A5ZfO<#Rdsw36J0VSp+R9WUk zmgp3OypySj*k8e8=5#dW&?F5mh|`(HEApEDB+Gqoyu*8qYNljD)Kxj~#MrSx3Ej%Jkp6;+-|;kM`|iWU-ms#4t#QU36oq3&@xg%qx2ECutiC{H(F3 zED=v?2B-*?=oCOaY}&P%PqPdiv%1YygIK#?_8<#wJGQv)hEJSC&5iylzPBzDLl+?j za@Bd8eT&>pYkj!~*h~nwxL4=-m=^KzMK)QOXlJR5=9#%0m}Y_uC?u;!K7CdQYNn}( zz)wG!w5ey5Luk$>aby92P2`UY@SG6Vi-eMzyc4DafYdt7;&gaQw4Yt+GV44o;!D0i z1hE{a!zMBzpLEm-&q%B3QF~6|NI)LE(i;{=P7~+7(I|Zz^!0hj6Hgy|QN7VS^k_?P z|A%bdR3;PdQ7*rOB5~s-q(Nup4}2QNNMWvY@?`HJU)8Q5`YadK`YaxTs?H1KUxPI@ znu~g6mF}%#2yN!wpH6oUEL-b6eDR=4SdE)jLs%*MR?5P7fP$MyS$N)sMpU*;80l}2 zy4WW4n+f2Un%3=&KPB&b&JRh3;alMpzNp2M%CFHdzCs2?#hy&M!;7$6rH-G4^*Id9 zQUbO-(S$xyovtpeqtm1v#3EB5%Q5t8*JA%WJvZdBlfMY}W>c5+;dt?gWGd_9|vo)>bQ4A8{-DY2(D~6?Y1sEMb*_$-Jic5gc`TdxJ;D)GGZwKOs zrPzu_MToO+0+>rN7EsOZ-j-oLpEZ-Kz>=J7#XmN?OGX~%L&Xt^o7)ol&ND*3H!-Ms zQ5Q%w+z_&|V+9U!X!U0IUm;^M1h@q;D0}C)op2m;#hs5>pD?LmmKFn4Q`?&4w179< z`aZTPDH&Nih&5M0#k}Ncq1ca_x*YZcz8BseW$6Xx^A+h6rO@2s(D1=#O%vtzO!>`F zp4gqrkxJwb{>S-z1Q{`NTJ8ewTc&~MR_@@;OCF4-UD?DJuOc|htxG!e(dujcfSkku zNQ1KZ$j{7|pSW6evkd}!OA@Ar;m|gLcR_wypq6)6;+I5ga5WiEv632|iedH}26U1O z0uARm_570$`d!c3rK@`O68yC9UqU!7W=z))tDlIwU!$jvDCZbI*cenR8k2H1%ytZw zOMC%xRt!cd1Bc9w9(uHH5?sJEZhTkEKTe6aqkT{R2906E-+q2`am`KSuTk0wsowW| z8G=#ffD6)0I#E^;#ZY?M^nm;F13ayU@ra$(1{F+WwZg@zs4YfvH*qdE%es@TNAe znfRoi=x4$L$qNiv=g9W0psk}KQ%_biCW3O+M-&2^@KO*O%>m4L85wR#6%;?U4 zrpfo~5P*kY{3=EdK9F8FaSANF-5CESs37>4^0e**CO1)Vkill9{+kI%Md6ko4hGZ+OvuFwIIPDT3&p!y z7}kVgUPo0wMr+9Wl2utGMdQ(y#=sTFmByz@fAemUdnV8Q}BS{CL1Vd<-*qI{pX6(polx{(i3OG`IMNH+^eF5QB3 zDF`Ad(kY!w>;j9DQcHI)4I;Qpck282eSd#(Jco1ezVBydu9>;!8VDIp_*0}9(a=LF zK1`xmy)b`}3|6~F(961I?^E07m^g2Z(CYW3Z;RU(=!X&HNl^lsva_JQ~* zFauq5&GhDRV4wF3vgch72-4atOdH{hPDFfY_nV6+rsjcoBtu=|5E^WIvlmB|)zb*3 zuVpLdjjBr6)hq&34KbZXf~)f(HNxV&ic1rgI?J`MgEUJY2;0V%`hTmnkc02^?t56~ zUVNP3C`&TW(OmdE=$PLyRJ;pXWql7%j5JF<7Wxz>5jaG}-t%>c;>C|b7yEm^B@xkv zZ5YxIyUrlF#<>CQ#FOUY`h#xZf;avs)fa#K)3a6aNb*(Hfa-92-HXBDvW0vqp*#C} z+^R3zVbXl*9#-BgxF4%IpJFXQp&Z~3qr>iN`sW{sIvpDlnU`jLRj5m&FMV+ul`U@0c z>AM%2QwO|4BQL=467jj1?84E#07G6h?&&XHo2gx=i&Vu$Gr zc1T!xew0G>8!576DgCA#(n|B)?PFKOh@xVY_`AKenan<}CQf26sOiNR&YDFQsT zt)6gE_IDp(I*k_K9*bV<;f9h#sV5U>6|Y9Htz{4&vxli*<q){EtJ&YhdrQ@pt5ImSdTw~JLkB^lDL4ITz(GLB`BCC z(HPLhg+Wdwx0WIhwxndksHSWwtYM44&%Qaty(uO!Ptq;4 zk2K$F*e!hNey7!a$zKB#zM~<;xXOvC9}dMB`O-8if2Uw^O0bw~wY^XPQaSVTsHBcO zN#Bq`akj!#a+kZs3;jptBKU8XjPco*n!TLjU-qmaZGTS{DG_bIYYdJ)Sh(i`UMrFSbWzrOY6|$wY9c{SmjFNF#e@UyTnP#F3P0w+T}$~Ly)1Q zV2@+2p?f};;+cEk*r{Z@lQnVafDB+>{qzlOu=k>djo#SiLoo=}YL8RBDVXim7uMZV z2-3r{>JN)hH@L)V(s)Ue4pCNS^WIAC_FTm2Z&AE{pr;8+s$e}kej!)&!G}6N#a5Su zgw>|9`Z1z3A!*rnx^8sQ`-T1q*d*cVX>rkoDI&_FVj8R!CduSNZ%V$T^h-scWBGpz1fqKl3s2yyp2lKd0)`-$ zC6@y>wXWHNji23C1J2Iud@J0oY>)RS{Uj=ctDeEzU^7XJlHIoA9n3n5&g49fx~fp} z{5Q0ORC;#)*ybpb0r*kyJ5ICj?|ow@MeSw_{TD?Iy|kh|KYljaNzTtEN5zFTl{s2i zO+5bahw>n!#`vv2w4{EVVd9Sv?V~s_Ev1lodp@`6*NuI0!=VQ_i@i3MFFkOkBn08* zeP%`w+9!aE>sDRUKX8Hzr@IJdc6IlW!UZ9s{L&nBS0fMOhd3W!NF-)RCWTpasoCE? zaqk=5Osj2Cd|7GrZK5;8JwTa9jMK3U$i=zU<91%#F#m?H9ylNW*hEI8W3r|F8tfGL zJb*$@Q@L`#DNGupRLDO$N3*V)WPD~s6pwH0h!4>NT7IPUqoOGQVg?XeKZ1H+v3@}O zsnL)RHw5(#QGZ%6&kDcLZ}fhr|Bi~mwsBEyo?R5zhy?xWX&i>-cO`9nAIq?NrH*-x z);;w7p_QzY2E0Q7s*eknNxRSoZfkU`++tv?UwdOmbqx;_>xp-fVM9trxKAVcfjTE0 zhm(gN3$$Vn7v}p?DZnUfT%+KideDo{m0zQ5)sd$O~Og;48{JBi$o9`4= zxUwt$L#gm%owzO{&#RmTo>p7rlzlBJi9f&$%>U%@mtk-_;bYQ=@*1w;K?ektyF*SF zxbgmtn}_a&eF#NpjvnQ)W1$R0Bol)#sVHza$+v4Edi8#X;%?#xhTP6{!V*DDS+mSy zOfZ2rU-8HX`GvjD4?kM}scZ5x8Ihh^n1tme{L^n(Ok^V2Pm0eX0v@mR4rj9kd+>Ph zwxoip($1enUcmQ-Ji4hW^ST|)pynKlI316K;bEyfIhhHn=deQS1xen!GMAYsM?oi? zR_RFE4#qo`&(=#d2fag#3CwGmN8Rnxm9&WPNzt$*-27>F=#W5SxQ76q47Ao4tM zuxQ#SZYN%UW~2nJ*muh2e(Wa9YfQ8CeEylJtZ6hju!HT!IA;+F3pSh3iEM}fnG9!( zm=P&D%jHX}FG}&x)fjvyV*&TlSq*rcPbSB9xYu|8CZE}V4*su^6=Jxb_8xnZ{z72v zYMqXDL)h(=&5hoK&V4{CP!*V8nD$)Yll!6|5zU+w-^Yv4^|FrlW{=dAQ`Tv6uRxR1 z8f9@=&zoe^3y0`ZUBpakkGWb%{?C_L$vaLC^?gw_Teb^`eB;(#yh72H-euA@{lz9|%*bXG&q*;+>Z5%tihgdxGv1%@nphcpM}>zensUHy7)MEZR7Elj5yIs_c$jnfS#hXm94`41z-EB#l*=j=ox z(A|!@`r`6(D3|Kv$~{}gpG$gn+n(;N@i|x4VTNNfR&9!*BjbUB7K*pj_E#)qMqy5g z^Yf8R3S=Mhga;Mle?xqW-E|s3Mi*8jH_naG`k4)Tj?jBnHD>q(utQ5&^NexrMCzvXb&&`@PFF z14!HBP~ScT_P+l1Pu2-usuDvnTZCi5e(!`Z2xtrCg3oHi{y4u$>0)Uha3WI=`z-i- zb|po9&Fot}xa`5W&qxY4J1b=JnaNzCKPX5kl1l8~HBgOP>ghImww^ii-itvu+7)--dI@KdJ<>=dEc7Yz*^P<( z7F=NfRigEc_v^)SuV<9~t<}nL&Sui^Wk11$F{+cZVeRUPTSp0_6G*fG+0V*u4?Z3>n|)f3I&@h($EKT3oezK-9`vw&IqZt4v^|0@ZvN(8E0W?4;xZ5$VGs zL^ar0ANQkF$gVV?hv?o7zGP@-2VB4n@%}c(|CT7SWiyW)81bbCXVT-hC38t@Q@Y`R zfIHoh7x;Vwl}y%4Q%TIHLrr2}zR!(qaSW+Dh2tW)amdBiI?68O=TsC;WDnsjYKb!b4DHm_l@LA1*17e-=Q>^jWQ8egK zoI*LIQdIQABTw)_^dCy9w$x~px1y5KMj(Gm@48Kc9?x_&gRLx9TkXONZxjy*Yw%nB zy+M!*?sg%xmh2f@sBs?P#sVy`+GT$=(hQpV=0!j`cv_J=+eQJtmm4O$jo8hFVlJi+ZJIglY6e_{@MLrAoqNpHLfI-+ny(Ep&-8%wb{i!jcjb9Cf6*5osKmVrB`p^p9Sex1~+8|hQ zAGdi${nXSI!Lox$y8o>%n7ku;#u&#lVt(y zA3F>92ec-1&?QZ9^hi>%o^VJ(M*80eAQwR6RcNS?NmQyUa)i6Z(!0-6OibC8Zd2^w zwuYwavEndotl<3N%s+H_wW|h{PHmj3-|RhGj$2DoogAW-y>&gA`SiP;;)A$GMlE-| zR4$eHa7b{%Sx{|!o>yKfRsA+j_h}eJRZtxKbFssS@;kyI;g|A}N7lFRIJFVEN3u!LI5!JRbg@VHBQr<4}Hgx9Gv98?;o=fuM8d!29&ifnkxa(QhXLcD8ZKF?=&;IUZrW?d}P>y?TJ1A(IvDsKC zJdcunnL}1dH1&H+mtf)vvS?JaoUydrp}qqqH01HcEjfP(94`fo67y2cz7AUy5rrgf z!65x*Nc*Lom(iq>$`02*cu{(@%tArN)WQZ4@ys$U3(X-}*OHr&%Hky2OgQ=^r2nwJ zUoLNR_Gh4>w141dbxG&87)G_-XANEt(5VuA&Yje^?t4+%2tc3>;&9d}&zXwNRZh%& zWqUzex$;~m_~lYq`4gUPeKRsU83H4PMKdWO;_zW($E|L@%^#9{-9BAithh;Qn8%8A z-&4=Ut4%0xt;fRhX?sO?N-Lkz2J%v+DtLul>=&H$QFd-jhFkU-XE8);BwYe* zG9o0C&4}*NWKhv#)g*yIsR8`Z`de)bFZ0W6Pj0pB_CM_E}W;^HyMyk2p1sf5pf z4a9jVNl`a}pN${SR~l^RvTA8L#}nWRIJn~F;5)j?j=mVsR}V`QGWGN-v#!+wGcou* zXecF2t?!I5H`(P1^PencP_lRLG}e0fNQldhA3Ay075bf>8Q*9Bs8`QkCp?XEQ`= zo)P)zVM$K#e;!wmc>V0@h}_bW}l5zcwX?A}W2a{+)J0jjgY%@zM9GQ*@S>{D$#wYp_M9PXS{tkxw;)FD#&}ZT>4gUQ8!r|VOdR& zMG4f?Y?Aigu(Eo4#*3%5MWjUv6cCDtG6E?(9_clKTx^9b$ldIVg%%3%cra;EnY6PR ze7vguAOG0<5_!I>WfOD^bK>F0WPp+jDP+1YSRsqI)+x_dF4We+kKlACHam{rv%h;a3d-E9Jg4oK%Y9l|5kB>?J3ILS-;(iE ztB`RE{0PWRfirK5Ac(18Y2aP||9jwwihY4X)(;W7&w`Ky>;RD7^SIPa8~cw=kLCSi zq#CLQ2wm^2Ng(9iMM%feA8@tN`<4v@P|qfEexHgKaIDG&N!I4A#w3EC1913o27vvTQ$KgO=H>#Hv#IeUjd*PG3+?|_*b9py77Sg z2an|Qyx#dJ)r|flF;o+!dyCrSQEALnm34B967z|Q{f%)<$9YAsx**x$cyf{E_i+0l zlZprA$V!w@58Z}yO2O9~5yV+7-~tN06G*W#$Yq&8Pb#>p*+qGKrkrgIK;(+kW%jh# zTS!W==O^^Hv&jzR;i4_{ZCxFShNZR=WX)Vr`b9%Po@}9rYOf<)n`Xm#*jD)B zjGwvdxv5pU1;8*V@@!WW(YL?fV^@ZF#SBHR8@NX=mF?Y``hQ(XSEeQvk8kWn{4VmOvJ!{3mY4g zZ=}lnFF~k9sjS_|i=~0N&}Z>t)jeIy+Ze)7=z*aT)x%q9_ex*gNqn805AD6S?^A6; z4NcNj-~!GZsJ`^=N59YC+*Ly>NgMYqQ# zkx+GsE5!MOzTRWfA<6&Q@)cc;f&xp`4F7`+uC%t)tSPlteiiuO#OIB)N6L3bTlUmL zj%+uG3f%-d)A1{3M8&zc>Ra4SRi&7LlcqEv-qXHvXWka4QFCW`G+sRx_#KJ^p(*DH zD9;qC5H45VwK83EIpYGlL{PtNX0)0FM7UOUB30wxO$KMnp~-uL56X!ys{TbpSs^kHwlga_&eq zXK2viEz8t%K(YF~X5qPw3qPuQH#CF1LqZlXVSL&Q7D4j!uT}2emZJ>+f&lkMF8Mls!B^^jH)BLUYAgYfgw#-6$ zy6lO%GDOh*$+HF9rU=So6Vb5`noL$@KU78LDd~^#49Xq$l^^A#xfbPK8@(8Lf$kQj zQiVgCJ8yr&i2EPqc;l7og%&ql#cSaQzj)_)2u20w)i(_r$aI4;Ly-sq=u@a*%Otf}sOH z51$_go$AT*Y@heXBA;HW$Swt~|8nlNUQWJO`^q3zSm@6MFicz0##0GP`vZ85ZKEU# z#;oP*;bZ8s4mqwK5#ce4UkRT~S3G_kIa(P6r(t7r=rCm@_R(NmmMty)1fMsfs&-#A zUd4Zvd?JMB#DmNumVPM2U(zpPJxcTQ>Avmd=~9U1n>>q4c=xKPT5H1KJihGbCulxQ zd+3A%$-P@N&-J3I%NK(@agEa0=XT47(cE20OcO8bak zgo>)mD@tRtvo_*f`Vj>^UCbXK?pXq0Kw=--u>0lgLVprj*`P!K3T^id8&%&Wm8 z$89MBBPXSs6}9y93rUcj8JJ3$Xy4X4z&`H}1y$sF_|vatR${jF7dRBJ4Um_04#`IY z-?_0}Eb6nQt%0INC=Y#T!Ar(M;)r-GhL44$HdhUGv!N?A!(Rxu1dX%H4x+CdT;2Hl z8<}{g?)#SP7Uag2QTxgY3-7aluhl1y>H~zZ>(3U<*q~^AYl-T z%(DhkvwGD>6}`6omH+o4K)tYQTnt2LU*+)UE7QgwDHLwX?oB@MK1n@(nsq*QtJU3R z(wPXdFoRMuFvlUF1O#dO{%mRW1>0ud65XE@YfzSAj^IlN z%ul8cS zDe-)VR@G9g8)o>+-1d(&${knYLkRAjx}$BaS+b}QNw6f-yiaLLq^7oZtS-_H>mM%0 z?i^GC{&&WJm8XESH@7S&%L<(kvWckdnBu_zE!TV-XL7J@o5kBFZ5Bk0pY=(k>vosm z9JA%ZI8OY3S0xqcKj1K58j%Pl!vZ#9?>Lp7TKFi+%)dLIS=v!P1i#fI7O+=;-U&UW zT->Hk^tIdQ-rRIRHM*T@$```#T}QK%T{AZ>N#=#@-ISbj^F4P5F!hQSMUboZ{O2@1 z@uT0!Xy=?2f=w+nQoFJ|v%nh_1-$L#j?D1iLUK`WUYXCz@I;9|ZgJdIefm5j@5zP; z3VINr#5K#Tm`+1tBE=N?*=6PE_9k%AW0+ZC#lC&*CnE>gh^m^Ds*cSv1Ad{9ShM_P zRpbRx>ntaExUrg#=A$-drwbWhq^g~1p}Q+ib-U0W6R~x%Ln93+5_=MnVL_yw4Ia@v zcAoKNOZU@>#?hr-HMs0!nLniFeR?Wu&$jSit5C>`Hlv01Q{NJgF-iaHo9;t*1i`M- zec@?64GARq;yg}4PTSP!V@!>tZ9nzCy)ap5Rs^NCYBifi2G!CJM8>`=-ID3c-`>T+ zQ_ubCB)>}N`hQlEeOJQ`c`9LinK0aLljo}gwz?H6qXU{c6Jy~D^F^b3U_liqg;JN^d16z*R#UR z2CSLRAxN^QLh=c@TS3cF-}ht$+;>cd&1jDQRV=csa;v%@mjXN%Pex22}q1}PC)!fGdUo0A7c@m#k=fSOvt&%7adeC79cxmR zU4}@v<7tsy`#gID-`CLu;z;RzBY(CK5V-eX@`2x2OpPGsWdl&IrC_;_YdKQbsbdSP zZGdZRdkDn%eMzR}DO`w=Ws%?+Il_5cVsVPT=;I1rwDdk4ECFk+>F< z@FTeFLaVK-+alg@%ljtMpczXb?)jKqagu$ws94V2!?;J7fHBd`;&WYWLji>^tN5`P zfYBGY-K$9q5u!chadJz~a~tEXM(0aAvW5AA10*f8h#h7(cy2f`Z7!;L>rHhHU9j0( zLf0TVdU0<#!1`_MuvL$QUJ)@_b@X5I0#rE|z2cNkO-g^dKR&ePJCro10awu?pgztK zrElu{s9g!Y!n4l^zQo- zn;jP69d)zhogY(pmwJ|+mc0KvG@5^`?y6#fJ3+sR8H=R^KE!t)S%&-LxpKniXI^JG zIWVWTy9NmCM%)U907JnQzF9Ls-`{!4NAb{V4pjD+B944d|F_NgtufPu0bMh8C{HYd=sGUr5gp zHHsZ~OT?XD*aM>m!k$K-cW8R7TyAkWl2GJb?^Yt#X4`MDTi!E5SlMWhs=1#!?u=KC zE)+!jNUywa;pHU%Xa?_(U`QG(&!=b)PIm-N;|l{8G*)c0)jDfxH&)Z*KNoN==!AOG}kkuPF01KqlaX33lpHYg2b~kiXCP7dH9xK z+rgTNDwL@YOn)epH`5s#u(*A$Px}7-Xs-Oq*wE^CzFqowF@~6jL?eEnp$!xd<`i&s zeGbFjy|AoeRd}2TWD#k7xdkhI;M~yS$a*vK&@=KVi_5nkSESshcod(>+)b*&$4d(& zAYfSA<+pqJ|iw<50cL&dy{I*iw(iFz?UAfdSg|#hPxfzytN_};= z5Ca-Lsa8|sg8A?G}&-E@&4d#`o)ZY zLgUnKn|!e0e!o)AYD<_kHd3p@Noek(um z5Z&<}!l6L5C`dKD(AZ*N7=BSr=;;~|_ie*^v)6?~X9ZS@{;X%I zQzIlaPg#^!12wrdeCopjZ+7^Buvqb(dFOx9i{J7xZ;42zyY9VH(jd}VO@jHn8rRUL zet(i%s`Fr$xh>x#GHKTl!CMn%rP>xs1`VA^7sRojB_{5faMo-8_Rz|+;UL)Tg*nm9 zza!F~MPmb}eL~|4xGU!O?6FsphoU|YpxyFo=FPRM@Md(z)IzJ2tsLLU>==_U+l z#!)UF(x*Dsy)-a>&=`Y}wtRRw*$g6?J)jjY3N@VT{gfahpGy83iFq=|_3OO0#c?)J ziOPFI(yz@@?{fX)c3G`;)%2~r73NQ6D;oZle;g@;77r?0_fCR7c-Da{TO~0TvcjcCD)sX+=$Ct_n$U@6K(!+}+GeK_ z=$~}5Vs=O4o?5SneQ*OTJ9$O-5^*xr@^u|>?fPR3oZR>w|7opEAJp`uT^x~^5Z2AF z7_7M+Gx%8dPKjY6n9a?zp%h01vudg58bR>yGBo|=;#=}8ptqRU#sw+$6&Rgsrq6|q zoN*IPZpL|HNEQqxmwZpSq6T`Y9VaQ(Zwr~kb6H%+TN_8mFvd0ZgUkEPd#LK_EX+OI zhv^+dxa22)pxAb$&Pw$h{t7VISz6ZAR6!~b0GXjf`ripB zz8My7FFkIJs^O)Lo_Xhdo;vPEyv1Vy?bSw0Gb{O$hQODM6Aj`?1uuhjDr-!JZqfOE z%;rR*ry#N5nx$ic?*B5p0TMU4C+B&zp6FvjNYlX($3g`zsz>Uz9*tXY;k(%^<2Xkt z(wV%4Fs_xcvp3t{^JG~~r%k~#X_ro%2mM>rk159P#ylzj4vJt6cAs0T5E zkl0)5hfO~*_>f6VrEE{yeLmJecMG1}!bOn`0_75715FUg(rN4Pb8iRO;{3=wew^LN z6f^_K7Ta}KYPCYz#c+|OrKLO{qhd#$#pRcP?Pmq2Axxhai$pEaw2`k4@l^zWXS?ts zz9(o~-DaL=WDd|!@e)S2ea&Q!TV<*cD(i^^-u=gC$`4Ocn4_WGI$Vd<4c&>h2h@?k zilip$y6Zj?tj;Q4%sVS0?fj|bBa_R%0xe~GkiOM)grYrVOn&x!=A|BSymFFzT}y-4 zKm6Y#8E8xHHth0Rv?Psnn8$G7CizjY8OS^5Nl?rLAxjdvZDId~#)?CS9iy2=muk-v z@gFpPPJ&rBuhVXIs$fm^!FED^7T=^3fBccP8mlu|D4$!eU z2GTxE&EDpDOC78o)+G&Q3 z7Nvc!^JzR0GO@(zmalH`DI%cwFya40l_F5ddWAYtHexh`=vd{trFs4fyG+!d?P9u+ z@YCqs7KLywgh_EIfb*6@$(_78P&w&cCRq*JxNQ3}r;;4mQ}mg4MBLOkbG5Isj+R zGe>okL|S{C^=JYr)5>_*cpP-UJJ|;VJK{BsdMSHo<)P|T>yZ~@E~{I4cD~&XSS9Wo zKZD|($z|&Jz{NuQ+xa;6&l1%9kfvaSyPL`igvXwNRaKwZv~d!FTrj$YQBYziQ_ zHoX7=w^N+OR2a8vGYnuoSsoHV4E8N8#g(dKIwc_u z-{v&^Cd+*Jx%MvkPvEX+yV0+A&RaZRdz=TMdN3AYE8rdP+m4wIPagPqjlyF#>XRQ(|dzNdV3}A{XX-VAFh?sqaB~E4e9*w`=|o#q+DQt|0|)OA~0%&Nn*u zjfRIlR{(tGeFrwp4RjBv=_WhG?XdKN&gxnusj2z-_&h?^VrQcql?IY~+w3uf^JH;9 zs&5$(f-zjHMk-fFw=)v^vc_e6kK!JIiBKJTJJFJQsPze{-et(|N@df-gaN8Sr5h7L z$n;?XC1G@h&*v}mtpdo#qS}A&EA|B|+MzCZw!J;#HR_FekjcCCr$_F_sv!bj)-*1q752`RXj z1S`H9Q&K_z;04T+082~sSQIS89%Fkt>Akh{*|qYEuWZk5SmyO|;^%3l=rZp0bifE3 z*v^P3PVwizp+O;z2q@!wHJO5mQ~Hhn&W*SN^t-+SoA+(YsnJ-dIr@!ArOpFM>Rv2+ z+c`N zjR(|c5dDWv#+1MBg0Gqo(a3nYeIM{&D=3U#FhV)|_hVm@up>l=Vc7RSKda+rO#N_7 znUTfJae`>eY#&aVXzjRYj;ygQO725isPLTH$j`dRwGuS+ZfnOmmVq3k?q;5>t096F zz^GKCi4*BfqVKaJaNn~9G(lx`$6n$q_ zfq4WdrCZ@$kD6iJ23#EFnD|@Kdj%JeH^aQcK^fx=)u-8$%_bwPIS(?ae4RR1sMKBWZN`!s zqIyJNBq7q$LC~6nb!^I2MQGK_pWm)aw@)?J_&ZzV+^FIX`Epek-EZrrV8{{DuC-+8 zEAqo|!@$G_jLT!{(#=>)6DWBV+uQXSW=z_YJ zXYC=dT{#U4yQA3A*R?4Al3$byIov^pidvw)*(BE8T$x0HK!KA(*p2CjR=i7-Oh{g9DCKHl! zZIGFv@$>tL33_Y{lm%q=QB8Y{OG0v!u?%w7RvJJBi5IC@Hw9$rxHXi*rR+yvQC z`r6lXiy`n{s)L38h)lCs1Vay{U4>se$AQx`xfx#IZx`;}ft95WfBSu2@sqv*0W=<` zI>}+aA;v|-W+s}3>ad_z*!W}7AwZ><@trk*mEQ=Zgn=UFF@Q4y*fjpZK6%AE=XCWr^s||Xx z-H6`%c`W%*GLkf)zDwk+Qxb1}foOgKOaulZgOzUt=p`xwu^DETa?c&0vtoMSCN3K{ zrWibH?nmh!dd6?1)r+S;_x&caiFC@}mbR;Ah-eW$ilI?zt0Ft>UKm7_LeVp!j2xC2YX}kn~XB%t%*yNC< zNBr!tYAwMUF6TfY1eK>cf1sucpd8GUjyiao8*u$|oxUPO) zVt{04>J~q!gf?KLoyUd+)s{s8GL;%z8 z;CCQ5AL$Qa4P{7Vx%TFcavc=%*#s2|43QM`Bhgq(F>G@`P@#;d}7y#jZV*mb?F~YLHfd;Ot(S{DJx_ep^LXs9gnVJ%s@u?(8??oOSA<3MEtsrymL2WU!!>+!vb^g)es_~9qbqo6p<~TAV z`4u0wnszV64{JHWRwORNkF#17J2%c-coy>>Kq_Vno#wyUlsSDc0hA#^1?DWNfIE4@ zv#aX|MHZ<7Z1V>)vk07Mnz~>d2~&UDo5`zVV$-OQQ@{jX+xBG`7}u-$40ttNbx;(K z1;1O62ieW^imG?a1$qj(raY+AXl&JSW;|M~f)zOE$@Rt${)0E1%yg~e_jn-rwhab80R2ub9oybk)^4y;#y zo!vQQ5rAg`4QKsZb6i#%*9ERbfIp=rYwFbHZZ{)3{k`;i>kpq|<3TD$tA>B|!C8k7 ztWy7Ii)go6!HPIPx)EPJaHp}8x%6H2|1qBM2G18pjG+Tz8S9iD1}IUHxbpu^pM7C% zcYWfma`fMHXIldvTAHeTmC_t?`{$RiDLP`@D+(OkC$x_yaLpDtWGzNy&7gV>cYt|a zOc$P3y36joxWMPV;fZFJGF37)+EvJ!xvHDM69`bYMP>}Cp@u{nO=`}A#1OV5N)p#V zmk7AAoCaj-L(KhVyRWvzIoFwB)DS5g9BjiGdb^aQbFp;TJP26%t)VGK^iE~)EDszU z$X-~hXWHS}_n~QxXhAh$=CP;UC*}7OmU9ba^l|f+w_Yfno?BqCvefjg2UcI@j3uwS z|lF;(-OILd~I2tn}iiM5Y^Rm~PcIh~!ZCv%T zqPEo*WNzCAaEtF_q5l2zU~?^&wvV?h#^Kgsr=f9f&WF9tX|7InE$K`Be%7~ClFB?e zj}9w+Xr~Kpfq)b8DXpr{`rYN6j33D#~;k0%qm(0QQkY5i% zIm+IBakg2iuGNM)bE(RZ3m50_W9nH_UosJm8!@j}o zoJC3Y?mF#Li0Suld)Es}BHhQqS+8_Jw|HTft@Kl{s}YN^Oa~7?wlMx@R&a{8y(%Er z9kD_17BxkzV8Lo>XJFn`tGlu&T34D@Utp`*e0+Q>*e~iUHKqm7GYQIAYaLVBoBOoD zu)}COaS*0+xgy5Tdp{&uVb03apV-6&$#K++HwL+ z8^RT==?eRm)zC}YoLvea2;FAP8Z_ZD(g6;wC{Mv54fNsr<@346b%uQux?k0qgzrZ4 z+e;2*mgN8yy0dRNFtN+OWYhENQ zOtpvU=rT{M7;FcGmn@CWUvoXY8eofyPK)F?!)uj~TZp*DKQwQH2mU3i0hoLzKfV9L zqiH*1NJes+U+}u)we4tFN%G4ah@!ISxo9bowno9TIJs2Dd`%E=g=_u5Gco=t{}3-? zd%}>fRjv-PgJsdRTs$H$EO;s7Krslg2FDa^h5^K+4NqPAp z*TXxdn1brs>}0?Z)gQkJN1EmJmu8%knTy?snl)ABi}Kg`H>I$bB@EN|o*7zwFXIOP zZ0>C51Lo*GIi%eFwy*kLY+X03^n798ZaV7yw7o8Gg=`!Pe)K;SxiKwhzCWq!uRNn_ z)BkKi)ch$ikU5!(@K>>cdY)3jE{G|I`aDqRE z>EvIVi?!veuYF2TB@LY#_CAA}v~5xk`sAN){lt^|#u<)it{}xnAIfVwNX5Ua@d)Gz#kqoABJ7l{cp*K$)8MSU(zt* zmvYr;4Fu_&@7K{nyMHbP?E-o>tdcbq81mxf`ZquiS49+9?`eN6yz=q<*)&yH(nBDG zw|^lO&CVG&tuJULA_o0x>u)#xlxAEo61G9OQ*w_%xi)Yfdh|Guc&&M$O8NixesGME z9tnavWgg<**$VvnNh?;%=>e(C^l`{oa!{bA`{PsxJP{R+E!)Bmeq7r5xvrs|(ZlYM zRPPUZK;y%dSvWQ9Fqry$s2eJm7yf4-*xkOI#zZQzK^F^HE!qk~_%~un~^8f>MXGB0djjwSrAe*SKju`Bl5(HUanpcmA8~M{RWR57OH| z%7bjA{F+oCvt)+Q8M#({lO`Xw`{$xm{qA~ha#DP}cCq`Ne+Pfp1fSo`MT7P+8NmEu zO1bt(QtW4Tx9uD}+AFU^@y4tE6|DPzAku&>F`t*iZc8w}M>o4gdxE2_E9D}FR^5GV zQ^wc#8yt9_jros_l^GVkYu}ciG?3m{C)4<^$u#RQ7vFn+3v-xHyS{jMYJ|~&2fHy- zz^mORc;!cm7 zbWi?gn(pTBt=>Le+`pZNn#P@~u0)Pw#hljxBtGpAu)g)Zn2mA%{FaBz$&@^=p7tQP zwot=WrvKAgjPxJrXRx(S7;SVO(GA+kYarYY!_*{|_A6<5mEoBlmmF{VB&EffApoI# z<-b2B$Zj6(uZ^iJ!*-W4r?IZr+*A7@Asdc6?JabFY=iN1vDnHq9=Wy764&|n4Ken` zDEnK5p7(^h58hLnNM|znKlMx8qJwN3ArpDWGTQj5w(q`==jHr^OurKf{$o&piFB(0 z$}gX<1(nkMb?dAQNNOvwJ2btao;clikHf;`bwYn8Z%T`|`djWHI&kg>hhXqZj|mQx zVCszsgmH;mmv7$KjUF{4#fx6HlszhD#8bw1Y6y@}%NYx8YpsF>+-ezF7jQT*Q_yDs zc*Yvy%ws2T#~K6bKzKtnyRsZt^=azM^HHJn8pXQ7@0URd(rxoRlrW&m->S({$Z$iH z0$z*oL+^flgB-oqGgkeJu6F#D)PfC|dNQSJow2*}e{Dv)5(g?ubFq}Jg!6+A(Xa~_ zAYd*eEMmX(|JczJ3OXI+Ddnu`&XbEj1LBWQCaTtT2|K4xp0L!#4A8N z&`m-T<_w!mo*3JFo({VP{})+Huc2keL3#-j!a)!R>R1Tl+3FS2sJAl!O}(py`BhSu zrN@oGMQNGqQz7goDw1K%!7=-O%($jxl3~a33NwTy9wWe1 zEE*;`Gf|ZohOqW%WObi+kETVr+8p{uhjoQQr74nCI}QWba0u?+c$Ig`{`EIC#wpOrQSHsD~@9le5!F-g2p_6&aXfW+lxykdCy!} z=e_2_3c2-NiP>it4bogB+tXO8u`u@#W}pl{yvNuzuY_f<`WJ6uIcm`;o#ps3%m@l} z-&VY07F;9-10x0h<|x@0ab#l`9UqMce3K>}%bW~l4+&}XuGV+=jecU|C%Y7S$p|P+ zLh@`RjCVrjpheip9jF9ARnMpU|8aC4j!^%994|s;Rm#XtMMhTkZcr4-o@Yxo+1w?e zBC^Ril2PRB8E0?K$UN@s5$Dc2&aL0)`}-H}-k;a|^?tpc&*vkDLs!dW`8Zm6nYl<^ zPhbgoG1mQgZ-9!t`2|vA)P9nmQ@~>50<5a<3C|g&$$a1+5U`r|c6P3&Ma;+p_2>Hw zQF+N;8cv6fTMnx-Gm`0(1PI^(1FXHl>GUlmYnQFpTib(metpa`h0RAMh(b$lJ0U#SQMRfBicq`2YB_0dd7+TrjW}ubz+&_TVs5Vfrnthqx!e zMXr9-2b5a&sCT|uANK$hUxvn{&1q}5NYHgF65(7?<}wyYAJmn#+ICzxY((1G);g9B zmhScy&UiZ#V**@b+YA);7S$08gjxG4@rcUz;B@9wnl;#aa& z8qDYMcO*k}!N%R`gv65(;C4n4=um`7fEAz+BkstiLgh#x}`L~6l8&T#D zexQN%)x2@q`d0nx^&-92YQDsTqlW`x`O;6=x}G;2OERtho)jTdfiQNNIJ}R~i_# z{S#q}Bf&jdiF~8KT#D8uzkxdA19n< zbHl=cPjY8DhMP~K763B`fdGwsfC;W^wyN;5=kh16<+;=rr2N=X*3Y&dPVE^$y4E!U zzMXbmJaze%a#c#ce~c14kkxK-70tJ%7Bc~&91K=4`Z;QF4%Pl-OU@1a%w0`t6L6ot zKBHL^iX5m9$wy9W$$wX~#{TeiZWUCWc@CaB-vZ;un3#||I*E=k6aS?(4@iQ2Lz-tc zIMgA5unKfUD95M~($&FPspCWp)KPRFu+71HT~IaEd4X}5XI<(^Z7=R|O}$tM0*$-v z54)-hYKT6RO7@J)%oCNr-!<%J7{B%L2^XO>X4c_~5Y*(F;$6{(?AJjJVQ=VS>v8WH zHV~3t-MqM>C)&z@|3$_4-bFx8Ci$5!qE@_IdiZV143{bF^{$d;SkJ9$hhzB&{>7D~^*)mta_}!)(qg2SY$_^bGlwLyV}Y3A{#HG?>U~O|Z3z&~IOYZPAx)bol$j0`K?I(=-+*3V`XWNk z^ht`PjyPtW8S+jLRUf91j@@6UcL?RM^QiP(j>;S}A_vnkl`ei@?R=xqHN`NaO7dxv z9En#1Yb)ywH%m|M3{?XzPFyt*5=!3M{#kHT*>(Rpn6wI6gS};#v9)?@`6oOPAeH~F z%I9Xo^ubq{zw zn%5K?K1_H2;@qge=P3p}rPHekr|xueAno=R8p{)( ztb6H7ot~is9l8ZC`Px%00YC(N974Jy)I?m-S6E2=B8HxYmnooQea-W+MEm6>V~)}TaQqc&o9_D0QP4? z4VXBW!+etZ2dzH9kG3w5*z)^<@D7(s%r9Nxv%sTO-`;pXQ0QsW-ainhf+uuIv7W_2 z)=Hzn(t>ry=Hw|rH2BiA3a~w10+@I`NJ!Tc*%pTdze}dY@DZcLb)=2wroPY%4=A6AAj+q zXEO!~gj#f0cf6iluI6wMZs%La7`N=osA-5g3}w#m-<9X>>UFz%IKj3*qko~rB)yao zEBuJhF>|~4^=V*WORVV~Q}+Af+-Yu-@(z1<0cnY#k%`!>2E3aSd!Dt1!*tOUop_A~ z#bv&J{g6xjd3u4wuL-DOrGx%pQan1SQ|D>*(!S?wWadm6&&Nf1cE|1J6wx&^SqI|& zxwsB5uEZ1NM|Z13N=iI)HAGi-I*FlZ{{w(57>@Fp&7Z=$nnWXN&1)wHR-)$|iCnDW zB7-vHOJ_T->pB+MYS<71AagHkUPbb(%BAMtFDJDQ)K&s%~Z1GfR z71lxu5;Bv9-FH4$_WfCzuG$5u`mo#&(Jmgo>dE_De=#>*!d-MtZaYmW^8P$k({!+K zkS;e8-?&2ip04?sflbvP@kECm?VQT`7fHS-i?GE2Ss*?I#g8ApxsA(4J6BsRM@ufW z`SCgO-$2@;LJXvmBh;iy;^bFcn0j~)_3ym6G{;f@g1sfAj^%WBMKl&%=I03@#d(1` zLKNbv72=iLDXYHHns604xuSw5yC39Yt-rc_irDkt49rE9=fUVFI|!(gm+honra8-FnOotA$hikJe@h@{qUgU;SZuCi2r@M2^xr_(M5Ai}U68Y?t;!2ERQHxL?r*yv2l_if^F2-nVv( zn`j3!LD;=d%LcD-{+kHQ?LCpieq=H4Vu~nTOnx9O)crJOr{1yj7evmA|2L>Xa1q

l;kAqZ8++e1R z!kJRVpq7M8<+3@DQ2&7e4oPA*@7eR|pbJ`0ytx2@oH%=)sR=j&^Kl$-M3RMbaIiM{ zqQ{%e3hc6F+R7Mudcb*s4K5$7wSz8sE$_8#vagXRp=~cj5e}z=a?x`lE_izJ6i(0ewPjZE}!Jc$hQe(<#~^dghWY_AA~&{zlR|1 zeX~kXzLw>u=I=6|fAF2d6Uu)BXkAyrx#l&-Jove)K`rNdGpCH)Xv-wc9YTLGIHp4o zyZ1l0(RnZA$p6-zRselA=CY4zuC);!IQsj2xI%Qu?bC6M=%a0){$D${+r)L#Y_Y@) z8?>=!>ahRfU-)c^U_VBn#eu~vG2_?=Q`b}deoVqb)y(GjB{5O zVNtUp!`lT?coIw$!Hj3Ks&-v-Bq8xi>i?e$VuSlG*>GH9T^FxvWbVU)oSKfRiLba` z7a&$XVCvy4#~t=Uxk#@tag8_qXU{6G3!KIDxz?C& zUmcThuG?#E$aLG^b?qCHj0zIy#oMYZe{fG>;2%CRIh!?z*#;Z*#{vkMPA4kaKp((A z$B^ch5tY6G;Gfp!P`sr_)Og*L*-WXSneEe7o zY$fymI}pufh9`N%P1Q{x9jQcAru$lo%~3}I3Vw0@q#*Y5;QoipR)c^=b29MbfJeYxztQES&l@_Hxj!Yo^>W#aP% zDrwgE+~DjFR5l-pzt*CpaOFbYad|NH;IIgx_)#J+iFUDg2JNR;)mo2Iu9yiUPmTWE z8Xu0VYO1pOzD!#+oI0!go}A}^IX}Xq1iWw5^z-0kOkP_^3UQ`&k88aCAR%60rz>pS z=w9wRvSyA)D!GwzrbDdw;ttu?Ln72K@Xy(-pRUxjxH*QygW5mH>mp5j*Cb(2D_Yct zXj(VEaScfK*`@(ap8C7mK`l(wq6hW+gH-<5BQdYV)H{JEi-{%l0Tp7nZee|Zt6r!^5F$u3L5Rp!f?==P2|F!omInH?*D)nG@CboR+WRiAB^%gu;mF^FzO z^BZl7F1>pyKWXXvUwM_B!AcgOtR(J2mFw!R@|Cw27gk+zX9DegyttWUUH^`m*tt}| z9BwQ##s~IYYiBcq>(0-X=kvP4>Z;_?QH@+q6o#q& z+h3dKB4;xypFi||SAXmK+th5TI1nFZylrDA3w;@HpiVe@tIzl8RHhId$uu0-#!{DI zbb_*ykC|v&tlc~(GwXVwN+nD=o6^)qNg7>|<(n+_P+XK)csp7Cp63Uz?culFLmkYc zbIhKrM4s*(jV?E>c~JPAS+9-9;(Mdv`dH@VY-u4c<6?65lW$&3UwKJX}~O z`&Z`fBr^7iVO=_tF`W>w z1iUxbG^b>Q zFF0RC_wl&tg&m7Le643PZ(!y(pg#+cg!>X+D5UXT4{BEP&{m!Sojff79rf)u5AT+l z)Gf=Chm;+&O2#l{PK!Pp>SiN$88&$@l_clI`R3bqep*vK8*b1VTr{u7fAj_)zCTh^ zT)wEz`}x3dixW;IGjGeCi&#Hhh3O|o&RAqnS2!|C>gUKO8uxf(yCUsZYjO1HzxutP zD~}yxUvn#4rb++3dEuF71il86thzI&p$jGqi5FQQz6tK&prlv-Q`&I;5W-*oTUf|C6G{fOTBK40-921sx@md)aGTAG5%pf zy(KXZPLKWwU%qvLVaU(y=HQQF$g7c zEw@U2<)ZOvd9%xLF>U=K&8`hVZ1~f_{aw@NSC}J3HqVfkZUUHFQ5|IiX=?dpyhL(T zj|e9ih~Kk;uw#9z+mdrt%?8E;*9F*w?1;nVccvWO9odL`DHRrJq%G{wL_HAAZg8-N zzCXLR8GJm|Ll(D`@VKie^kHi5n^M8%$j}+@xE~fm9T>=fhua?Hosd9h!BYO`$P9gY zK3iUwrNohxlhhKAG=90#ZycC5Gie<`xK{ZGgb8b0N25WnDZh7eAx-Fy0!1zhhr49xMD=&NS9%Nf(2K zH|B#T*uyZ#@c>(+_m`(+3t#Q1m!1jNkECvi26a>O!;Uym?IZACzUidih3kxOY0okO zUKREUC2GHE|FURx-O^KFF&^MzEY470mv{|nI+3mJk8ojK+rqs>p85Bru^Q8_jkzqo zx_l+#Une7Wl;8OezHVwX9Msw8znQ!Kj*I7MeGYrC>&D}wPf7G=ObO0NdSF`eXLsjx ze+2o)CFOZslfP^$U(@kMYr+c@d5&NRWypq3b^@Goy!Y02Wr5~`+=sfqz_GJ1&tU84L8`claLVg5x_^ijh55Tb za)81*P#cOaeovP!SyjEBzAr6Iyjkm=AqJ0B+1%F-h8z`^2-onri!fMY88nWPow7YwenyYzPCP)y7FhiF zxy}Yv6uOa|!*KF{+*z@;SeGn)qCaKK#|K9Z)@|z52VjT|H!jSndqebL*Is&Rb}xAl zzsfnu4b^H|c*~_L$ceL9^vh0XnU^R1k>vYw2#`@4_IVfyf zZ#5>ye7;rgA21gS=g;yQ)a>qX?Axkn@j^aG=>yh_V?kw1L$WVw`MFeKp;M9*J%a^$@oyjEW&6GR&>uYb#(^QJf{Myr99T>fV9>2xtBPX4Uk;*tmwJ2nnKo6;y6 zEz)ne0p~swW?^&}*VG5Ei$R`)_?b9tj2BA08X#e>)^A??HZ=}kPd`;|IsmK@>Gx!#6e}Z`Ncfcr~^e4qk8FVfHQ! zYz&=qmVF2K2X%O^4o9*Aa0aFZPV~utDjeG|-t2TK{%03j#cI!Ej#oJPj{p9rWuE_h za(}Q4mG4T-SJLbEBhMl3KTBW3TjBjqw+$p;B+|~lvOP$K{(t|!b^~_$A1sOV<_59T()dhkVBFRL9T^;D{_dHS$S9L|i#hygf(S(P z1C40F&s$pGm`=pgiL`l^>=zzavYPHQeQjGeihz>Vf`8>KYNm8JaYUsme`J@G>jZYozgvE%UakpA*8)7JNrLv;{^Jx0z{P4cq0=wd0 z_62{0(Eo{+Z_5iScdK_;Cojp@Z|6r(1lA{-c#30cy6py%cNKmoTWJzk>~e^~<2arK z13>LyTydV!r-E)%Pnh|FX4CskH7w4!fDt_ddTBjSTJ2Fc^#OpwCH}3hX0+gA%9m~y z#Gt%7N4&{Lxeab_jt;BKwlqCZ@OcTnM=gcHz8YhMNGiEsM}J4`5y#nnN_}oBX)oVx zfU&+z{?>~jfQvY6HNCYe9!L;Z0eWJ|y^704OjKiS z^?8Oq%yDm|Kt|0|asu@H@8ltR4fmJP2m_52Bp6HfgbNk9ohaJqe=b~Tri7l?$J)+R6n8ge}#;BUZ5cZO?VTFF9DEjf0x4buX z*EIt#(J$@b@tHCiPsBn&6RoJz-ryLqN}VWY%=~lq)eGT`(FLg@Xb7do5KQ+PjV4!E zQhAt$2`~s*+RcSXWK}M5jQK1E^YF-I;-utJj(#8N_;xPXIdfR3Rw>bT#?%jo5O@8< z{RXjKPg&GY|GuTXQ7A3q6^T8>H}Hc#x6yA5uo>_yc&`ejWgko6xHj!2`8P;b-U+Uj zZy$w-fMQBT&lXpZZ=x+^>n%60>}qExTd*Bj$T)}$bY$+&nRRhNwJ?|m7{ARN546n1 zliHEu%g=H7R#o<%!VpG~1|?b&tm}L(mK8C8G_Jz7YbM9AZ3k%@p2k+@ zC4?FHXV3Vk&^U>egsE|_FP=yje9pgoql?X=#Pqon8=sEF2u$=S>8C-?xB_gvB7?Mw z`rCW3Z2(PD#S&smofI3v{*i`_~8 z%(A__8P~Sb%v7(aCDx2K%c;!(e@8g4ssazqN$i)&6%$x!D9k4~0)R!sMF~p`pos_M zGK+b8**oXymQf2sZy4s#{@CQ$fq&f8<4uyGd}Ot`*NkuEJ1{0sr>H1gol2-lMuczd zlG5loshLcU50kLMm!V&NMP+*OWF{^=^-U1c7@`p+fdlJ3-nEq+AEbYd6>eINVv-!4V@ znLJsuS!<3F%YP2{;_GL;!Tv9f$b6|h*I_n+1jB=bpq!Vl_)eK1;94^iOZ)cwd2X<; z&7ZFpWM!z=GBQ3qQ`n65N9Z`>GG!bdH`d9d9$F}ZDXSWk%+P(L8^_Y&Pl+vvckk>I zj>WV;L>u@s4cO)C?oRJ6S7T4{MGqMd6I&(*$27sbHvhllX2qMQF$z4nwv3}0WYkQP z@`rHzfADVd3s_UA_5lH+Aq**sP|QF?>@B>42P4ArviWat$^BB)_bh%=Gkg~uNKGSvG(a_BNq`6J5B`;27SxMUld?TK+@)gV{740?zLoVjD=EXKml9)(vSEdIJR+pF@39m{;x zqxOl(TqH&D@YATn-paHagWP7H^}IgRq3RRM5D^pZzZ%d(B{x9gGS)6&*DPFg@0&VD zju#K#=}!&Yv-mn1m2PhLdrvR<<5lCW`x>ywjPXWYEM;WE^0G|38j^=c{4MQ>BgLV^}%uOt3Eg(IssAn;XQRgAzA{pxI9>yEGP_bQa# zqP>vyKwx{4*IdNOv_2zZ{@4PV?+t))4$<*)>nl&JgM7U%^fIx?fQieOSJMOUB%k5B zBnO})uj^-GgI^YWrJSV!4n zC#w2-hfMa*UZz$b0AuBzAyAv6U%wzsA0U{czmiV-h_|uft_xr3)T;$A-bu|fFS%sL z`DX^RHp<%3YsI9_NPqMCTVhv?BM-;#>zCN20gg0bn~LLYkC`<6YX2DJ*#Iq0Sw7D| zs>sLflR0m_Ot5%~X~90*cD)rYWgP3j42CwSHONFyiLun9iqXasok|EOznSLMZ_nS= zp4Y#@bR-hV(~z?9cE9H&J$36G{kY3#Nm$){`_0IN%?V22V>op~fhcUH|0U!5C4tmV zY!4NQ|0Y|aY^jvmuDL~7fxw>99oqzrJ{vOfRbLoYCr%%!MdH-X^Q}fwAXKaYT~V$( zWe2os$S2Zb|FFpBrLKd8nhxdQv+=%z{o^(E@g@@Z=w3ckx(58D?Ia{E#io5vM>8z? z?^KrTDv|kuB5TDCaNX$l(IxusMXYswk)ac}Mb*yiyIoSKz9h1_lza0$yNfr_mH%Ab zOf{;|Ydz(so^loWj<_D!f`zYp&A&r1AVC7E8x%kS+feOIEi@Zr2=<=pozTpl4ZJjt z`<=rc7fLiTc`N`xq8FyN zb$7iXL|?Z-ZxzGW{j~;=jbY7dP4Ve6248kAfHudl8cN2H(eFZBks^ zc<>E95!hqsP@^mSV<0aFc=>dNqXAV46E(k}gaRtyq8PH8PM@HbVLf5%awjHaLz|k- z5KQS8f&suOr%jVoD!Xk7dSwkf&Irl#Xjp78dSsf(rUopzt(mHSzMVq30~}v9?+r`# z(B+1jQ{T^qG3Qt}js@JgbU44Fac6~-O*=Xoe-sHg9eq8}&V`&VB7O+Zr)7Z4wzHHv z!ZvM6{{(91BRiJEqjIGuy!mr?7e-`^0DR>|&$IsFCq?Bfr;|`G0|-PzM;eQiiEDQy zuW?Ts)56dfiV7TvHokHHXiFHE~e^QrFfFKW9+A4>~!>K{s<80??w3qhdMttNQp< zHgtYps=oLrQlXRR`)PmUv)CY}Cm;gjzPXu5KMEkJEtVS?2CvN>YHGO9A|i1O@Ed)S zELEn>k4@6c(35?ga>jr-lIcw1fZQWV2>FH~b#n0KdBD4ZCd+M){MX)!1sjy3rPx7- zzX~UY#g15xIKW}^DFF;J*Rv2jID7*y=pUnG$g`c0@eBoK&nNuMcZ_M;Fy;!VP%HmF zwL_Gq(_k+>8G8AAIh{FzNLb`XI(DDEN~>_$jHF`HruqwLSyg`uIbLb~lwBt=cJewb zEP+Z!XRx0M9Wbk0txpW(r6I9aPlLT`Mo@j)Oh*~Emhq|J<+yqST8PA)clBLf4t|W9 z&cQraePvwW*+qc*4ZiUF9WYL3OX{TRx1ILXq#z)Btey;t4YdAu$-7(#l0DS33(AIx zR-1ff()nPiPXN=iNuO=XG*73tU(vFW4t8v}J$HeXh=9GP=n{?s*IJ_kU)Q&J(rMZO<<5EdRF4rC`jRG?724za{m%ykb2u(aaxn3%?@!1SrYETP zpRtf4h#KROq|5Dt5(%xnaZg7iQoPjSROq?SMCFwZEw(qb6nw*oQ7+79{QmhtRQ@ag z5;vHvhh6jHd>GEXd=crKAzb^QQz*65d&SN4Ve}KJ_jy!_gp0F_!99vI;hd zzp~tNN;dbHoM}6lI%M2rAnp;p35Hbr^0~nHqRTby`vEzh&fUG1-LrPSb;jXDXqgn= z`uL2C{N-<`6=PTm`e9OE zEPZR^N5FM%Lf^{-`|Be#LW%gOrAp!C|6M@XljIo)u5^DmQEWFFBGATvsc~c zxPA^y&P+7n`*Ox{~mZ~zn%-2*)S9s z5lEXk@z?YDin9`Ob>l$Jz=?}-jH^TVN4l@2`1AA4>ID7yWWGqdb=dF6`m^W<&NVeB zl*aB{M8g+2Gs~*)1ykeYPijxmW!$SDsl)?lhBi=PowUAY`3{@tF>cZu-A&ZvFvK^V zLy$?iMw4Iq1WD?`HgMIE{?oybxCt2}hFsN#rQLIs83>2Wxjs62&g+vdgGCDO|7<-m z7)<;HSPe^WEa+l8JD%PQWa6HR5qG`sAU;ngHFJ$;i2W>KJzmypuf;_@_V1yq`fBV? z!;X5oKF(jWY*FB$aPAE*CJPO+MR-BT@zfXjLJY__$@#oGChsKnqWrA}!lFY2jhg5% za!ZfXx$P`X1K?Ar;T2_C@8fap?|3NCFeV-K>cl2DfpIGxz7S`76nVOVa+7yvt1b01 z6L$Tkn}!qlg@SYM`Oz<%S=2J7qVRfV@VW2xK>Zj~rKRaw$_+{f1WeCEgOj|r_3dn7B0_he_;;H!Ob15 z{>m>fUvwBOx13{jnyZ^M?eMuVpN-wjRGw|0z1ttV`4uFdsX_QDE5;jpp62Nvqg^@J zy_*$N1+o$0E#dytE!;6Zu`7a3>X4?D0_&h%g_iF+z{RWJ`EAb0h5 zo6GN0J|g?muR+hZIgXY`yHTrge>QPlaXWd-=gu@{Ztk#JKT-*M&`mj+&)V0Fl46z8 zpqwmc9M!SO6fW9*;XE?HYpvklZ}KMLt-OxZDmS0p zpT(;E*ZrI5ohIQJ)7mu-=vTE4uZSf1Q4w__L9>_?X^1yViY-wlr2waS+(u6a54p4c*aYGYt zlwrX=`rD4Ip#x@Z^QB&sO!H~tl4kx8Y>{CWANLH*w53#H%Y-TZ^O&~`&x!Xk?X$+NW~=qT5_vE+*sN~oJeO`k72X(jGP zc!k=p5qQ*{l9wyYfG)xmoA??q6@Or@b03@j3t6()ol$TT^ydEpF) zr@u~#>WRmj+zqHmaaTY7%RM1~Zj{TlM>rIb{e*Rs{Aks<3a8P}H6LFt5KLXV zHno2^+*tNE9CNgA5cer{9crxK>{H4K?2R3aL)J}MTxIK%$B$J(=^k&*xz`TcpcG5O z_(0j|?`}nPbUK#d4lRy|Cs1p$%IcWnX{xv^?QT=6f5W8#IVe(8DFprO=P=7A_nxom zpG|cA(}duezefQ?xZ*u9Wb)TrC?g}xSH?Rol52v~|+{ zeNyMF&ZwnDbh7irp4il`)N?ECyrZX2Lc~&3$q)alj!AS<>a!8fV%ma3p&d*8!eQ@Iwa zWnTPWy#~0UlwA)lAa0wV(?hj?09YNh!DulbP+pg2K1F>DiGERxsiR#zUP_dIALw8W zCXlz~qN&cyi_byFbZ#RhPwXC7b6no7?o)qqXsXStbX3_ zuzi4UQ9XKgYv=qT&7xT9u2u=_nZf~e2c!b`mPkNxr=(%tt^Uh&#Ed5t!YY;kjsgB_8VJ#Xw$4>hRPW0Od_ zkY_!#9*pr4#HNK=>iN0HEw9|ZU!La*8w0dfZ9flJydh$HJ%i6bGtsR-HBxv7v zr5gu^cj==fCkEzRqzkc*u#-}NEY*UICT?W0 zYl+m&cYhu6!ouN(UE=Mm*KSeFKLoFCFxpl=@;l?=e-8FtYthrV5AA6eG)ZcudD;DJ z)mf8>y=2TqzPjdQRf*exkg11R)Bcwj_({nm5&fE4qRSoQQx?4v<~?1*qSfv8p!`1$;Y^G?OrJ!I@G5|SC&To9rkbrt^ceu= zw7XF8rSzu!odaB$YzJMiWKjkU1K(-qni(AI-Qm-tM*iHx%_W}R#o}ma^w#>cR5l?| zY2(*hzw-IDK5)in1U3u|ejpWY+HMpoY;awSkz1ZXXC=VNN^aWE+`5-~;Z~)kgzjsG zvjWd-&Of84>Rb8Z?w{yz5b6n1mrWF4oJ|YXMl5|C} z;LLxDp7~SUc)F(K1uo#OmUvp&TlKC(;Bf{ox=gW(O1IACW7o|@w_9>83QZHc0Kq4` zU}8QGo_zU>{?5rFmI8lU9)nKyCz0TA89heB{!oa!Qq~FV* z&D%!y6#kK-8o}TiO@6NHLDM1%~mu%oon5N~Inkz@71MpO< zvFO&6;T$P%?$o_MgZq#y-s$Rp9}%G+@B`HD?K3OlY4*3pk7i}jp2v{`B5Qkk2b zO1=i5TU(KMm6v<*UEq?LW3F%OULOKtsskh=oPc zIe1T;m11ZomP?>9rcJ+zi)#69GfG_348z)Qz7f7Q9tn&h4G?R2ujl|#NSU}%p&9DW zKNI*ij_dPW> zA_pOl_iu3%cuzg#HJE%@Fn@RPK+bQ(C;tOD|EOFTxXQndbT*UK)^B|r#s5GiR6IwR zej6JO*q&vbecmqPK6kjvG|WmnYn?dnC2R||yCM%mkITwx#7}>J^_2$v@uB}%RIVQj zgLK8&v-+Evbi~|~C{7ACZw-Bazpql@%n~6G7lBo<8Vk;r$;Ihu&3y;e*nFm(uYjt1 zZx*2gY|;{^?z3!GcK`f!wJj&%>q7|q4ns{!`*R*5EDr$Oz51p40i zdx=wa&vV>lBoq}uUY|F=vf>k^JF~>mxQfz`ArRNZggSN8Uu61#vXXlr7 zEo6{w1s@QLCr(B2yCH-S!Hs;@E9dsfsKeD9i7loJ+ol6|kixGGrggTiZrPS+TNuz_ z23-%8+{U_E44&3p>|bCyY@urk@q$%2+uN=+(?~)>0_V=Do1Y22uWKmk(?;(iO<$7>^0S>E1VoUp*0$SwhTdAWgS!mS#FUIn}^ zykt&pp33~^BtmlQ#!}BW{PS?FIn8}LjmTLl{cBidyV8EQ!#7FzRG9U*0I^-U58{04 zNCO^xC_(?#I*F#_b3@CQ$rBXOV!*8=qS9b28c~<$v=oY8JZWm}EDnExkKhp!K%byu zdK4QwV?xjw?o<%Irs6##i`vY*i|xHzQM=?ax%C3S_#Z& zIgO~KO@kk+?46rP?DF9*=iQ0*?i3brOkr21#`1@gBKRkAu7ze5=k1yeSOxu2Wb4B= zn_Z=lJAXx?m6bsqeKGatDM8SPyeTp7o7u3d1DXR>fPC`H_Nvb)Cx_HDL({dkj2Vp5 zl_q?3MnSmTcRybiG8xFom{)4|KQgEWiHG0SekgC#)z}kU{}OVn(N^n95n*Bb4r64^ zVg0IP7cyE?^FpsH z8Kxqdo*Zm1=TK0z|9Vb;YIT5ZYo|8k^^Gs=0On!J}^tY7AWi=e1PdRz|6Th2W3WBypoxMyu5 zQg>7cm(;7d6O4hKIEP-qvQmfC6m&I~m+bt#PzFjOc-Te81mL-rt`Yv)@|%`@$OfBs zNkW`KYq;Mx-VSL5oq8paePG5`;U~6vw~1EfqE5et`r(I8>T;vvHb>Zrb9D5H)fODP zVpGu3XCeIjm#s0S_QZQ(N8r z3396)D=2mApkT?FCrv_alMQac;Tu_B+TYK$`j;ZU*F$^0Oz4QmOKYa=e>yK1@2?34 zzD3ARu7P(csr(#V(855`*TM=1TusUL-Pm?lD;;Sx_IR1ou1H+gMZy1=uEeg0Gb(+#Vgt*-GKD26uAZyjN78QAcW-RsLL;n&y8Y>#V6rA*C_ zn`&*?#XD8q5x#xAC3g)X{?&Fi&Cf(Kds|@5JHy7RPzTeix>^@aPDLE4$ikFc$Oxo# zy6;wuxZ8UfpNDOJiJ;;$?);RO|3(genPH5jc#au#6K5&yN(6F$XYXXt!h9(sYkX8; z!u>qP4qWaOCl{Xo({VjR3X}o>`bplwhqw*pkOue`79FZ)kWuOR~H@6>QPiOmV z(@8rZY91w_|K_0xik+h&wQ^dzB3gFfq5yXIRBN#QJaa%gX&^k{5dADsVSo|IJ% z88>Z115cCfFvU9}Y0<-ioR@T1ii`j;4gc-1-F=OpTB(|MMEP;HPDBQc;5P@04}9*a z@H_Fj^G;t-lzqSV<*=V&B7$-l_9Klp?=Z(RCHL@}xjpk$$Gv}zq~_zQ7?zC?fuI$1 zsJqfu3LdD2!{^^SDeM?JL&&wYm$mNf9`YHs<* zO7)JX30k>IaheP~=KVou7grGsI+hQuc=l`H!miLoDas)U8R|R>6qL5oRhridyDnRj zPSdZNvnZc!M!{%qbfX^FnAsv=8Pdo~p38{2#n=I>>5}VSvNjhAJLP}7`zvsn+KHtO z7*GnN&<)?`2<>k7Unf_&QC&|Ki4DCgkSMjOQF~QtZOIF6Jxg-ipo8LPPxCE^V|zzdjEPzP<2`fNkrSggkyz06QzZK4 z+5OGOmwI!dgbxp)cEHopy%`2Ru8TgAg7sC`eO*=Wm*MeGkpmlY0K`Z#?&&I!Z=MM5J(h0XPR;I zQbkOg5fOv6nMOE8e(XIc|8AMDC zQ_n6HA==73c7Rv8o@DguNftb(qCYVdcizG)g>R}8olyT0!*A!=uM$5?N_SynUg?im z>w4gj7Ydn)?)lx&AXF^Us|HAR8&vyQ2IPqufDclgke+c#3Mi4)nw#%-2ty!s!_Quf zT{lcHp$8?gxeg`FotoM~%wiHrVnu!aCkqo!nG-HfmJuWNA=2i=^L2 z`qv8luWg6^P$e-yCs)qy|E`U~vKfD19xDcSEoJ1Fp`}6ijSmJN@yjO}lCXfPScyP6 zInn0`7S5@JG%qH$MLO_qLS|?Mt=6s#RHg`Tq6nUKs-RoQRBxom(?PX%v(iZ^Vzm z=OZI1+h83RC<#PBK6kgDq>Cq%3UA=D=SBt_nQXz}aK|0RQWLghMGWRYUl%^euGrid zTRi*oi-7@!%rM|LWbq%e#4Ntu={MXy_`%FD(5$3kGq#zOm51WS=PfX0pF&vy3-1Z% z^5~+q$<+@Pvm$_vuW@FC_6naJ-V^TG2%F8hUv&8FzH(3j{%6;1$0k>NW?GtA5d&w# zx8FP^&A_mZhrnlFIVmmqbl$;FNWSsLEmP;lD|Q@{eCcIdrDdkPBgAs_(eLinOTLh1 zAt1}GQx-7b;6P+PB^uvef3wm(7W*5AHU;0e$f)yKbyaX47!F!3YXLMf++J4@pt*<#Y~Y_hTvw*n6W7R z{un%uYzrkY0{or?zc3#%uW{}dU;L@wIjB)u66nLt#3b=s#Ujivj4@D$_ww23epT%WXPj|MpRtN) zw*db`dt$5%@Em=Sg)xgnucHJoUSQy}U~EJOjs=8ZY{kGFKCh~c`TjTcE_hopZd`Hx z#E=Dk<6rddou9sS{-_M!hYn%o1?Ps-%bz0wN~fRx!M=>K0PV!aqZqqh_@X0HBOS)D zzy7u8$p6MS-&na0pv{QX4*F~OZUQ2Fv@~_j{qOS1S2mwdstn6M>xoQ@r#)@!%HIdr zvyAl)QTz6K!v8S-*pJOdDaYWt{8)`Std2VBUCEdJW6#2Q2K;#j{SBuR0d)5B`Tuqt zV&Lad;E3;hBxl>Yd~+1^3neaPQ$eB%vigg(v? zuGxM@Y<{MU68f)~KNxE5|Dt!I7hBjX;4`0jMVb}xx4(Td9S5z}(=jGRqEuJ+tVw3i z$@VU?ue39dN+EmDa^SN%xUhleQnhgg6s0I8&mUGJrTG$lk>%@#Qa{ zmzEI0z>ZUkHB)Fq;M{ON@Lo#j`U(ZWWBL@qJ4BOXP-A}$`##R`{qKKKdfcwFXZpB! z3DDbSHGX3Yzcup!^Fgdc8LzYU$I$xGkDlJ=u;O{f0P>uD3=cTqcYTIE%KgwDd{^jC ztbdV393zX+ZE+m_$A7%0a8CaG0{mYvI?~to+UvO9wbUO|*~ss7wac<#oHcXk(+~Vu zgmR`u)^DHjjD|xWd}R&`GW7MY|5dvAJ?j(NEVKo1O#2{%=_5XPi!pcl=^skRpM|wd zcrWmIluX8^@Vk=_OiM7wveg3N^ZgnhS=&zV1LHdUPq>HMZ!hXC&wJjJQ@zBtmxZwy zvo%!_zKhTE`ZsG))`#d8Ro_>Iy#{Y1VO@_b037gkz0LRd%&r)*@^-6Qb2s&+7 zulLZ7&4Sc0n%n(df&R(Z#U{%wj8zXdEHb=KIpqVTeq}R+aa`{A-ruHK8aQJA@Q0#v zpq(|gg*G7w9GPS7#ytP}*YBKuo;_b5K#5a>>t-Ice7jfHT89zxB(|M^hjTdOOXro& zlYU1@H=hZ__zin_yzOnzPVX()8iO71v!8uMdJkL^Sxc}9ws8hEcC5%OjZKiiYnC--(bSDue%j<*SNmY}BY^Q)$0A`Q#_} z=v{bzF8zFOL}5bk@BipWch8RohZQ0)ZR?52lb%#mKK*9JRgjWZ1%jQjDKSNbYYdxX z)7Cy}0i({PmwzTr#SCrC|5(2G#jF$;!iW+Z{5BYEjyrC@)Un25tUomnM~^P{TT)lS zXIgB({nS!>dA{_eSEov2ICqrBlTSG)RpP0;R|N{fDZhVzL7~CXm^sy6pY}8QBK-z~ zYpc==9-`B}=8R>?5)?fPPQ*!*i+g-{i1_or4T}&jo9to`X7$Q8TQiaW4T~RS3(nNA z;9@*|A%Z<1{`99i3$Ih-@Kc{^Okft?*UWf@QRj@)KiI$i z<<2cY=80veowhD1isv|`BnF>vzk@N%qK5QGFH2Au$x^~$?Z1oPBRDRIdYvpS}Za@@S5L`XPa#%r3RWRxV~UO3NRnWHct0hVlm#- zJC9y^+2@iU|9GDP83sJG4Q)1UVm6lTX4#?L!h6E;Ba1flZO9#-=bpVIPQS6Z2*g?N zgEwc6}Cy^5wlJq|Y~H-P%+E#UYI>C$PdA zPq_vb07SES<^QEG-Jzu(0e*3VA&dV*?+Wbz+ip8C*}8XrYzNMR^RfSrK7~=9=fd+i z`v3QT-Wl!Z%xU)j1K=$@km;wM`hnyFA1E$3Eo4@;+Tbvzr!MVnuNe;)b$Y(rmOS9R!Y$wpGqc0QXd#CGK47F!hc!;n?y zOSNHSKu@od&0+rxf_s|v5p+$mBk6BH`N`YzXUkwT!ASR}Hyl&wOSJES2fQHp@|VjQ zmb`Z4k?&3&+3a!T$HU==XXPye;kOLXzgy`Pek_K08NJ^AF7(swx8Jg|EillANOE*> zqV>@SyuOZO?|=hNNp%UF6GXccEsAkDI6?``ve0h{;PN2z4msr2l@2jWxE7yj1+4Gh zvUl?h-UBg1){Qqd3^RNWGVsYy&Pp5t&(WSl!pGW=Hb3&ntYqy$2mP+lKX^a#&2BpU z@1K8V)aeZLTe72R7xdpFj(BI`H?Y4c{O5nZzBG66I5wYjf|V;V>=Xmt7=y^{W@V?I z``qpN&Wkze-@ow6{FMxhlsoNoSZZjd)GN*e)*)mL)8}IH+qZ=!yvF}EdmkW2iNN<+ zbev-_ZnaBQro|m|*7Wrq+lRurF&}t`KJYr%K(sN&?(lwpO`JP>mSO{8@5=!1!w$px zm-+RMJHC?IchGHtzTRwY6X0{sKmU$YULAVq#p!Pn;CK4gw~Co#S@2MG+hzTrIF=SJ zTv1wAY`JA7GszOO*X*y~k4wL%wD$r37}(?Won6io39PE27To1oz3}438!|!_7VQ=nNf8c%Ci%vXo|5WcH@btqUF6v!m z2;)2?02;?-XnXV&GS@7ny%imtqYaqnv$%OV&)oE~mp--B_Tjq&yY4zY{Y;$Y_L{K; z9dgKd=`s6h`91xBfQeuOwXd$n3e%78qE+{p~lV*Uaaiciu-^8p@h&&KDzATbYH2k6=St#}FUj{7{-~pYr{I z*SPKT*0NXA!teUq-yTqyv;bqy%U;&-oReWmu?ZG@8trO1y3`W%ZIoH6vp zR%4|ZL}d9ABA)&Ce?iOdU@>Ta8#cY7)RFBs9Q(9YGG_d5x_y)OeA_~JiUN9^K7}sZ>@!?WC@x6RL2E_gt ztbOz?pR*`eK)n+YBdK2uT1OE7%Qy*RipR7Mh5#Em${7ChU+zj5G`t76&!Ra#nJS|= ztT76ECp71Z<07rM=^~*5d=`os$`;Wfv4s$ZK@_TR?fg$W%4bY=E$i(!C@+37OP0vo5&slj(IKr%~ups!+t))E+~6JJ--Ip>0B@#iO}1 z0(gx!WB-Q$&&}$6PuPC~!tcv#_IcRv1ryVfO@5>6K=@z!&XMogI(04#)?v{v{AT5& zit{}4z?o-$pmGrr!01fm@IYlF|A(Gn`|6Yae|u*FXJ=L4{YSErWim-7Gn2`LVX{s( z2uWDNA|ZsZ1PDvm2~?s41OyD5EycJ2MG!6e(!N&VZC^oY-?k!JD^Q_+z*aw6tSz8* zLns(TL@J1^?|h$oPwsinbIx<0JL|pk{Jx*heC~6XnYs7ebN=Ul{%gmSOj*yK?HZQN z?*k>DFv=sBh_+=Oeg4kPy<_cHSCRb$ci5m`p(6luleKFy>q2u8qp6AZGVcdt5Dk@W zBLSbWT4Xo4#)dcEc(ZpMzLqK>>B<0{KtKFpGD4aN$`F@dey~>_^WEQh=b6#hzkYsn z^T&^i_fH-}K9iZpcW>Z-xTRX${ln;FW^9n9WO`s|+^}I$N?$Q7>(#@nG1@Vbn)hKx z+4C5N*Q~h(M|<|ZJMJizQE>ZNpbxQc_?!#|J{NKj*=8_fU~U;xlRbvc%lu`GL;5K) zlDTG&8K2KSNals#Gj+S&I`yU`XNRS$+K^?%y1MYf)u}ZJ{B7Rnr+d#TCOZ;iJ%$zY z9l7whTSkO{4)%`IdUYgMCSg#<=m6Zhfkp(A*-^4?jrIc$2$zP+0>h;pO$zLZI4x|Q zz{U-(;=4v4c<{jsQlE>+#{&=gRPP+SC60FIek@N;xII2oxb@mG{$pHQuzg$w`B&9dOJ87-wX zvT$K*d_M%)Znm!A8)FCs;_?`FjXUnB$Pyehl(`9E0xfM=+w{%+#y?*W{q5hqBhJ3y z%zzvV?U}x4a38i!!h8k-PyX}KO7=RBWA9p$(aR0p;FMGL@QwpAmoxM~er-!ae`Bw_ z{PIJ3pI@FBTXZMBd;77E^q!Y-)DlREodfxA&X=5(AAkJvIQx)*%YS?1()hg2oIK@} zJrjS2J_YP$-}+XizbEe*d71~e8VeXhym=g%%bB91V{+=X1{|)GtajnO_~w8MpN%sn z0ZJkGTkLztCgu(HB74s`qjxNgPQ`0^ubkztyzJw4f(79m_Yk1Yb7D(k$< z|1&y0dlSvBZODKl$YI;IQfYj9%+W&`PtG@A>pgS3WoXIhz2Sy`@@7{6>mU0X^Uc8f zwJVBn=3-9TTzl2e5PHZmg6>@OCBKGE%8x@Sv#Yc@q9ciclaV01T8JwySTLj@E5y6ZN?*LmsTqzPXEx@%+wrlHO^W@tDI)U%cV8)C}G^v?)_Wa{>+J_0ATXV?#T!vdVOcZn8i~0HB2Ma#YPzeYxmAOal$1(do|qXTYC(C z^Xp_2E_$Y9rQO3PKe;hBF0dhAcm0Og0DufR;D9-azeQOXTfyWOr9%oy`S;tzp0do;(3}__OvDq`S(1Q90zxt zf#2olh()CX8QBgvC2(F){t0-V-{mpNL1mR~8Z>e=E9d)TUHfDfpMgE%FaPqC-0O1E zq;c`@8B9+syF3)*fDqmij6PB09H6Xp-{*xWLw*fWrW$Tr(? zVc>sWb=BJPy$X!+egBjU2*BV|GDMsZ2UC!V%mI?Wd)w`&CJvHWOqx_Vs4^}l)54AV zGbK53Uf65bV2q^9p}+s)AH+I24-`{vi}c8%`2|_N~&DMx^>kJ>#P&To@nszJaT!wFPk#}#w|O`8qiB|p56VW zb25!6E^g11mtTH8QH!6?vvTF^-p`$kyhUfEOs)@pC)Oz)qcd|SWb{OSed3nmcN$u` zbsZLlv(8$Xa^CPi-Dc(kje8#Ee=@&tAlhSN^i#LdyMf{Pj&$B4ZFrbVfu|R7U1s1U;T$%w!a2|l|kPuxA7^JlelB$35#AR^~^N@Tk_R-SS$kf%{HdY6H5A?x1#K8$?sa00h% z_?;6^TpI8D?(Z``j1zm)V~<`Hef!&&MBnQD;e2C{G2=wGyuBYFFFDKjoLuIAhG6Y5 z?(7eo8IWWD{{72iI~xBRd5TQqz2)5-Z5S`g$N%WZzlvp#fybBc*%2-EWVRWQ_3VqB zUv2oVukSrS0?#9Z*()*VvR5)5oRxe5X$JHvw_KeI>xw`KY>T$O$=S??J?5M(Ux@oF z0%OkS%VUp#F=LYQi_8?)5N~8x))|}3fn$$Nf7hXM=sp-X_EE-@xyasyoI*!J7NL)@ z?;)Ff>lK@b(L;?4x%uV?Qw}2+p7WiPTz1_xxo#M1#>!q#rc~RUIpM4k{-5nI+uo~x z+F3h1PmqKA`{?%;DGG2fqj>Y6yP%hkz%@n)S5Hx22u zu!T5qct%jzB{2B1@uY?(4IFu7Npbc;v|nG0^L+6LUpBJ5#sIkZ;Zu zWwd;T3l`DmK6ge+DM7i&J4QCX+RDFu=~eGxuv*05k|pi2!fX^TZfjAXQOv*JyMYrW zNrPpRs+xyuuRSs`CMd6c+4QSn(ozkSz}T@P-4wH9=H%YBHYN4AAy18PgeEmc8Al?= zxUOYP`U{F0o24(R6(b2Us4qPCTyibqsmG`sg0))BKo2N87-ASNHY=Q{S!)8PgBx*b ze_w3s#&C^M5QTz>6BJCl)_m-^xb=is@%Y9!N=CB29Bh2iw>1AHs)Q^G`@Kz_Iw5vk zgg~~S_@O+pA)_Q4`Hb>t|1Ed356Kd~Z&F%ar-KcO{CB^*Ev}o40oL9087mZBj5n_Q zHy{I9JJkruu2gBeUb(<$_mykoJ#a{^#lSJtn9s<2B{C0w@#5<{ALn-7#Mh(AW0ULA zmu2DJ^1DYb9+xP`gi`|N1x>JjboH$0{_|VnTOJ$I?20~s(T8Yz6T!xJ%YMqfLTNzz zFq8*(et}zh4Efd87M4%*=1q@lzPj)o;2f+)Z!)kJQRazo_ZhVEGNpNZ>;TC!hU76c zfSYOY(o3&JKlw@0Xpa8rt~E+4{>Uj0g>xW_cW&7?mLYt{$Q*(>s;yzh$#<~kd*JV^ zJ9J?pMcf9Nc;N-fAc#;jook2-Vb&mUjUgVr%bs&{=T7gPUrEEP4X;J-I^l$6sqgU0 zEAA;@m0({qB>|W}>

t3yax=U zwt;~$LH3ZL?mHawKi}PZ{<0xMA#MQt&`;yfVLl6gf8QGW%b2<4X7MoR&F2keA+A{y z&g$TEQ6>>1TQzW^+203qm5jIkfWG&@KVKA=#lt|2p@&FjbmUreQv%v(W@}(<$o_KY z4@N5X4>v2tb;g+Uj}P>C_NOeF&s_Z1f4Ml;Hy?RqTTs698E?KhSuY=B=TI107$X<< zMSGr_Ad#%P@O$r_K3|{W$)w@$G0)h~jdPXp!ElO0ffkK4Duoh-q~bCd+KvHPk3`x<#62F z|Ceh5gKO0>`3%_6$SlBlf{~i{mIq{)ZIj?VyxMzS{QmcoeNg!9$a;QU8z8@9>t)wp zf8i|k#@g9Fs2E!okie-apI6}HXm+LF8YES-OYGV!spp% z)0q}-V`&?HkMU$PBXR}9?mhQxscJ}YK|w%ZXBnG)pqT#4zg`>*GmIH`-kEHcHJFe& zV8aH1P;PJY*F)s70}sq+2x1fa?sqPYqeh3)VPU{Hfl?4h8PYoY*u;X#`f)p$D6wEds@FfX;fkSiSk3i^sP_ke#n@U z2UjuVb7O3H&T+Uxd;7#*c^}@4*Q^O=)sa0C8f(ak+U9dp<__nL4Sx@Z5eA(+N&?0k z4u&Wf?$}c*ERTX4l3mm}xBuphvfT2?BF1?0=9T4p^~Z#=&KiHV-uG&F?zfdp3+S3U zD(ae6iWap$ySe6f?Z08}!=^pMMg^Q1G|{fwW1@~={$aeJ9|8sl_S4Y8GmECCPo9~r`TjLgYvsJra4bkrql;pk(R#D=Zok6)H@()0Sb0r;4tygBf|?vw!l z^6HFsnmg~IWLQo*Z@Rmu#@~_KywJdVTd-hSJm=kVF=nkBFr?>^t1dX`G4SCWLdKJ& zQ4RLqzWzTSsbGOTX<5%$)oL`$g2VFz51f|@e8BkRBP%HEoOAYx z&tW$2eCJ)gXN12l-z&k~%45iIGgBz1W$Rr$HpeQ->B~aoJc7e43-;7IzVHXBeVqHg zU>5^MF}t5bUtuhe0~n||H}oa&jyY<-7sdt$kNbJdYh3x|uCwc}KPvIN28`|h?{7Ef z(vR4$&^NQ38^GUs_@Vd2Mpn*Td5xX@#VyhC;)}0DPdrhHh-XZU1Ccf98xLfs&%lcu zrW7!r2ZJfWKtKGi_r=Cs_H*N0rT->!zuFkt@LglrXN__jnlI@1U;grz`2X|0@k9AZ z-dlfQT+CQJzT?fE*W6-!$3|n1l{>dMV{duqzNzuVv233Yk-axsJ*#Y(%j|P`V0`J@ ziF1fr`sVw}a#|oa$aZnxBTj@ovTLHVFS<;1bU7TZzSo(IG`@2JsK~nH9F0vWG-r4% zYYLr_*JXX*ob~K7H@t_fThmVI!NlEPc@OlwrH_t{T?&2AJ(Iz*{Lb376~`#wF&Xg> zJ#=xbN9VQSZ0yyceCJAfr`S&XzF?P~H{Z4WowGix^=L4-8aSIU0Kh$!?hy-@`->D_Oj4>q~910HT%68_zo!b911FGH2SyW3=?*V z6}}|WnRYlvW$5gj)T{W0l}tQcY{u>vjq$vejenp(*(4>8^i4LEfxvCp2b83-OF96; z6;Gor_-q&>UNdiQ*n8MtP@1Tv$)N{B`={R#riOV9sLna--+?pTprK za>0=Gt6wDzdN8#)JG%R@!xomW((swruJzZ1#&ELHlk#fA+WJ`Ufrw}~b3mciq$!D! z7i0u|AvmlV827x&Mo4y%F=xwl6A9vrCgt;PI4WQ5*x`iFW3L$+INIQ_Xm2VRRm^AS z_4YViwYC(oZT=3=vB&MV`_S+GjR?*PSMOphS&KA!4}l>9dC6L_A-Z}v^e!J9D!=%p zEnXvh-a6Ejq_O84dY9W^yQ{0YcYjRk5%%u@bCOJ}!Pvu*Ildagn>Lk#cKANbwc-4C z?;q<|?)%~X@y91+CGsTi-spnE^{FR*RlZk(Mxzk=o9JC8s}Dm92euG=_P)U9L|0{> zM8*%s_tF#u!T?gsv z{c8*6F`!4dhM7)lKg2oaLhp<`-!*3zWCzA6<{uG`L^4yuJOrho>SZ4Ja2uA>pTWG} zto4oTB4Z1gVPIaCBDas}QwDA|IA>5Qs;}#Nps+J7z^uiPQQ0+~+OQt@Jm}!eFW){n z*zlMLxE^z8~(;gr|jh&&k)R6cmLyky84WPTJV&%w)a{7?_q~!_n|QmWSWK1=M7{d znz6MxF_+lGj;b zU@tuU@Z^~pd3en=>&o}~4n4$t!6f_;s7i)Rf8+rUR~w^$hGaeemw5-sDeRaJfAc+Y zsp#Rb*AVpJgC^<7Prgg4ACQ&Cd(FF7@SWQ7h-=EZ+EDcY(8t`~q=ry1=LfbQo{%GC z)KFrSfRHR0<3GFg#GOtOz7L!o1lORa_D5FN8x85S7(M!JI|Y)NK+is#jPB+OV{^e^ zYF=x@^L&w{``S?wJbuVt7!wru903m_B= z4m}v!`=ZdIO!Q}g`ji(AIMk7}!C^6TX1GU#+thrd;?}->{q;AZ9XtLfu|Dmr0He6u zaCoLHM$Vb2*N{)mLPH^S-DOPd}MG`{)8YqPQn`U@NChd-Q*j$|`j zzC3)W8Z2DJjGET2l7P%cE``Q~=c~QHSO?@)dh5t{q8*_qm{Jv(GAp1?TP14UP zJ(9ORe@J#wN8ijNZcQUdUn6&#ytxt7^+dB(Q`BBFl!>y}3J#0irj))n^SF7vxqsNg z@zH6^OG>DD?Cj;q(omv;Pd7;EUA=k)Yr!?d+brrSWewbL!_hncCdzr}pfOyqhVQ=n zocIu7<_C_+{^(~v`&lK^g1<>KzSbGxaz~Ii)2gqy{TRr!TeYeZfq(VY>vonGqm0Pq zm!%CthRvH-#f}Ptn?0Mwq~5h{j{{|2-Gl~mNtG-z__BQ(1y|O; z{L-t@Z(evM(JuhGX37fs9MpMAa`qMUa3XVS%@DRZ5E*#N%aA{;2357DV_zwMOxK4%(w zVYp=mL%4x~E^ej;>?h})m+Z5+Vr6G^-~H#;T$hzfT3}8lAT- z5Cl%3o&7(J9W&3_c`(4KgT89Z4)g_g&GDZ5^L_C5Dd%ecAJglWJ;;}_$!n2YKFBEi zYVY|USw>0GzxkW|0kQn<{r8_2I}6Dwd+6c!#KAQqjp3P5{e*+AEs$um!^E*MB{0ae za0NKbD>pX8z)kH#BI=mblo=Z6=%eArUQpnRR;GCjLfrM*+w8U1;PkVocgP;F%QY~b zI4ux(l(cZ+`DM!nzm94>U^j8%bJKwCnP)1ErAuQ~+30+A^f^2a^&w-RsMU#wf?&&| zI9k~;%$NfqYtbjWfX3#72?mGl+mDEqU5r?_-F9l-d`E7nHY4lZG6jaWubE%~Nc$nryzw?VH zrt{|I%Qo#R7*#0u#32t^&*!vd0N;x#FGd-Wtb-^ARZ5m{IOOm|kCMFXGG$G65eezSsC-zrh9`@C-JlvqCyBV8|#Zyk1Nj@_UF>nvh zJlEe66@v})Zrf$)jC0l%#(x^k=M7LAKR!9PUU}uU=!qwinHF{=Elo6S_@Aa}dw-xl zy6x2CdmtdB)+pZLrlX@W?pXmelngOoKtX;s>blFqm0e_;yN({?-0}6~;r?Lti>yaX zFETLWW-_15eIlZX-nPfphA|@m!od8h7Er)mi(dVge|37Cb@5O4pEn>zWH{C;2gG~h z+C-GG7%DLJy%61~Up|B2C(b=l9&R7*R8JJw!e? zMpC=RACK9G8X7{{F!%EIvlvO(8<|_a#~78}2pXHLNalfp2!9l8nr!B+k2%nc-ldXN z2N)YdvOW~ScKG4dqZrxjsR?Xz{P6>)ybcw%>|)%I^+dzlV@QUW!88`cXo_;(D8>`} z^Stz0$@yo4!-6K+_Uml+o>|f%$g23l+0&yZuW64PZ7a*7Hpr^8F>8^CJ2%n^T!R$` z1ER6(`9O_c#9^@3@_4SXfy@DdAIz9=YmB453`E0F$X=Y4I3g!+R_8nlnOi%^;8&SRn4CRMfb-U{o zf+ui(k?Dh@0^`j09@!RWFw`{uYoM?VGd}D9k*olkMT-X4;aV@avg^qwE7`5Uwb9vGzpPFBc__;H8YmBC z^ONUa-KoQwaiNbBYtDA^*^r@MYtWd1vPA?04P<~Sx{L{c<@>FrY;YE%Muk5k@}sRS zdG6VL_jGpJaF!5$cr2O69p zrXNi$x|R*)_H9{2Ad-8YvhAqo_^#|CE2`c=|3r6SAOG9Gdq=;rK5cvfBR00(20g-k z9*}LKZ}d>M^6G@WT-7MZX1I}0wP@b-1#HyXC#ue9+^%FMK2%K$!JoP zC{w!1H(rbt>G4Hn$1jpbQu|P28%%+@H&CgVjezOLV>UAS@wk}-rVo!BL1SQSLsqZ`PM>$YR_u%D9FZdK}s?M<~(2Pu{*#dBFL3_m{TB#uOU4tVPBFBetzWvo`IuYWF}a3by>BCz-j=xDb3}=9te25A|4r znYB#-EI$L4$>x^tadGuB93|!)12`bpudjdIey||R!ptph|^l(oLj9o?L*S}7dwzFlH8^N}0kNoosr^i2j^<8mYTx!|pEj>|BxC#{| zX~^WU$HeEzZzS9`@#3qMHO1PX%#&f>#7c8V1Ft!7ZgFJJVByodP}ouI&9zHbTJ%T* zV}m_c?Z|E(M^7M96k`_UCVenh=g%)@w6a^G!0t0JYgThg4&aa}TLO6i03gmuL_t&t z$$AVClvBW%gz>x4^)mvuY#j^S%#@Cfq>jMY&@ZmmEQLnL4Y+W}4KR|r`#p1n5)FgV zYkNh*@GY+l;k+o^Re#MGn^|Nq! zS| zot-5i?JIYLAa`q)77Yx4wvs^OwbJ3)-xP9LLCPJ0Tc7mlrz_=-7#rId zYt44Db~xG72BN)-qNj3xwq-pISNpzehuF65?K_QGlu_KeHGl7)k%%qp88_qP!6}jD zv?zk{x!PG|`t)@FFe1w-?fc|Y*VJ6ra->rv2TmT`a{G4wR$wjK>&(^bsXWq%0e*wU zjF#kj!~tv0o-n_s7};l7(iJlQlv5wZ1x!Z_P4Lb z(YFSagqbr-Ihxs2Hem-sj~MO znKZAZ)bB#n#+WgsrsoEq-eqSY`kWR;N{eo4N=N+Jbahp9hfo92x$|23T(^6qfz!f7 z){;44H!o*wixTY@!i|s&8T*PzR^|Zv!(cbNZ#3MVDK@ON&T>ybz%k+W0fc%j88Q^m zoYlt7q@(W-Jr8Kk`-Q(gyH{5&meY)260;xL=O1%z#tU6Mv^N&DUy6(GoLFQ+Wt9yC zr71(FLe}00ZpNnDA7#y&eC3x%3ItNxGRua?T}M5-g{}J+xkT={ZEz6zL#H^sTEPJpZd?c_<_3eW`}LZrQRT8RC=12Df~Vo$6~FX@IdR zlCsW*XA5K(j4r1Chk?iuly;QSB1FoBVBFk@EK)I%O(<2q2pT9-R3Npe?eTf}1}i0v9qiZGFM6Q_NVc zUR|8tSd%8F>zun0lHJ{v#?nQ{mziQMqB$@94~u>d0%W+kw#TchD}CN6QgnBg(}FRpW~3KM(6x%Z-dx;r`!>ukH)E4C zHvO0g3fyO(uIT#fHL%P(KE)2WZ#y70o)@wMn14QaV|6{?><`9h+p z8WYNnY_JXSMLP(Bz3DMFG_(En3oj)Wp2|U@BkfHUr$mR9bzxq=v^`s92|uph_4wmE;`L|GFFS*E z!-mCi=?ma>XP&)pd|ec(8R6}^@S)yoMKY!$yX?8-GIws$2!H+cN5+RhIQ@(jsR+Q4 zOdg{P5v3v@-QCJc$qRDJ)#>dLu!d#Jilh5ii-vbIEkp?;@402aGuQUs*xjA(U$kgZ zaRLK51BLcQ#>_28Q*^Ry5{#ot0p^GKhF+Ke7MbQ_(curLt&`4u)rb9n%o52oo z_uX5fyY4zWy62uPy=U;^*lz}d5s_|S8?g*CtvZ{w*PcaKqzDkO>$xJdpL_15l(E!A zE1QPg242s>ut;?Pv+Cbsh&bSY?(#hvNw-IbAJJ337e!mQ9#EKQQVt~5ly!_QifX7} zXFd6_ONOu}eah;rS;bk4HjKrN9WSQFFH{e{h`6%r$tSaGD>pLcbD0QZvsQMSQc-JW zH&0y#gy>1|h}5-VBN3>XV#uU4pLlW^yj z$j+(*jaQOgGD;_gf&vM2Ca9+9)kOw^hICrE3Y9C+NyQmIz7lPD(M1QAuS$m>>YNuP z0>p)}`sFWQ+G*f1w3HVcJwR-DJ!z~(9WR%)Yv(8C77+1w{q@I0+qWMP{m~z;D?d8& zLHK6XzAY)2sugTgt+w*~`IW;nYtpBzc61a+iLh%WGZz2--^p?`Ag4u`XPojq7#tc| zmQUHWv~QXH%ihPBAKYKuQPB@(HII(V5*dj6x1SgJ!KiGHx6AIkrz5gx0*OKS4}15; zA}Z@y^&R346$RN9_1yUC2{5%kZ zddd`)(WArXAUEh+3_K0#w5W!wu&-OUAiDYHjnUOtua9oO{nXfVUnGUzZIbrXQ!gZp zp)9~D%_VRB)aLXiShR>4UsE~5+O_jiW5Ikn`|MTG)~&1K29ZT#+_QI zx{Mzm&f;Ob?BkTey{F{XGexdO~$8dYgVED6N&z$b=o>B5X zx21GAbIbhcaGX3J{Lm3Q=hwjp&yO~4ToPXw9lM{ODB+eAcImLHu!wXIR~KbkBysy} z8jw%ZrfEG6HVtWE&1xJ2n>OuHzN&EQsVkxjE;u0CYcKU?_~kDvhCi^q^+Y6f%&Z)E zScoX3qBIuk*UvBC69%J9x^PJB?$+VC7Hs1T#;PVy!_6W^iV)px^VnlM%2%aBj_Q*p zsTO6l@4k(lHD??SM&_7X<^tDy&rGW{ht3}pef`}t;-3XG!p0bpO_m`GWLVCRPi_&7 zYwxAAdtc)=yd9~q*SQ(2Hkw;$CIq6pk%eym4-wuQRT?TyR&b3k(}L0$^pzpQVs7tv z-u$s+%g+>pY9)o`6iegka0bpiqu%yr`CbX^HeY|>-O;`Go*#Yse{U*;Bj1o!+HNHE zs2eD#X5h{#1HmF%i%GJoKOoN)6qv?0ztFo>^JX>{O$#fqA7$IC!7a1ivJa+!y$ zs0P+#*KSGU%oI<$VUZ$5+>#;BKAS9eB!fc*oDm_}Wk80Fgf(eoj&W9)>uD1kQl)7K zvJ6?EX0}PP)?!yz+G#-#0yD3f({txawiz_H^26NGc%=ztrpO_dCd-f&ioB%^;D0`L zW%R%U?=GBSaP;V~PUV))5+#i8X7)V8(rIrJJz2h20bPH|lD5Llt*p{^%CtyBIW2ci z8C0e%O-N5=ZFY33G?WXa07LU@#tb)+A$vO-YS?iV;n?5b+v?yZKmTxT@ zC|xH?Ag8nH!gqE~9T7@9^TD1IW-sHhrS01LhYOz}zQ|;+#q?ot|NVC_UzO(ch7AkL z_lm)kDdBxhb1Mx25Wc;Uxie>u4Dl|$%oN5?W0fW=y4&qHAkgc>I;sq%X(pD>Ikp|b zK;X$6uO~At3`Grs3zfE`1f|H2$|j}>WgxOPrFYfF^y%tpG1xSm(}HNy&?3VqbNXp3 z%J+nUTEVtqhih}#;kLCksf3~!knYP*(Rwt1Jzh5SMiEJ}4mXPysR_4DRwO*@&{r~~ z*~+xwHARcsYHA8c&43!c=V#Tb-O5*u4Sg%zIbrs-_NK6*So9raS5p;d={%LBNf4^7 z%v|+F!k>Kdp1nVNMN5}z9RC%zUXe6^LkyIZ1#3uPd6$x<#CE^IAd z3CNONtV3TNY8pEk#h%v`v4?~2U}Km+Uu)6^Cr@a+_S zQ@Af3A_;N`!;DXlXxF@|nYK0=vV1VVjNWF`GD$WZ7hh>R#!fvgYD1;k(qxr=?d;Te zxljtww>N^ywGBQExjXnG*f1)ecIsZ`dm=9^zQflSs|-P3Sg$b(5;8U@(;`2tLtoSK z#f#f^D)zjlr>9tsAm*0uU;{j-2;4NG@mjgEv#RmA5$M>p^7-tw0kfLrv=}Tx4p*3? z{tGoRd$uCjY;dNI9qXT8>g|yqP?d#6$_-SaozXjR+lLpb4FUU}k}O z(A5I-%jj*uH9yLhP2($V2hGhglKSwi$9Qj)-c=K!{zXM5%O=qxC*q*fkecnTyC!Q| z1HCMysQbyP6}->BU5a9J@Qv4@ht4Zs2^XI+i^y9wEl(4wLCPlRGtQjzj(y{DA%HPr z+k4+0Ul#>RwS{23b{VAuv<(WCyEg)lFB%~ZuV;T>IntBLCIxUH4a0%ePliL22Pq z3`MvBQ91&G(n1LV=|m|K1f&E+1TIY}0YNZ?CLq1v5RuRfL_mswinLHeD1v}!=)FTI z`VzkHt$Wvcf5BVpogZe+>@_pzbN1e6ubFf9p3QK@xZ~=lfX+0P{TtJ(VRGB+A`-?) z?BIYr}vif$h$in?< zP!ZHWj;(#Atk{9k42G%7WlxRT9y+yKD2bj8BH}g)OK(FF zF;t!sNYC2TC-&pj+gDRE&lslHq~aq_w-A_@yuXLIrmw{dJmzJ!Ras_}NIt{p+V-qh zfcN+Pt0vp&et&<7>0tCVL?JXNZPb}ueD~}1{D|qP4Fyl6e!}%&sR|wo$~ZgQ2*3w! z-ah|VKk16PjI8w>R+!R-)K05@uOB)(6~?BR=F)6FtC`iGbyp)6gK?0qRB%;-y5`l% z2hFMOC2Q4P#0(BK?q-$qJrkq_^;r+T!%0t0^T<4o1s`EVh<)e}Qr5x|1ZEg()BNq( z%tf=2^G-^xFNvty2V&K%tRIgX_a@7cUeh17Mv#`C4R4BhHva-7gru_+%77V#m*0Zb z?2x3_-Q^QOd%8(3-N5D#$;s^rrhD)T&5#jf++`bhY>ixIHEvU)8k@&6Bo}m_JYBI> z)M1n{C3~oXh0b7*0fv^Q`8bx5Q%!ZEjglI1`Gh>w`SPhV02MW%Ctsg$rdE79M6Na3 zVD*F=g%1WM=5SX`xsh!s>Xtvy??T~_WY!H9(rfUG7&)7IKNo6VMI|dM%0g1L%PQV< z=?gK`<=Jqa(&Yd~PPSg~KHF@t!8h*9%F>TSQbcPGS5?%a)>q;$>TFWFj9^m`;8V{^ zI^RukNcO@Pu^FIT#^6x7_qARI$PzDuKMtZt>t(Ln5sddY&MgvuEJpo;u8yDS4AKB+ zpQRKT#bUHfV$T3d)}9W+Vu@Ct883#XJRj5gdrvBb{8>+o+jn(*VMfvca--N3BkXUn zqfg!^a&_m9$UDwtzyvcz-ep_32VcK{c&@0pQgXwGF-`__Eg_B=iqu6+t62{T8{Z}0 z!-EWIIUQ>=#p6;1&<OO@fUUz2s0!89(|3rDqyM#pT zAu{<*gt5u)#M9|i6d{-U*Jjf}+i4!-!miZ9iMHoamTz;hdfZ zOtncePx6`Ns=D*aTOKey%_|v)0rMl^q$G#&?$h&&0|7HoUejt&orS6od_NO#`wP3e zogeLgZmJtcTa7-@Ig*|7lKbI@N7!nMOdd$M$$^LfPZEFm@YonvIb3nGz^irruZ>p5 zm2EYJ_ex%N-1f0Iu<9JvV)tU2b~p_h>?<@2SCF*GjA(NRM>AG(t6CJO@*3N4w{s&86;AtU#82qe%?R0q(6CB+4oiH?1UKEaXpFb z7}+8Wudh;9S*=y491iLp#Wvrvjx}TfmRdc9zMl-bQx$T^LHCYF2@~YM`j1q3b3@XG zvH50WA*Km5@v^D=h2lS~q4BUWeC=ZYe$W-Uz{f%5xU!Gy7&JnosjPnVouVb^EB^{w zV>+F9^+3xWsH)U>bG0U0URqnguRrJE(lA3o$nHXnSAwdi8PFNhT%%Ux_VgXGLZX(V`@irRzOvsIleH&^PlZ{JXwmW%Kehk}~qMLpn zcNNgi#+MxnUK^d!djSOAI^{W0uks`@`lw>GGm*Q^YEGcNl@4ZLI=Wtxh-$KtUbGPvTa#2FUo-TuLDWrGd z&!$G$mLUt5m3^b<+%JPCME&fv_7P#$9&1~mDpc~&ZBlV1=b;B|R+Fb@@?1|3A0FV@ zd@U7K!g}r;>Vh(^NU1CO7T5f1*+>8c%?~S4nWJhcXWTS3$rDzn+|zU%X5R`Ig3hzD zzOoI83Y5V50CVhVIpWQzc3dGx6n-o$kD*|lJgPjjB*s}Fo2Yo4iqGMn@E;i^xq^LP z4LgRF&6cis$p4x_(4q>utUe=%DH|6WnctY^n>GC*v)bh4+F{sR3w_MQt%;yO1c28#u31`#X zKJGS2Tz;G;n{Ux{4S7G{Q#c92ZY!Wp3w9!L=xwJ6af65P_K6*1YQOdiGtZlY9wG3J zF0GB4DaMyj@)FCjH74xk<;Eo7wVyVT3y)!esc^GE+~egPF%hKy@x^RIx6@d$ndWn3(PyYtiZ#ieHfP zZpOM6(U|Z`tK6-}ZyR@UIGU~hRkz{PF7Xq85lGFr%Y3QV%y>rPdO9r|ETn2SkxKGz zU*WY49fikd0$L*ZFMJ;>3FQgYOqeQi8_b^3i;T5ZB3(zs5FszVR=M?k33@&Eh6$qY zpkPQobx5?3U`u+WS< zlXDL!v{RKT92afZ?2Rorj*2N99&?gjeU~8c*7^bR**u0B8zs~vrn1=qJ$ctmlo5g3 zR?qz5eoN)o#7bZXLaBE z;c|EL!Qu`H6xA)MA%gty`*`W8N*kL-fnNQi^E5kB43CANs_xT4<3a)s79xGI^-H3Qx=j~_sf~z$YtVurYjgQ;YXIEu?wJ$c9b6zce?1|v8Zgu%2|0dR_dig zo|THlL$fw0$w|uO!9H!4>&e+|?Y+$J6JFoew#?0T0~NLQgNo>*>(3!#w(ag%a#u@5 z0%#Z(Pv>LsSV+&aQU~F*I@|SG%0@NrC6UA=rI$Fwn4x5B5{uEMOP@Y~R-i-s zC&9`=OXUV@=V1=RgLk$(I4g}hJELtcZ&crY_hjWm?OYfyKAwN*9vuDSV^2v-IBB5Z zP8g*1ThL95l@j_aK*7lX^%(Hh=zzbw`+}wO*7Cc;Z^@=F3ub2rs_FMZrL?deZp~}_ zqAcw5F>FP!+X2#T#3eG)CU+N1)7N$!m;AAMdP4il6jFZ3*0Z0L2cO;U7Bn`L>5k9k z*)#!Av~27Rq>#O1F&U`uir&kZV3CU;RNiQ=kdd>^INhdbG4_am=ZuKX;W+^Weq8hd z$Er*du{PR)lKmYitU`VLo0I=tjhBY-SiQeLHPi8x5BwI*m4xef_Ni!#eaX#C+E}zo zt3P}^c#TRLC|sEdcD$ZcYI(vYdQouR62BUgM+;V)uhhfG^r}B?rfI>KFLI);P@)5^ zgMaseYZ=;0e59riY)g72>ah_bw=YK5jz~a@fk5V-i)awke6HM9w^+IHL|`$ACYP3^ z8xwpFXZgLL4RHpG*9Y7p0XszI=3lnk820a%?Ct;hbefc-O#bOEx8LD*BC`6AxGO5P z7wL8S)UD8e$@2v5;JL+ACCUFw$Mm8 z=IN?`TJ)NZ?VogY{P$doXHIzkFB0t1f587k`hQ6OH@L*8L;B4Kmy_l!!F$%8qFwq> L6P>r(51#)Q{;Z5< literal 65807 zcmdpdWl&pDyDp@mxI@sk5ZsH0;_mJaEfgpgtVN0hcemp16nAOR;x5IlK(XRp;D+za znS1`;KX>Nd%#biUd%gO+?^^p=D`9FXve+2p7)VG+*z$5x8c0Ylp-4!8?`SU&SBj|e zln@{2P&s`UB&65f&wt1c6K*1iJ6P0|w4|S&o^Ee%wY0P>EG&GGe4YxCR#sL>NqwHa zeM5{pSv`4te59m+J=N7+UEQIgq6P)E<>U+#5D=W7pHou@R#i*MR8q0O+cu$`ULU%&Q0d?@{Q|DdF#^i);V*0vBG-Nnux$;QT}qLR6} zd3mQP{P${lde_slk&22+Oib+a=emZ51`Umzj*bpz=h~;^ zV|RD=l$4aG3IbYMT4u)3lj9RE&Y0i7e?MKUj*N`-_pi^)%s4ny$;+od{kw-kp-=bc zAt51pdV2Z!`DA2dPjz&CeSJ?uR!_-%cC{b@ex zsRXF=E|`lWJSHaQY5a4dan!-Vffz^N($Yb@YvR+@Zh86SRQ}X<5GfB&%tqJxLSWL< zG%TGjy-2a>sfp{U-zYu(=gP{_)9GAxdPWjcQhxr3wRC7<;b?_zT!T%+VV-vE>)5cc zj>N>or@gKp-anR>mgeW@-4w$XoaweBlKZ3j^FG8)PEIZ?ENta^4S6Pf`}QqdEoN_T zucoG^(xCGF`}aFzJ9(@|N{Si9#iPzDQQ`RhRaI4s^^5oYt~K&%W652RJP$$@EmImINDkZd@s z6xyZXm?m#AVAAat+U;v%TL&vS;5(fCKL?gRWACCP+P3~4e*Jnqe((K5bymQ;_1<-= zxcuFoN|wKCwn*`QX>q5U2fLeqc#b%}8juKCTI~P%4;YFxRhvWrI0uaf0C>P$Jm=+> zHp|5y=)61JCP#RfBaYW>*(ZUEoR$r)Hbbkhj&&%qV+4fziLcM196Y4Ofvc<0F7m_H zY8&ytq7OX_s?fV<_WZ4kDTrq65Du51h7ND1G_h%!q{Se<9ElJEvHv}6ui^0rPXwaD z;p+Bf=m*OBCf#V(#YWvpZ6gtlS7*a+`XgM9FAV<4NUkpoJKFFhC%%z}qXPJieOhq2 z6eJO0Z>K)Vzfy42W6lkhK;lls?u+5dM`Hw(z5GO>mxopY*Uuv^@B3r|tYwC#HJv4% z3*f84xEX}*)bRCyK&^FFz@M~j391}`6}8%&5D|*l*VPW?c@%ZYOmF(n08@UCms`h$pjsQ#AIE96)ojh?t(TvgxF7|cMGcqwA-|(iE|L$f8x($hxyE)$ zI{ZF2*V6aTzNE~#v|)21OS`gidU|@vBs?>;w>ju!zF)F1Bmej2!}bti<+R^%@7+OF zk02nP!Vb@ru7@YL+DDVY5Y*`FYJi9MtiTnosW)#yAtI=gguHJDFgsaCg^uQ zN%P6wu=U_MX(9-2VXhBB3t4fPS5R6K?YN1)G=2LDo+B;(}Z|h#3*Cam6g?)A0CGR2DVjgl6Lt& zq!JJN@-Bun=r5YU>u+GvHj8u*^S-6YOnt>>*8fP8g((v6KXqG)t3|>Rd)>duU%lPGwzP`){xE$s$X!_x-(b3; z(goGWWP?r@z233q=*kfMnY?|D`UQJsyfh26c09Su65ULXl@po0Yv9Hk z_D}h`{`;a;#;0v3%t`W#vW)E|Ds8ZnLAP5e+{V5GnP5kiZ%($dl0%yaf^=8a)w#Fl zPplb#NsaX2>g4k-L^Cqv(cm2#YbX46c-l*Z-~F$Lrz)Nh&{z5(?1x6t#gBU2dE2b; zu!sf@@wUJhTl)pyQqmv2-n?mCb=g+5?ICYH4&!a+?|4*$tes3`6^mjxv=DK(R5qb@ zt$1ZcEBON#=gnscx-S|9H*Mo37O}58DjP0;41a5V+!JmJDvW`HU@o_WtgDTpA*x$8 zoU9;2$oQtrAIXH!jEuKE*80nk-2QfUt6Kvi26VKu7+EJ=3gA6<=<7wvgW_V}3P$Ke zU{$`bhrCo9&jEwj!~LI9cp*sTLnHb25E-nG1i~*>J~MH8mn);_ev-Vd9sWAFm?q4H z&1jpTNY`6S=c4L$2FRla?fP4>?Q!E|aq+xiT`0|w8(4-B`r0lNr(w}~ap6EW2pEw} zmbAUh$UjF?nTgTTtw$P_jQ=Ze!{9rzAH;q|GxZ6F5QP*J!A5y=P(-saVr`V}R@loC zL7{H*E5bQ><67av#>Lw7T}~W9imIw9nHC;I|92e+8dU}6ucVI;tmOJ}w7CA#dr8=a zx9&(T&te3{^N9yZqe!VlVmS>k#0PBr?|ayU4|a zW@>GwPe}pjE?4n;%UwPLuD#FZYZj;&Afk~^^kQ;lS>SyyNM=z{r{R0ceW~DFk7(eY z5et;S`srKgvFD$`@v61y)?z&rw!t=W9~0q~*8M9k85Z;mMIB|wrGLM%)#eT7uTzqc zdfwLry_k0P=CmKF&5jkcbQ&(2ypGHUiy)8Wr@^(``xX{#a!-JfZHKEidMgVp}EtyhYhPDU0 zXK&HiMJ+hU?;<1@!VVOdxfc`w3`X<+@Op0)Ew=%c?=evg!By9HM%<*k|PxUOO*oOIzDP6)>DonPi@xMT z*F7IzsTxcUHxr|%K(sr^rcL7JxeB7qYX-XYBi86{d}0je@k#rmt~QLwHJ~?-nb{Mj z--4z#sdtVx#WGhv4=PS3>ZZQlX5rCW2yuDQ?dhtRrGrA&ECb&7Iq#v5()`cvmYjK0mFLVvF7t1F=Q3C#QYai%; zK(Yll1!;cckL3K2ae50D8hk?p37Ujt^vLIRfZ9~@e!ph#Y#vc;_Qlbug<~Y67hIMJ zYZ&xaT5l-%S~69_NA%3`lRCnleYvGU3!$}79CkXus}cwdrtW;P*01<<`B#BsBYa38 z1r)=1yj4Vser;rG4gTt%?gXO&serIk2yPs{iUlip?7^h7H#~Vh*ga*L26Y zS79CRHG!*vc%l49UCVixluG4tV#P+p%qtuVJ#*{ag!YrY&Bbm8te|u%G?VU^ZBS&t zmX>km^)t+#fRPc2_1+?|1SUh=6}sFz++^i}4FDP?+9pHuqe{0YOD2mx!@lxCu{ zOcBUfr(X!K196+nW!P=}Ll0D933}z4H%gRk-4}=by)WuLEFYxOz$U%LO9pU)O&>_F zS{Sirs11DOi15Nn#v|tPKnmC%I>rBz*%Y zHoKB?frQoDup6Dvc=tJ1GLCDBf~3~hQ(;RYKgh#*u@b$xDzxjNKpdtn>`FZ=Z32bM z6GJie0!8ZA!PEY5CUOZ(r%!DLl$asyk2fg?9C3xQ)BRkW|MGL3%vnIuzxYg1-Z+UA z`v)aR*R?Kzkqqx*TUe#}{2DcvlihHB`WKlh;vnk81__g)m*md%Hzy{_nCT=(ghY)F zsSpr3fVb0@{Z{cu?1sA@k%d|iyrt8uF%YBzK58(cMvXtn=CZ|;*!lF&1P}JXKLJo>`SAbX&n8j$4teMfk*-Jfdhd(LcVYf6+4i1{qpbzB|Ka$B2;Z9g- zahVW4tj`J%h?PKPVT{ZbigS2HuYd=cnTe1LgAe+|T#gZ3p}S2m;>5wxUBa$5v~oH& z3+;W^^pwE_k6EFj^RsoNhjVJ=TJ_Lw?+E0t?>0fqK8DA1dg*n#elW z4{SQ3B6Vt^-=h^y`MCu@U((SJyuga+#$sd`jrCVvx7iNV!bzmv_KcPYB2DUCX(>dCZ<@@zLtc4G_z|(34-NF;-~=k5 zjQJB)l|1RNLEqz?Di}G(>fhtLp4z%2cb)&NO+~bnbW&X@+3bX?YgNAu$snmwr^}9{ zHatjBKs#T^&v(nj*^M4dof^x@I6dztnH&7BMy^luTuQ6H;jlzd#LT76pVweb%#lDi zK2@V&?#48)dE!zSTWk0K;wynd!S)l zE`KVoBu(Q>+43}87{gy?C4_A5riSqSqyEBgSh$QfLIaO%;)WQfi;;h+Yl$*nH~qwXBF#c|uVKT8EJ)K)grY<(<+ zb6S;-O5Ur*1r##B1_=|e5#Sg3ZDi!1k;ND~33oqZ<*24> zZ96HJ@-82H=aPb9!g?t^Y0izk;d|$s@L# z=t?CqS9P8bTNDUa@{)E z)@LVrhl@(yvL@@Xu|PrB%#)My8~SpWC&KL8P84W~7CJ-vok#m`Fx8(Z3VlmX2!CvX zR3IUmp?H-V5i70OrH`cd5Bx~|o{U3xjm7x3-iEB?9JAd_$Wp%S#K1JfvOKVZ|60hV zf2J|ys<-I99)+%nMq>9*Tlkvcn~+l0kq`TB!e0 zuJ)Eae~O7Gx`{YJ_PtdmJfic{xG6`+g#uPkc|{Z2Zh7v!sM8*ys>{EmG=y*UL3l$p zE@r>J3>KygQT)9ovO^{OfiH@Ttg5kee&LChtX2=K9pCCrN)hTPyA*Hk1H;bec_BRa zQw&snM;&?Knv0qfsy99jF<-8Z7HB9ERir+=-Rl2H7ygImPt4ioH$lebEL(TJ31O!# z;C2K?1VGva64aeEzELmU*{&7pSNH}9@^oP5LsF*tWk5ersC z0O>0KQWud1-BfeZHX;!5+dAqznUo~r;Ujgc(^{80?qSOJPLD*TKP@a&iFq3keAfvB zEClcI`bN8N9b)!04m+X+VVd8F0C%H-HU=W#fMw;Ba9YCmx(4!5OQB1VplG6=uVPuN z09d3mDbw3mEUz#^QJr9fqZ?9aDTa`R5U~-1c|P)#{FT=jlt$bYzGW62e!a$tCS=4i z97M2I>S{)1uk)QzBk7Ob*XjIAVaUrkj-9O@F0S=*)PO9X%b6^1+rJACh<30qf%iee8%Vw7_f4wCQD@t$!|Dnf8Z>OT8BJ%)S zNtE8(gx{peqCcG1gl(^cABbee7~eWzo&WK9VMeJiRq4+5`2`JP3VER$UAyD&he1hl!BYuV!v)ss z&b`nsTtGqybMRA80};W%2w_bAlD@33p82TE)|q%#d<4N{6{b}H%Ev+wOqQ{Ku%*r7 z@YOJ_;#kD$sz?CL(EXr_DQ(~ocBF|ZW6Shk9>9UoSt4J3kn!XFUvy4_x+E0;w1sRbz=Wvd4z!- z?gySgL#yZmj&1Yv&Qs+rGXu0~ssVS2FA7MRZIA*O>dDTl~+P|Mn9QtVuEE1 zJf=0Wc<-gUC4?BT@F)YNXT%MM*UILYS~+T98|d5@pVIIz2ad%ncy?w)HBysmE4Qr^RMiaHV=~r zUPbf66>*`IW6Q%mLD`^9kE^JU?^4W$+o2%rLfN;qqdrFoI()6(rSos^o?rm+-dMHC zS_Tg@&v4gYP4hpjTYIWu9PI;qv~_NQt@CD;*4sPN z#gGGD)gaz|NbvF~(1<@84))Jof)U306xUTBv3t(k#+jXkaKZ{DI+u^|<`*!S&+9f(cUD*&NY@siSyCmWktRlEgG) zRk@)=@2Pz{V*1i>OC&Tq3>11Xaqy#;!1uq2#>!s#yw_ae$!Agn(i6U_2d=*)^3pwX z(O5qK?>JlkH&Zul&w`P`V4y4P^k?E#Jz-=8qbkKe6q?hta$Mny84;{eTrwlapB;o> zDBl5Jn2!fkR=S{P6#V|PH;q-vNWW&?SD5ee@tTCE;~L*AYtVL`x62DkNTrl7x_*ee752jJ_cj4`nNoX+ zkof8}9?{@SgxM%t_&lECm{U_!+&G4c3KAyBc?vH(Y!d5ZzOM9Z!xU1AIB7vIH1&NS z^`~-N0=8mT>%O1sV`5Ra79cCg9`s@2T1?_ZB5-NlE-{sU!TG^LkkMXw;Q)HBF=uo2 zu7uH-*iHgVdOeXZzz#HeRKzNY9xFc^r?n7|cqIVkHqgvN-+|8Z0Gh5_26qj_cF|Yb^iBTC$hbpD&sz;$B-;G9f9c8uGjW z^ykS)k<#-8ARRGrF?3@vKC)|}$|X1C_X^RK>tZwLc7LzYUdCOzS$w}K4)g5&mdHHenfw@#;{@pfK(yOwusOC!hxb49}DO|!VAkijCG z`0KAtq(asc7&jHLQ_iST3LpGi^TD#&nhFiaoDH^N#+IxdR;b-OadwZqJY+EaMxA0U zM9r?wUx55)LYg=djC)NaL&A+#`}6y((+V7FZ3w1|TP}659SD(lRU}x-`V!-7fFdF#-2y~_&zSv~??{HGx?kW&_qk(*5PlHn#A;&|R&ddSgbgk{ zIAXd46R>8I1^8I3r&>MFEtA*b=?<-X_j0JpVC?hJF=2D2EA;XiiFG3~1<;LrMGYZP z4_m#U`#Xw<-e=#qe|enNeQ9%hOWSkVxxKROtXr5!zKpCsztWKAJ5NmT_IdDw!$!?S zFpEpx#WM?Xs(vI^5c$PYE}^_t7+-f9UP40pAT(p8lf$GxNtmRFcy!s0LZTNi)Lrpr zq<29e%VMM6H>CK_N!M=m4PZC_twjAF z_JP&Um!6>vgps}B{W+|u+`}&$le{b?G=}#n-b!DRG}7x;`eKW(FAt$VhQ2KzVyr9| zV9f~JmjlP9GSp!Nja+jw>8;bjJU2F!8H%E4u;0a|-k9fJ7$R1q{vqpy{b{SbDgO%B za@4_443Nq%^Z>K;SNw|8kHiJxfQ!2-stJs@Ro{lY!Qbog!7GG{80l+ZAyh;W(LDV?z zi?QjjWP(pD)NBtrh*dk){R7=wXVNQU7HIFiUYC6IE=qNyK1?${`K6qb9~`-bFeous z9&eHPtoQR=@9#bU>Kw{9;3z47fjV_%Y)Xuz+}ZjHhw#Pk1XXYw5SAd91_&8EX2uGZ z&JeZ6Zfv-x(wR4X!Y>hR5xE%b>!-pK1#-oPKPfv8ixADO@oAR+TB#KP?CAIAh-<>% zX7$c#OJg$Byo*Pp-4V!!%NLlKB_^cY!|&cq((dR_;t}g2@M9S$w&XT{{7uG}XUX=t zHFa+wnRWBAKu^jUj|ic!%t85hIR$xZ${~AFbiAu=a`Jt3)phiA93TkaY&P5uMv5eWeUJ2YAtluhYh>;6cPQT+k?)#*FdieQUo_k5ac_MFhR^?JAnLgVVj(RIBGq zIo4Hwu;;F1>NQZi#o%;Thfl1=7ON9y$TdO<%4x#H-e;YoXGra%$h=_pZsQpCMpi{@ zy30jOBTm3SZF=|kMG(tR`BLjdJ5aOlzx;e&kClN6rQfs(MiTl|iOI&uETreXnP8*& zIrH&;GqvEiG=QO=T}Mm^)Et))KOL+D^bKRPf=fYL;OO#AupWR7)~oDBthm zdWCigAz?F^k4py762RJ2lvGOkfQe5C-pg zfyEvvtOQPE%_(K$|JYb;m?fFT&oloQI>;QIntswhN}3RqhTsm;Sd5nGPEs{VV;uw` znq(r_Z!)3vAzT~f=lI8)9x$vAX-6AK z@?y4KMd|hNW89~EA|t&AYV}(c6$)t>GsSC;gq37kD0oWuCq~HWfZY#RWSQ9p=>c|t zKIFtaN4^?bo#TjIVBZ3Xh8XFPz)LE4%^9>^PkxD4K);5C67@ULqEmU7-qb6lZ-F4KVVS^x%b0LGj3ns00xa zYsLv)wJ3NqAyO?1l*iavE(=~p<=)_vJoYj&z}#Kjn^oixM-ZYU&mBLyy=o) zM8>ko64FR+@D8k!oLn77>SjjF;&G3!V+vgv-}IK?YjVN}rD>g{Vg)FhX`ViEc@axm z-cm+ae37J$C=Y9m6osjy>CL184);wR=fB(cca@4xS+GWK$>Ae|^dY3PG(YVw5(VKB z`!)M=w6Td+?R|9rh5s(p3}9$|nME3Be~t+=V3-KTQq?||iebxv?v3=;R%h_UV?`K3 z(PFltRMnbHP48fa$exX-XL86a{!2id%YYIxUf`>%#|_G^}Ttom?_qw zwUt-|qXz2V`@04P*08UG#x5kFmlxwfGrcoNBx+K#7mN139c} zY*4A<^ymeu^u8Djc7c2epsnmVyk3%fq!x+5PImVTqk(%y2uBme( zjt-!enE}mj`iXR(yD7!oXc7E0AQxp*R`XeWv2KG18g3vyL|nreFY*(*K==ga?;wz%UC3Ya3Zc)@n!cN63DVro_@(tSJ?Y<<*RwH@UPsr(KPa@t!gMKk}~o+ z5}IhwF8dMwEA)6-lPZtc6+`%K@uHl-e2${89G+~#1Q>pej1^<<{`RmTMN)!FNmZ11 zEu>B%+Ics?_V8^+;+6IvUvr4l0Nhq3te?@DA4e>5j36L2uKMUq&q`S?TF#t}Sj#Y@ zoG_X-{4(35?nIgu|n_W zK>#cz`;X|xAWOF-xONUm`&iqb_scVcS096PQ$AF?;`{eP{{TEbV+y*`cX%u?F^T5} zO%>(|Qy&B#eKkx?_hA8qiv_~%IgD$4*226Rg-_MYkH0J_9vrt=tibth6t%$CXLlbqeY|w&6;nG~-eR*KZ0fS9_crxIBRpfZQ0q3+>-ld2jAE`!L?x zxG8JNC49W~8Co}8OhZDAd1G+Ces>UsVjO55)H<|!C6HyueyL5bC5r;s_DE}VVBVb_ zO&7%|FICG%pTWeXd#7Z))ZaaGSBaRXFr$%xDm;9t8zk8~zHIF?_P}fL=4QROU;maB zhAMI?k1VFPeeENq@4Hmjly@CI9vxIX?Gf!hvg3_&e&;ERSOURUI5VWOf8{0-`F`Y@ifsk|# zK7Q!<1`pWRZ38{1zqTSis?2S$R6ms692T(s3GMTfPTfq%St%N;GBCL?ND@YvSy9Jx zz-w8GBsWB)OlS-oYlI4WPghq)G6NLxVIhzIcDI{6QG*^M*hxeAcSWCW$4|2r_wLFO z|HUqZwI?bRTB`q_oeG7&0HAgR2MNyfN=_#AzNhx%y+^;3;Sc1EdS?!1HY!(y4aA9$U^tM+74)7ls7HNmAkvM^RBYNwL33PIg>ZCrlxq$+W}_02$%y zIUvl?ci>$`+71djzsAvnREdwP!={ml^H>o83iQLsKmi!kg;9%Pq9SBq5q4++laUd0 zcCt7fzX86@1~e%RBSWT~Y+Dw;gyWg!j;PX5mB=aFwr_yO`%QX44#P{yVZJ58*w zSTp9|h9ul-?Lx_GeG-|Zb4;FtKvJvF#06kud$YZ+p$XF@1AFJ8u}VKv>wO0HCtQ== z8~v)p5Ns3mp)BzF^ZCszWNl|{s)?yHrt1yFcmPWjVgU8?fZQRwL z=>RkE)L>h{Z2Ipg$cUi64ax@;gHCv&z!SX)i)}WCY<1?C5P@#bbAgN+1PwKT)d&&J zfAUu*6re^Jc3cnDT8HG8gb~AvBoRd7w6^{^Hx}mZn#U9(qB~WJY%p-_ON4TpiK%8E zJU{rxMkX`#AG}nH2=-ANF`#Z{hG3HrG$u_7`L>4GT0oyI14-kjKHGc#p@8!%4MGV3 zDI3zp$>#~lvB_QY=0K!HjHNK%dNCU`BlLIK`;=3zQK@(edEeq0Q zfF@OdC*aR+tPkmzRfw-=?9~3La>KDI)u~BV#Fu+!SHY~Fbyg8fWkBa)siC|r!@c|hE! z58qAzupXw2Wd_84i_#~fh*C6CM6RqA^`Jm1D5E160=<-;qln|ZTF)tD{x{5hZa2)G z$d3S-)unA|3gzQ7D=*s;LRft#yg%BBZ`tJ@LCsB7PEqgF___fSSr zk(>$SLNITv2qQrt$5Ctq#zc}VCqHdiyQl$^pLc$eb-nqeY?z>=DhIWHf=h5MCGhna zpDiSsN>dFKYupyBL7+t{_D>MFn)O*aYgtPd#==>+0R&rzZYUaDjrUxnXok-R@*xZOr1+PtpP!!2M{%)mF(0vP5vK{Vg`?k_FdR zt91?$`9mcdtIf0Ky?y(M?uM_GAe8`}sM`~t)fWi{QQJn;In3Xw@I18r(EAVR)2tT2uUM)%xd=(N6#Y9!hX+tfgv z_cd&jnKea-kvR}Pp91m;7I{klb#jm@pMqT)G7 zND%DMD{CfjTe^1!3{1hNfcZcmP{JTpiO2UHiETO8|)L+I|J< zLNq6lN*fkh>+b#9gG>PI=di!5$|)RJ6-T4=5bfee0G{YTcenseO9D|;bQTvrD|iDw zAJ`~~A#Oc-=q!M!P{a_KiloA^=_LeEJc(^@iD0yd4AJK1UGImB>7b|>pK5Q0i{&Ho zP^@nI5&b;rq00c`ctANu@ckoO8d&W)-du7QG98Expy?Qx)CrzQeJ<`1PyHz)OH)lu zD|y{&kP3c@AL2#~_@ARY>ez>w=YXadJc#KGg^Rs-mW|9}Iaqg5+5q*L5Xhi2oi`AZ zrg|1lO6u7nhW0hYI~xlDa5U(s48AoM!ayDwVOAD)93Ly=PYA=cJ8aE~5m8xu38I7@ zvg~UZLMM17rE`!GaGpj=sy@`a(Pe>}AX>7e?zO?XWfVfPrSU_A=FOp_v#S+-KETR} zS2d%{6`58Mb=i8DyPBCj`a83`I|&N?EKJW_6qgyC?1MC-EZ%9)D<162$$cLg(h!ro3|N}G{A|L%ZH%eja6 zv|e~o21TVuJBq8|f0hqajg=DZ72?_X=DB=IpUbCo&hAADi=e~vWM#8%V31Xjx$rjK zIE&6SRihlPPnyA-LJB|?d>b;2I7~#0P}P-}5)mWz6s@%LZ?mq(RRH0Q>p`QF;v6z& zhyyP%B+5{BIKJ*s8?s$hhab^t>s*b$pfH+%kuei%1JDKHILD=7Q0kKMcK8CvaxFXe zvMadz>WsgQC5&m2KcnDfN#J(B1O*9V9@KZ3UB%jdB{sag=ojfQV&SaVJzI=GgWTQbXgcwh;s*~^q!m$An45WOae-q~g;(Q zlcEzoBP3f4vU7!+bu3m&ieSy#)Az!ARxvi$iGqQ>I;!rOD26SKJYS#Z?d1MTe>l5q zcC_kAF5o9-)~MWXclzm-no7`69ENkY!1ihIU z3dsJYhj@IMnnF^CbLX<)^nctS8AxH+;FUDswsEea{E}F&A?}DWw)E$L12UAJJOr>3 z{B;J@ZN#kqS}EsC$Wo{=xH~k#5x}s}_`=ZpCaz9P-t-20<&+RnwJ(q8OG6W^0pCpH zvkHDRrPtrp?hz&zLsXxgat3d_iuTOkz->Byuo#|3YeoLx?a)9WYQC>Bp@7;!49Nx? z%RT^cf_jr<<(nMUqlC~i%&WIYXLoff?h3OYKD{JPJoiS-ZbcIPyMFhWKXNO};H7>O z@jtwYl&Q9?W`^H?bEMz;`9W0dS>2F!pBw%Xi>S(Zpu;QExhbNEKd5(pn5$C=?{H>E z@6ajrXLbjh6O$LSifWnrN5g;4%}d0GFU*{n^~}BK1j%IV4Y_7i!h#BD55+|cn1!YU zFenjgVKo!bbuadg4K+TFyNbZRcHn<`7hbO-A$LOnS$TF1L)Dbtr5(Iv^BUS^sF1XR zLFsTmHapt=jn*`4eJDZ4i(HHOXQA!Sc|aGHb$N#R5Q8i{1$T|OZZsgdc%h#<_6!Vt zyZBqg1Em+SW4*wYtZ-3LvXDhdY$#Bxdgs?qs`w0&+bk5_mcQXKn!=>0Y^Hx(ItsQ? zJ?r|x#1}ermT?yig1hsvN$GS>HO1 z%YQkYj#>(2Q>7^xX}f`CmHTRx9qO!`F%HhEt`BSqh(ZU&dpfnQ9w^0y*^>4~x4AM+ z=-C7OBxY3=u>mpDR=+6!%JOb{PF4wHWW+^RmeyAcZ7q{ULynTN4+vG!)JDf{k<*f; z==nE;YSM$|@Hy&zs4G=C3VyRPnlcMk(y302J0mF<*HXaFv8OGwoOqm=ziZ?tXD)1@ z+@Z%0MSA4YE&gDDB@mm79tKsJ>*N=wIAam8tFDeb6l_cKE@B_;@cXhih_{a)`QiSq ztK&l7FD|?@D-oj+Y?w^=sFl-_s+(!2cw_=eO;jJpe7BPWbEUEF<1#v#k75W-F2<>Gz8U^L;n|q~TKH%$&e&wD)WD)|;6;VL=<0}%`qL82N9~7zC^bhD^Yn8X zXo0d;wpU-Ope518_DgjCjhf02K2qLqM^c=#%LhEBh2I*F$H3$0|5|b?n$dSnN97RL z6wgmgx4HFxI~o*j3bXS_ON3C>Ycwd*Kz$@##w_;fpwVcCK3}CaEiQl4Z07cT8?oyH zCG3d*z|sk@iPwres409&p)Vy0D2^#;ugJ;|^n(xH;zRWHySKWUc~CBPMzKmZqqQow zwQ!>eJXOoo%OVem^mmMfUWvq~I2@u-a%*@j2CogiJ2(TZ6Ulp=)kcid>{@BOFF#4b z@T7s7#0EOf4|a2&EkwXM`{Nm4G}G)NBxrX6Wyb}21g}gCK1~d!U2-!~f9@ceEkTv+ z{Zb8eF7~d_5TuWq4}f#FW;f|#VVe3R-k2p?UgVSC+UQ1WVa@nZ5({fQ{d^@5|9dwm zG28y;v&aCdp^W_nEmTL5tV8UFgj}I*ip+Wjh%VOzV5M|(20n<295}qxi25ipFdlw! z?w^x#&O3sXcB;|KSCM(n%QVS8`$v*D5B-`6sM3!xcJ_}s+j#-eM2b#YhnzD4L$T1E z;zCb^eyI@x3e}Jp*ZUV%VxBc`G^h6aqvgK+UMdVVk(m&qyz=?j6_uH$V#yDXg^oR_ zF<{DiX1&>(!txXl6#>(rEp_mqOWLO38uU|*WL$_1XB4gv-m(}prX+jfuhy%I_6dA8 z0Y5KyW{=(h&W`QbKx#wE1qoXG6%aWwMOxS`?hS$Udl{(^5MM6mP5`rTG^%4u->O=x7vxKV}HaOvM;;`T+& z!croS5T03Oo17{sg&nwXN8%QV`EUe3x4ZiK8K?i}fbx0wui3b;Y5Lc4Z&2B%tbTP# z=#+iqxnBC$MGTa&v{g;;{qQr1u1DZabhsS_GgcQW+K&2<_5dTcxJp^w<;o0I~zBCFhzRkQ(0f-f23z_NaeZyiEUy6 z>LO1X9bO#C3}$;%HknR3>w80_cY2 zzDL9UI3Y<^sWf_Xk_|lk>I3@zF={c^VWSK!qe?m8djh=1g+L^7*d=%}gXB$IWj`k_ z8@Sr?f*P7*#qDlW+SNRPn3N!tG&j%ySJ=!_m3VcumtG+~xO>>9Yev4QF7oxizuW}@ z>(U8_d=tBfF4v!9t`z3*X5`o7CJLqg`-DNI+w}-XA~DDTY_34NFwoBLRVlg&)9 zE9M8O^>(xB+j$RLwU|W_rKiOZNIdwY<-t3!`g)F0@vt)I^i5D+Tv}msLZgb3L>^J~F@7S-s z%xpuGaE-?!PHMwrV;ufPYz+TIBmc$axxh4ObE7cJF1-%b<`LR=BY?=H4_bJxr1uit zSTJ=cDU6Uew7W2jQmbdAnEWX36KD zh`SX(N6;hvrO_Wb_xI6+BQ9l2{2%_L9cjmUjI_=Nhf`3c8HJR( zA}X4sl~9CH#<+{b=jGQ21arUj70sP#!TvLof^)nNo>&coy63MdYqg8?fxh_6u zgyI`FXG5WC+e>Z^+l8L6N9ETyLyDJP>VW{wexqX4#_n8Z?Y08A$5JB0xv{a)r-0;E zTt|AD6iSLz64(df*w;W6zU8i(#SZd&XU44v#{8J%Pb+33cBdkmQ6egMfh4Rc9y_Sy zvmKbgwEsQ}@Ye+r7;fJC%5&&D^3<7`kp^_q@weo9^{nQ%iwTVt@iU38cjz6iTPm)k zs_TK@%e82%QN--FfOXOIkK3b7b{Lnn zqz!J4&Pl#2@JB+6lK@-G`l0;AaotS8}?USKK!H*J~xF`_Sk$&wh z=a&5Xg&&)Nl1QSv!)*SB8%IJY6=U_Av2SJ%se%`2C0005qb?JPC@ zPo7}5`QnHVHQsJz(i1K@ETCJAYh%kQ99j(!MHo+Dp(44C#G{*%wh*Y=EQCgBfPdid zk_~rN2?K4&8W%b!kN9;OM{Cpfm$`Up1onUb1x^=>%-xy*2Qmm2|BmT2t9Q%t z;$GaLxVsdmxU@KhQfT|$eD^;0U;gEsd1kL!Gi&WRtmCZuEXTIbNiXXhzTN39YCbu( z=okb80k6O?O0UAB_0*WiqfULQ1{?K^_@YjY1QD!G$E ze7WIiASeJg_Nt2yM~)B>+w4$6O3!@7n}z?ey$`Ds5E$gGz13T#bj5lPfhEVkn<%1u zFzGIo*ij`u)1YhBMRLG9TF2i++dW>g81CG>o`eahnQ5U0){?XC@G;7Vr8ae7p{KD` z@!n?{fa9C>{DXZEvolTxD2F#fJ}CtwLYlz`)Q6}$FH~=eLpU}XckT;8Y zSLrPvR^-eXT{=POIl`-2dim}pJ6rfBb4)sd$>W&27E7(T?7vxo1Inp$+fkZmisQbN z4W({+m1%i(O+qybU0)KaRzN^s+BMs>PIm~3BYP0Fiev;EK;L-g;1f;DRlrkI?{G^S zGM=Dh&TBmgA?!Y&^>lkp<;f2TdMkhUwaaf`a}G9$0d-~k)lyko4e4b{giu~%eew19 zVDm%WFQeu{$>s!N?}=q;yCCl^)0<~~4*DmRgs6qB;4b*c&Y0{ag{wHy(O*_;YbDJP ztSB4BVTl2wDT40zL`Yt!5h|t)!u+Q(9@8l*mx_k0{P$b4sUG1zunxbB9$_ZjXP#&jJOj1{``0u zx^gxr(a+bMO}J&<96zKlD5oRK|0sn9I#u@|*>;W20*0v|z-W)9Sa`2sH;H-qmsL81XVX2ybw%`vt32S=(w?+-juGS}v2ENsY{@TXRv> zXUoF4?Z0EyjrG+CV5NdTn$j$yIn$p0o0Jx)DQUvxs___lMFq=3`>!*zd(-87WDj!{`BYoaM!6Lc*Qg@25I{f);3;v)mq7HU@P) zUX+O30+cl-o^+xjOd5TW=Z1`Nu~I>$lGCQW9OJX)Oko&?RIfHg4t2KRsZy}^*ddbD zB&ZjNtubB)=BWgKyrMJXdPtp_^gSoBvE48@31^4Nmx*4C#m2t!{OQn8;c_Iy$ryR6 zmFn$TZIan=*pclhJ7ckDj*`av2U;vcgPxVt3tO|;1J)P0*}TWTWZkJ()eh3zmOft+ z@o=lzC?W%2?SPS*7)~)(pU%3PbOhV56fQjY@z9p*cTj$hG=tEd>Ylb3vl%kL3c{5h zIgQYM`7eQ}0Cqikq!u+rO15;hldHH*{gjsp#x`{rEqEy#5l`Lhp{CzjZY@3PTxwkB z**19GW16TtjP3CX!qgXJU+j`jLf9ezF!_Wz@;S1&i^{ryVj0_S=X*7kNiWzSn~~lomj8`%L)1&53u?z1q>zvW67R`63QU!UwU5o@udu|))%dgy<*H@ASifQ<~Kq04<@LgY`XoN zcC~vzgW}@D5zy`zM#NHN>_9da{|ic$n^XcJ;i;=Hpn>=eS5Mptb_124XLSb0jv+Dl zink35|4OoZ#XGOV;uKmn*{b)o=WVejph^s_T|WScW=1)C*L+ap?nTScKx3QBZHzu5 zM1IlrSZs(`#nd|Ed-2(-9PV zueEe?adbwPQDBF*qg&vFfI2MtD`XYx7eW|*-_>OVNZxSa=~p0$-Z|!LmQy9}J(Iug z-N5chsUOYH3a@M;46hXVHXfjejCIeYDiC#AaF}ath zKAtilz(>1Smwu0|=>(a?IEC@T)g*__7Vw19DzV$3J56IS8TiZlgcUzxurAC!m;LcI zu9k(TCj+^Ix3liHhy(}FVXjOi3nW5_UOAIm2x1(ySd?*qELhkR%Ch>z)TAL(T}ON4 zokj&&v?{!twpHei1=`th^~BF`b~Rg;XstZp!@7e3pLvt$a&#qf(Af5EIXB;&5%+x# zzV#zYxXfwcJ&Q`8Dpcw$IVg3KaPh`J=R$hV$sdKDu3I1`s&FQvLvol^xmxo%Pe#6H z#$6R(ng>+ql2KbQAkb6Yd?9?b^VF%&P*D5A1Af>j=+jh_on?a%N{%hy3-$b|x^QR6 zI)5moo&`MjEt&5qFL*RQn5g4+`S@4UqNMqdy}AON_G-UV_X~)m{Jot#1@fX}Q82N! z2&U94%Da^dcX{Lw>%Il5_!W=DV)dnM)mO%-PVbo7oWqweZy2Cg{ClnaVpG$9MkbNl=t_F@wZ}FbcRm{)b1i;VA8L`nnC-z&KCe2! z5G`$)=6BKkxW$ndFk&H!w>s&qg&KY{~D{0`S}qX_nw(6d{6Fr$F()bT(yBG zsB!N)md8JJy0Nk#ztrAR&qR}N_ zFiFVleOdZ3@Oxb|78%S;`gfdYgkcX5^ebCU^>BLVlhxHay3BUve1$A4ecf1P4^33- z<1+dDtb|y6B0?mi+g8%i>Io%y}yZCjEh5g7-u2nG(ET=E=3x^++|yj z=!!K?>mDa_B(04!m?oxVK%1bESC?8~$boA!uT zljb%C0j-au-SdpaS5M`A!|9)SEdyye8hd@NhYaUj&=?4_SRh{U)viXVH$4U~GNqhu zmo4@te8Y%RZS|M+7`{on1s+&0Tw#Nn+>tOHFB`8xO9#R7y&hB69-)xNF2w$% z*tghc;h}iW##ydceSsA;0+a%I-Y=_ex3;q2fP!0oVIjw*9g$yk-e!FyMJkrtz2$8mRRP z)4BS}Bb9D}`ZbnOd3DoBC)rHFAMgj#bN(mI?^xn*chB)k171jel$bl)9MXeZ*oW{lA6xM^I_i?)T{}Gw#dmZFCCXKZ zACvA1R!05l@&=A`J{DQ6yr7_PMsrSZ5fpnf(eMdw(`Y^N49(k>vRa3kX)G`=vlQ=ZTg4Icg=7opqqV6>~C@7_tC85 zQpj|V#pRvU^ycsaC;&l|I{^tl77YF%Ym^1im*;qPzlqep} zVT83VCGNTUS+h|t-J}w&!6TJ6)B<-yJHV7r`DVR9Qz0fOTmq0r3*hXvY@{i6R$3Tw zV~31@xwd()R}pPu;Mn=Z_@MGGRnyWif~p;CB+|md*f4Ohj`5fC96!GEo;m7{Vu9KE z>#2(QuhDp7rjUL_Cy=~JqReUG+*3>9k~!zWfWKJYm=JBy07pl9m$u!olx;tna$!AM zcsJXJP?M)0Omzc|!Ihs5I&liI$(p#&Mk`-_=20!BglG1A+etF53lAkhcfOhggD=L( z-)4CJJ(xowpW!W0?V9H$IU|14vbS_@i0r^fy$&uk0|x4Yu7VFS$(qJ9YI9oK?fQ6n zsL`v<&0Nk1+y8_|(K@hI5&+mKG0a+E#U9%jhACd;+w$s{=vl-jHkVS!>r*}G3}^oy zNtc=I&@bP*O>ugh3@&6AXS=Mr>AJlggxIWL1M|Iz!R!AWJMB}3C}h^}kId+93)`-- zkuC1v%Ml*MRVlsbK~pIW=60{&?lh4)i;T^hgtx3MZJ4U`J|ZV z0(y1TU|GXUvyqG(a;mz1=?pIVcCFI!0Ut{17KD#I&IuLV{&z`|&I1a1IhX|p-6PJnlj|K~{PSFB(}=;9!=+>vN1AtB zB8xQkyj?B3>oLvmvh5=ED_ljqlSld9jIk;&%(=-X%xx9Tz8e*ckf^;Vq}kqc)IH#t z%08#a+UY8Xhm&E<;XeJFTO1N6q{eE#n`1>*ZMa1Nz_md_lz*9g#N4lpg@ow424Sa< zVX}G9Z3dm%tGO=IbW>--wR*6kezmL-argXN%n zxs|+uWwxb}$DReT`*8b!8(f(pD`O`=?FOfSFpSuy?7u*M|4f0F+))!x;b=)f!h$4d zm|S~f&yl%uDs&gYC5NP4=7)yJlE9G=KG}@&xnZl`$v_b5Dzd;;sYWomh%`WTR0cHCWA$#YphCdU>4mKdsKj@J82xJ2JD^k<LMA@{e43!%$143WzJQ|QT9mIdd}Lv6W0ZLK45dSw$;%GZ)Of&$3ur47FR=kS_!)!9NY}+$rmH5L$gl@j_aA(bp|C0!; z^3>)9U4iVW{I_$i>{%$gVTor)T3zd6_jY8O0C6+N6(TtXP~mM!8E#Spp~wp#PKUIy_l*Lf!4HvTS7H}%3hLENWF`BO{fWjpmr?=?d z%i>dMP6=!$^^2vI6QG&R@oKNhN0u>VR#?y-(NqY1iB{(9rUb{=t_*o3X%w!xuAl4i z*DMm>ME-q$!0c_XagT`B`AlP#`pV-Ijcl^rv77Z8v3~vwl@RXk^;p&(Ix`%A%swPRkhO`dM_n&4{}n(8Ge^~KjuZ$4mNY?U^erv6JMbsh;^1|cWw96 z@C=f6$Ei;IyCH+*V)4cPdFDMQw_nLOsjija0g8%ViQ8lF`)p}UY9bP{ z0=q(ldg)EoO~LsWKuY$ze7{G1bs#evBGNtOO=f#3)gD+xlZ~v zUw5z%)tdPnYT;#b@X~w!Ktd$Egb-V1R-cU_wO*CzT6T+`rZa?mShmF_h8g7*I1BBY z@+v9->)}7zj{W1OW0G`oeA&tArg>r!BbX4bX(_Duff}JGcH)w%5b1}rp+l6H)wk!? z=z&@Qaf(`Iq4z4aBe0vE+SEAJb|NCX@Zixdrr3fYK&AV#e1(_ntqfKT_auc)=LyP_O z_+r1Xuld`jHZ4Pb)9O`QV>F8f-c@*{W#N~G-ayrFxcZGBLQ<{ZTp^t$5#CteOU)2> z5lTn$&1QMu?JLpuhYXpgXdU~~?{ zb3v)caaxDX^YxI0_0d0>Irc_^YtgFMNrK|1mvcKDTPm`%MKacv0}iA0HXz6+8E`cA z!n#W@(s4=BT0D=mw^(l|?4j@*;W~0V(F#Ce(v>&3Doy3-EWM0cu%&k^t@@|VIFbZ% zFUJo&`FP}QVwHL~=Xn%8sSw9`i%eRDj0<6rH&_fhb`ho1DUY8G`hG-35 z6_Wqjc41d@h$;R`W5)Go5*aSxy`*;PbW%wdtGTV8kqXp^P5|+l^(Oi1pnfUhvJ7C{f37rh$l@z;< zUAMf1=$0K$4a!bHsCa;_HGLlv;hQp2xV5d(wYopMr-bR%ha zgt8x6^djnAQFbW%Hh#Z;rdwFI&Nh~;y*R4mpXSw`lN=k$cG>W8A^UX2XoylXz$#ne zeGA$x%Jy-ue$D7jMGSuOCj-07eype4)j;w;Q&#=tZk?hAk5nnAW3)Gw~^nh4Q z7Y~m2Jr^G^v47XhzrA_9_gsvbuwFfts?%m_!5ISmndr2V6P4ZzhPkd z5Vtf*59N(G*ksf+LdqBC)6`tH#J&P2u#*D8f8&G6jXy+hy?>*@stglC*Y%y2eKm;> zCQmb*q;xXA{zNKr7il=3{k?`do-Ig;Ex2f0zfv$rJ(LV#jxG{`COyk(ymk-#KG#O0 zZvQX^{BEc2H~9a(0C>I}EbXOnmY`SRld%Kh1Yt^wp1zj;tY2Sn@-kJ9nI)d^pOsFi z0#^prY0(Mh{Uc|&!^n^z5*^iwhj*hjNWfj7?P8Q=QMj1;Abe8A)Dy*w82lJXJRKy% zvE8-*PM0aO`n?+u-?6PJ&gTwJsO$x4hd8J`xNa|v6n%^K_f#bBcU%w)TwVs$>6Q6ta2={biJ6fu}n%ga}fD=4C`=z>}Mj)VZ^)rHDUNpnC1dG{?#f4cWc{}*GP(9ksr zyidefMyNjWF**~(TBPjc?5wW}?c!5|9W|7AjLf#RMoFH{1xpOR;XC7n8@^qwPG_DA zA5)Z?I;2TFD+EM;CF39xRX(#{k;lzCZxPjp$vdG*=6NQm&#n%=t3B;Llug(?< zl0}dI)I_2#AVOmX_WLO+tz*&8=d^9i0mt6#z_RFnd#);AJ^+^EQ+HfJHVdwD9SIzH z*iOxH;#xCrg}FXaNq$~yOngS}6J4c_wI=-d*kbD@V*1K}*;nlp1L!*)y{n-NLz90! z4zu8)?a0o@NG=2x8VwW|M3Yt)z5<%x=|< zT7>~><|z0zO8Xt^oE?$m_MuOgvbc{zIVE;mvP*ut2Y4!W9LSrH3kT*W&=Nf$s!@&5 zQU(GX-n_{5X~6kyg7)7&9%<>;(chY{CK(Za*gxMhWL4No+L@e|ZI>tNq;U28xYaB{ zd3eslC`L8I8ptL@a5`;5xKpl?$tdT<+VuXT4`WoT`3e?w)NC6~tmSYkl=crnp58+4 z)isl6y15GzsFSQ5s}%XZ>x5eN`!WX1%4X&(7ot6IV9P$=KF7K^N^KP2v;>#2?0D0> zUEA2GM|I-(l>uBr8BK5oK`B>W<7$q;-Jg@9gH?)cOqtM4Kq43QMe^P z*m|$alylw)7+)<{%AKI-FG|skfu?dsBjZQG5MIB{ce5IgJDx3pOX6nnDIsc_jj++p z?vhYxq3{qmUJUSDI&@;~_n4 z9>?G=qs6Mn4sBsS-f>c`eS=Fa*xtQ}V@6^2rUNAM0kIK)K6-;_ZlMW)tq>`puXQQn z#QsGb%kM!$h?2#SYiml%S$8OfEdX0jY(xV&wY#14ESr#oOTpQblgKZOGCA_{dq-N5 zDl{y-6yOa;?Hmum7~H#4qLJzaLck8QfO zq^4ooAoTr{52Nr~3!?H`3e0z3<;6Uhe`Zdn{%!y`@~c40)NqadW9LXA26ssSK{(i( zy)vLz1+s}Auj$*L_z|pV5}yL}H-1HqkgeyBblfP@x#H~uM|FaflZD*`+tF_wn%Tvt zg2{=0{F>zf|J5Sc2RX&FU+SG*F$KA>ll#jJ96y^f!xD?qBBKfhIAyzV3L z%@tm`9csUl^#ESPWohJR5JaW^L{V7?oKJVKdT1r+4}bbRFcgH3UqB;EE7zsYn~U;5 zF^T^$*7SWtErH5}h_3tAZEh|ib~P{aUDmH5xIBzwsBOwub#VyWpvt4+`aIs@{tlri zG{D#xXEV3_-_<+vZ5)tejwxXc^7*kk&s6v2f{<3#b&?VC>%r*K0mh#^B}vu7c=^&l zOJtktCf}paHehm6EvO2OR^>#!`>DkmV9Kr<;ivdd;j`vc<5UQlB@eYQ;hMCxqin?I z^LTPX{Yg39R;|?Zv~XcP*>C>=e$HGo*fT)CTkp%N}jlSFsn69HgjC8)|F0aIT?w&yY6BG)eZfRm|mVa@5D*1rO-q z{a`Op^Q8$De=a8)?aW?Xd1a=?u~hhkVgI1)4^MxHT5-jTG@RC!WeRG+U(F@M0S*J`7zDNF@^4imZEsVk-Ds z6L-ds97OuJ`R|Dyk)Ln11$z8yIJaO}ZFr{~+1HOrk+oiorasYe2HSL~*wuZ>olsJ6 zv=39a?DXPqGmIY(DRO-pWnOgQl5oU+0uFr!$x6ABaVX%Dtydw)8I7|$xJR|+kzpuN z5(71-b|4QuzTPg{-tS^8RjB#y4X-(tmBQ}-lu+%FmR}Cc7E#CbyigXR7hhaHP|=s5 z)LbT-sNF?nJJ0L=?und9fo3LVM%$y9XY&E0=SlAIfFy`#er7ivZX` z_;aqEP%`klaYpn0qkEl&bO%F8%f``JFdFPIIMCL3WFp5((kwac4(Ll>UAu!~n%Tek zn+ZG3M0>@YowX`hjV6EsT-Y_|#e(R+oms z$bSsHOw7;)^UR8W4tHAT}?wD-|QSEPI5 z$hOnza}j}_5*wJGZQDsi!KGc@gz)ek`c4WXkyTA-NACBku>9pV>jx;M~B#;KMgr{LLKn+C$_R9U9f>l%Y2z@qX zeNBN5@@1e^Sw97ga0*uq?5zYyR-?ahI9j6dD&w+8edH=H4TXTY+;x{s@bVzPqAlW|zY&S!H+5Zk1Wh z%|FV<-MSHjKfnnJqW8~c=9x3O3dRnsg361s*KXmVnfT$%jayPE$^7@)7EAVC z^eZ(TBcm%NQ@U1KGxp9F@CJ^q6Y z#BZt52`op>tiQ2zuNVtb%`3}VqCaRWvl*FvV5>*Xrrue9xMVkjxRN?6F5D|?!gyB; zYk(}vZZNfpwM#subOwg+#TK}pvzfVetgyHw^Zee>mw^r3lGD7P zqpDnM8IeH|9Icd$uNc~?&qpbn0I`Hio26s~t8SgBgbHi2nm#j5p@lGdjO6&1Yl#>( zQdNuf+7C<+*-WQ;VEEyB|657XnmI@(Oi}X@lxwX9C7p-E7V??uCxpW20%rJ%TU)Cv zuK6PpX{*|K2SOJ2nKl-*N_^?zmG<$s%;GBaX`ognPiWt3e%_idm7{56Hqb89OU8GL zvh4XI#DWl36SBC&8Aor+ei9~M=1<@z6JurzQX2!mL^OQ|cH$JgKQ&9NiuvfAdX8jZ z(j+-8tn`DqfRy()B??2)#M6|$5?d3_o8eIvjE&q>FD$(AumACIP_{FuB~#>nPr7i& zJ=Fi(_X_!4r@>dOZ&y{-nYF^hlg8M+_MM1MAdK^PbLoc8TIXS&SkbE*a46V(g?CO6Qd z;)@$Et7Ikn_Cd5$@6$28IWB&ixdS@u{y@925q`gO!*J85k{aXbp zReA7aaS)VQ{ab`71yJd4MI%#Dx+BjN&*-Rl<_x$-n^%yYrKE|Cl%4v4=}hmnE+~t3 zA~Uv)oi}U6r*Cwz=4BPb{wJ30et1mA0B6z|Lcd@GbjyQ;iC3FSKY1<{SDI2Hc!|Lv zQI{pP(sxSm%1V-N7oTWUk{XG0E_H&sjMbZBQWxr~fZwh=m1Q<;}#uZ9%cT?%J^C=3xVO&vxcjoSZam{fMPh|fd{ z)1T`4{LPCLzBJgpVEDbhcW}nhxklyz| z?Qc4qHj;5yrv{h)(zrj{UxC+ME^PLp!dGPd>s8y9t|OO_%Q6uK%-Cp`dio*+!$Jl` zr+~BhxNpi?b&jcs3Tvb3^p|m2`Inp9Memv3X%-xo23TKb)hL(1qXtbP5j?n6&qZ&; zF|9#)0qCr{R;xNfk5cbbHku}D-dEaLrHOSMC@yRIX<&cdp1m$mQgK3w`HYOCkw)F@ z^ZB2IzX)qnTi_bQ1_}FDa~@h@$6vY=3V_qRw=&h5H!MJqAOzbgP;tU?yZW-|)=t~^ zZ)xZ2uh%yXLOxjy2SV_{F?{l51X?HSD>DI|Xe^A|HEa@)W0`6$tWhpstz&XTDM&>% zc_^XWY75NFewCW-Tc{>(=wp??WD*}VD7c>Dp*>6XPW*R9)jyRzYsUV>0dYdp3PvKn zDMt;y%g^osc7z-gXG4&Zb^~6WcN)y}{FQZB_uz*zEQRWifE#l z?kNaOt|+y!`GtsU=`BRZhMQ!RIr}n`mOj6QBbL;`-ZnK>@Z+RoK3H?43Q0KWQNqGW4Y96rCBKxU0foO;9 z*vI#Hs;hRq@lVWRix5PH+z+s4Io?XOLWR;*7x5?7qf=IR`xK!`E=lAr*)svk9VeO= zAeh>hG<|*B4N=3EIuYLdDdta9`f|TO*DEJ`n55nZT7$O>{tRW7<`KWc(y+J_H$H_B zeE@uGBPP{(NFoL^?6W}SJd#2`qF8ZvYhSG1zv4I-Zxs0a2YbLkGs_5}=B5z;CIVL? zaWk;8qR$poJ+mJD@q4g_7E)~QN%!FS;r9&0p-hu>cmq*um*daqy;sE>+Pix&K{vIfkYgPoZb-RnN*2CiWD@9FK}$ zbJQXLg4Sp9frGH-A0?AjN$)``_u>8VZhTN*j4BlfgOmBE+*yko%b}{*X^&WR)Yy3w zEzr9$vN>wtmfw9n1wb{=ar_OKo|3N5Yi~Xnt4fs$%L z1R$2wsIBd}MZ*b$AP$TT0%*?5?xRBl_>w2GUsgXvoj6~t=Ch}Gral@<6O-y~cFN8} zBC^;Y-@g*7u@`?JsfTpU4tayz?ig@lg@f-9wAB!E@q*jF<<=Uj{zxeSsq-V-^ampjIRo2J@y zkezAHrtgq33Uemo^9^H6q&!wK5G(P@&WEWM6Y>`26RhVdSP9pf*_^uK{S%~eSPlI~ zCRFhfo3Ow#SbdJZl1=z;62OtE zFrfOJGQ9u-ktm*UY#d$XZR+96N^ zcCF3Jc>W!&+_FdE8uGFoUfU<fQIe|Ex)~i}n974ZHwJf%7e9}7YD5-QDF~j-#MSx}`IFi8S zkHlEx+niZ1>nSfiG6r$$@STbTozGG<8$KVjt_Z`q{Ia#uYaoz}&AB#g-r6zHE8Q;U zrF8Yy=(fb?@|rmh0?cVa7>mrdMw(jZrR%uX zd(@bmd70}8iPU)f>oaL2Bi|*h6BD*X&i>0lytd?lYFW;>eTJo{Aua(FePOBd2RhTM zLxuyxaD|La3g~S@;a6dL;UT1g7rlUQQ&eZ;fYW2};b?F*jI`j?RfWFt`oPA3?732D z-sqJVDl;wWucCDNE!Oe-!#@P-c?lV3;F1aD70y;sl0PF*yF=M%N37JPnTS|srGI4#pR7w~!_s`Z*$=lWVt(*QU)x6ppQsSs`I4pm>a> zw`ZeIH_ZThwwsn+HxSp1X6ISMbS4^tbx)Rg=DPL<=jifnoRiG==QH=r%kl{81xywk)K4Te%)_glAQyQ%s6w zIqxN(eQHjq{C9_f`ju2x5I`NbBualrugNBOhn#11Q2LGd%$RFONPqahDG(6 z4*JJ4=E8(g{>Cj#6@;vQc%A+f_#WgU%D9yurNCdQb}``U{IE|jbPFu7ILy1vJIisSD(3pbW4>5O)lq^J zrfgO1#?qVlSTwq+nFzgGvw#DT78m+oa|sWbF5;|Mq{|=W7l-?Tf#;Yuja?blbGb{# zoy~GwV!!Sl-=#s3dzG>&tXXyT3fY=|&n0L7q703d@@^8N&cp^0pk0!W@tF?`d6-gA z8(Jw>)cSfp-3a*3slkFvovW9~v|>uVLdwyzuJ11lU4wM?Ph^?XjY5wc*-9LmeAfO{ z=C(zKKQy=e9oA7MjzSrqyM@EWm7@d+JY(v@==EWW7FzH8-i*jM5=zLxvKOTc4O z)n)9N_9-jaF6SVsrgEMA(?ve26TnE@LpW7fau9cDvWS zykvO7t!8X;N*-vRdTPx$TNZGqK^^QaPW1XgCW^a3^8gytC_xFD_pKOkjjKksS_C;; zgRwl_mDpo+B1XfnuYSPytz-0+mdHNAy;346fDp{)=&pRtzTX)sX7f zw`B&iy#tuU!d-_j1Vp3wqs09dM5*obmOqHi2?0SSGU5DDoyWQ-<}VH0_me`r-w>mx z7hPbIalkT)DrVQ^pON3kBPFz>0&&)| z$DIGe-dldv@q}I4!QI{6;oxv^cXuba%fVd^?(Q7i5(or$clY2BT!K46@_Tt^-uWwL zKJ{9?`a`Ymz3Q&&+V{2P3a)3rU=wSwn})2Z7&J0mUKsP-!1frO?2lPd%if1}%!W(u zkfVoA4Ky(ZTck@rv=)3E89z~HieM*%{S7NP$sXm*p-^zxUKg$YdxU)9vehh;k%}~* z%w_SK8iXI)DP_uV3jOAO)sU%?32YU{miUHW6C|N^k9iOO8R$_yCJ^eeJ#@CPFxop;F5>PqbRUlF4uG28 z1WfIrUpC@=MRXPtAU42>u7#ZuL$+<5mUb}n^vHqLol>i5-1Ig$TML8w9_`M8e6qYZ zVY*4fR(o&7jGd&Be+{&~qrftxe~zIsMZ{ptinuHe1&(fOpUOVjFRrq3U!Ec%T}bko zV6#sl1P#FUVJ3~6rJk)3K?+0)IkI58+OE)kNv9_(7dd4(*6_CyX`bmJHu?{8mJs?2 zVT>AYz$-03wrU(dQxjBj1%{QH^EO}nhkoKUot`%5YHHTG#8yt6Z zj^#yN(T4G?9RpBVbq~jEJmJrzS`xzF^?6h>bAi!!+Mj35nX+Y!5(+sIfkI&$ONiEF zYjhBkx?HNNKwN};5m^^f?}vjH;o>dZKNdt>bdkg+4& zBWJ*p0Jdn+e*rLQiTFs6)nedm+ZxE7nF?iD4Je>Q&mSX~c;|B+=+s=MR>p}B9iY;V zog5DPd5X=f2lEox6xhx}3+S*2?E0$i|6tbs00YCeTdG#&Oe!N=BIG}t-4;gJVK9v3 zEY=uv&X?5aNje{u_)D2Jv*)6s0xn|qj@zO9=obHJc33=MM|n0nE`>?`_{SHQY8PzC zi3PSTbYBI-6%RKgy^JI}jMb^fcowzVdpSQNO;@m0+_+w$_COf?2Q}JuzBKzItOSlI z#5_>Wm51odX$2dho{G;hKvmVt*)~0m>APJK)q~^9yPke)XV||)6C)rsy7PGS`ePA^ z5rM|QAB4NGFoOj8n*$jwsn2eXy3Wbzm=mb2A27iID6q=L25)*7RasuXD`Ek#<*ge{ zEvW;M92zaZ{mL=qWKl#Es3Vk+#Jh!-8h$60OFmm+&~!6aCB*bgI3YqPd{@^5b>{>1 z0-HCgTEP$-o?>o*YKyHYmHNoX3u&;N(iIT1-?J%}eNuMn1-Z#Py|+{=4X)AuK-JWu zHMOUW(q7|RFB-`{HEYE6bcY>?h+H7L(+_JRDX+@uXr6NVG;IokOC?}an0mC8n-cd| z)PPGIbg8Z{i)#4|UI+=9?lYHf)5i%`2qDh&c=(u^+Lgn}hqA~T+9=u2SaqF-6C@zN zk$d-xUpti6^AZ1+Y2>u24fVlRd3f;|9sT){-i)ugtE#Kak%p194AN*8dEz)u$~NI_ zuEWtxaAbNrW;U1a^u;KlfA0vRFWWk`^v{#4VA!MrGV8}}BSJxB*Km_b-Z*QWI+c(d z{nWl3|M1c;ylYhDz7f&iNsiwdYHlOvRkPIqq6UlJ%job}A|4B_xfC+Y+6AzhKpeow z_$9CIQiPlPEs?K?O&NXAQL5KkgB)m^YgT?`053Z0oq8ZyBgoXrs9qGd5{d4M|Fh{_lxcCZ)KbSAJs9yx$M%Efvh2X5 z%$%RYk?CjCGB};tx+9roqGCIu)Ua$&03;oCo z@ow2ux`db#uNl)O0rJu>D)SsK_Xf7zj0Ig}azbgIZ`O|z*L9Ya`AW;^LwrV}4h7)X zp$5<|9h;RO^m7e3N7Q0zu@h?5W&(a>mbN5K*GPhXWg2*lkUZJVn-mgf6p9Z7*D7W~%8HvBhx#&LF`}9QQHZ=#&<7+dyi3~@t(1j)$EKAY|4RSJ# z2%v$~`}FnVkT0kYIgGbz%XK2_jKJ`?9Yh}*>I4axwe8v*GeaNlD z2%|d_6(o==@NVqosniA`H?%%;hPMWL#y&CHcrJJ!z60LP+7Jc?)ql_36}Bz-gL(vs zL9*70^z`R*{em5s8VLY+IiXhhrZa|8nkUhz&FoCs$QspFJ_lms7lJ5$nv2xR+Esd< zubWux4__KAePo@yHZMms`q&j2#MTZiN?NlOGSVM?s^qaIf8=A^Bp0K36SsQge%R9T z6R~(4NZpB;ajx}iXl3D0Cy_ncs7RKPqk2#MGy1 zM>n`wx)Yi*g?{5`g-y{B%V}!szcC0!v$}-BF#ObNw)T)iMnVhk--;v>(?gZhUuCxu zMEc!BL@1IQorD1)p?|H{WAJb+Y9UrEFiimKt5y{L=C8_6K^}+M4`bt1x~>eziY8Je zEN}$;3I)M5#MX|r)?x`J_|KcuCdf|6-eqPb%4zrx3?{7!;R8^6v7g|bn`p*u+WsO5 z{i^4aW~6jQ$A?AN6!#`nqO;Y*7SAe%bR>c7`?-t8#kpq(X#yu_gmRa@_L&7M7Lr+V z_e5o@ZWXjR#R@h8Aa|3VDJr?JA|2*mEc+AQtpo)9!_mk(*eDmeG)~vSFglq{<84&L ztjQ7zLpU2R8;i4O2rov;3;(EFFl6S4NS>#4jct;sT$|LOe=Ushq<%nhA=stdhZ{HA zR_@m8u^up7j7kGh{T8Qh82m6P7#XxT$>g4d3!Ga``JRO9 zR%ah6{5%&_=}yr>nP)%sH5I}Qd+9^(f#0}*z8J(SC$Z43A8bOn$p?$D-u-q6oE_4i z1*kPID{nK`xvM?|wu}lP{%#*>UwVHxaPkBFB|_EbV5N?b{}Iy_(VQs02AmH zHjq01KIJ67hgCTpkjzbRq?eRV)T66Lb$4nwG^)2I@gnHVNq_T&hB4G8MZ#<~{un{j zT$iQ}A{mNqi97r&@b#E>iTfbTRhf{OzbDEqDnWB>^jBiRoRfY>VS3q%f}y~~QJ9E- zI0ja$+-_r8vl9Qc6%3I%Hi&t_EIL=msN0(S2ASa%jVsqTzT)UW8PH+Pz@L=t znt-b^B(Yg(+Ohl1_9Ty!ES4hFk>3S8w3W~DBpFVIWKDDxBe4e1nQvi10b8Dcf`_<2 z36POUSMPyuLWM_v^WI0*;JJg+-wtyr=Hc7Tc1gZOvT&tLeFzPwA_X8c84E>krs7Zh z>r!P-PvzFa##&*^lW=h&V>(QF#(w$^Re26{(H}-L(53cZ*>gayyqwBQ4W(-fN^awJ zZG{Wk&UNXOnIkQ74#ytI%eq8N;hz=~3&p^K5&wy?nrnA!d@MXKnNnrxZhykQL2qAJ zhXb8^*{VA;`!@efflPWl#y8zfNU3H!^N214T!V3RZ~c%kPwUqoxf19^6kLD3=!cpW zuf^o3a|dlQ$#i3)i+H!F@<0}$^BUs8c9JupyP=pw%_g~hZ@C!IhSnu5<7EEz&cG>> z#(H^SUIFj@_b;N7I@}3_Z{&i|k}iefyYnOVKAC7R%6W^NR#8 zgl5ns1;wjLxbQFl(?i$hr)*`8oty-xxTgaNs%zmzQ((VUD`CsQza)+mHs5Y2oDaUN z$fK8u_!u7V#rN{{g+52`DPNoOkwh3A=luEAc{_u717pvqX5WBxR=m>zozcZV5}fTI z?~?@imNLGlRJT!yzJg}{sBy`)GbY@Tz9B}t$30A5OX}yQ2`?99ZaxomSK>aUV`?-V z%QgaP)>k~Z@y>bOab>SYeZu!)cJJbu#=`Ya4y-6e9tVeYFVgG}HrN4he}hRD{2yt8 zqOq`dQi^`Er-l^&UN+3=)edOltgK~5LP7jT5dqoZ2ZOKz0d}3x8sq3w5)GRZ8jBw{ z-b9452EX3oeThXn_?0bQzl6lr<3=MkD;Y%l^lQRU+$?h-8EispyW<9QkdizlIguwK z|L39QoIugqENtni3^Avo9unTt=L*ed9cowaY5$I}O62A++pFL}m|K>Le)YgP+_Q%A z8L@`%4L~7aQCQ10??gq&O7e!;-bvhqn>I$svmF=&_wU8>u~X91vENT)9FYgf-5&f58?F$EcFFP%BGD4(wqt3J7r13~>g?|Y0Osl~cHd0kE$!#Qf zb}0wySL2u-7G)M@OI?b2f1r#nd&cFu7Aom&r^3lY{9LkQ(fbDz z5U{Zy^Hwlmq?hf2A4Y0zybmhbzx<(He4N1FS*X3_Cl$G%tbxkKXH#5e1Bw`5t=D+Kkg|<<4wN39l ztS-Zc(biAjw2?&hF*av5zv!c&7Q9Stvtm_@9VTCeJ#3A4y);qT%2K%fiw;CmFKsv) z!WWwgkVmi^nvW%cc{lG#ruDz?G>dp{i%2bJ`(dLt)ewDwVQSUvEi9@E@WwD15hYsT zCSRaVqXBL3k*+le(f?*;9AY3UVZUe!vI!1aJkGu>0JfPs{0AjGo2YtmVZODsvYx)R zI#xX`iAV(IPWt`x6Tv= zVsa4k1RwzvbV*#>l2_wmba|gkuJQFA>XxQZ{iTT^8 z?QYx~ChP_m!XaF&XuS*yZV>xnr{i>0t0q-hX72+sJ2ej9I^uPr>d|(4DbtJ(2rgH5 zG_HD=6XD^u`5w#MR0_YTvaNod z;plQJe6DzjKA?O@RC!OU7d5e@9$#0OfT`1YmqS+krtgxwrLyDBc(=e1KB$Q?;SDb@d^e=Mw^iL{sjJ+($irs-nq@Hxo!ymD_`hZ^4O?hUg@o~))Lsff;5@fCig3p?yJbv(+n0rT_42RgyK(kO;lly?r1oR$jzD+? z%wHb9S*t?2ZTDF8SjqC1`z=V9KibjECE)6u#B=JKWF!gBCQ1-)o61Rp-D?4`LQke)*`O#^&w`ELh8$}8RIk-7T9S_=(C=zREKV{^D~p21A~dOQAP+GHq+Z~ zIAn@EAsBJ5uK8c&m|Dr7{;>5#9?Ob~TTt6gaZBRP*EmyxT@HA0WndE@4>PP`PqsFH zlvvQ1j@<}op043tSP(I~Alz(|EgB|LY+82{r>=k-h?6%qB8$j|Y%9GVP~(nB&@*(= zsdJH9dlh~n_*gwo2me_rkV93{>H;<&t=V=|qJTF^8uqoJ0qJ32M`(?N-vk5!Sjk(u zc)NTu_0Z8Ow=KW>%%mk{LHz~ts0oD^!)mDQjdq+rTRDhY`pl4-zPiM z#724ds53$=z?7rz|1GG(z+GPu%)T^`^xX}}1dPW|!qm(%*vJzPYoF!XJbFhUZ4UR3a$xSvGjl2J*I!eep*ASN4|SiN{v>Z#DXLPX-;`Vwtmn} zUj(3)HxE>-u6P%=0>^wZIz4n-dmP|3&;KPk9*K4THbvlX)*7o_^TU`g_vSd+cNd8S z2pM}6?7{5L#q`K58x6uZcd3CgH(Ag+A9rz5ltFXq4JENuU3x*TIe(dJ#s&vHQLy(# zTY+)jag2Qxi9kGlT|2x)3AMXre7h)+5MzQclZ0f{16><&aPePpAI@r1dk~nvq^3S0 z6|0R{tTq1JL2sqrNfEdfi;xma`FMO|YMdlPXMY{+_V!OhRJNTk59B)y?*lc%%O8NM zM^;HI;GZCc)0_>*wRx7ynP)5Ca@bXbfna;nF*K_*_!bdKl$v4oha+d-rj?uy278C+ zUQu_qJ~!y~ZHW~n3{Jmp1_3G-e`TI;fRscGg)_Gec5AXEV$0I}$U|0}Uv`d=O+d~z z{m0u7+ve~qe?dO6_48CN;FT+5Dmh}oFs((@cDWSu$z(Bs);JtGXRV7dH9#jevUgETXcTFL5 zCJiVu0XMjja^jdKcfCE#;7KJXLFSjarhm?XH1gqeCTp~`2IZ=mV?^NwKbznDv{pq%CEC>k50SF{H?b8qkb774Xe* zgxf@1XYcA*_pUi>!e|_vB!$Y&(WZpWc{(5QN4*=0!#SR!$nxNxk+AH2i=L7k7@>~JC+R`b3jW=m;j}&>E|@zFTKjP~ET@3>Rk4n@8GKg*r!1_pRqj1V~Bb9llrLUMp;AE?x3+RX`))v%zZ=r z+}I%}xg{~yJ5UTggAyPkA>#_3G z0s!qEa$H!8I5V+b=Hh8a8sbA@pVaF?6~Ai9p$7Oj$8q8|i0FWAEew)0>=+~OBc+-L~hy6E(ppA^~3mS^9NJT%=Gdle9>M$~J0tjLIxs>mt4KiYxJ^IF)soevQ=2@JmqxkdZ&NbV z!_P+T8crUiDCwG%u586lR2rjxc9T}{f17zYxA-{3Wx|6W)~8LvZ2kU_zezpG=k^1U zUxLK(`y1j_LbOYoNzQg3cMI|g-ExPdV>;@3uYs^|Tk1~i&33sURVOH*6l)PkBdG5{4euw%MP zEL1uvu`ol9eP7Bd=Lbjs(O*W}7u1q|)EhrSWKf9$XAiKc^T+|=xJ8h?kbl}LKrdRW z@nK^8`xMq*8VWgS!6p#K;&hJmi-*1}%92ep$1cQD7w&+Cww~ZQBC+=-$#+7pDOhfX zTDbe4zV>VB0LPy$dZHP1_*}G2Vja3M?R6Cn;=&nv3mj+Z!HihD%#KozL>d?33&|*0 zqMx%aypcI(Qj8iBO1XuJwF$|ENWdQ39RF->F#vK4rp!U)H}^0&5}R8$ z@lH;F?2w$yZ|6#wW`b?jzu@8AUejRob$pM3;d*k)CTzI2;UKa?3I+}O?`wFt61f?n zOECOhwP$32K<0_1cUDBwI()&zaM=2fdpvKFdy21HiCQ`_NRYekJ4#`?TE`eoX!90a zUtvDc%&IgY?;U%3e`RUga*`&GeT0jlVdSC=Tfe4@LDB~^bnQQhc3xDs4VN!Dctc2s zy3$(M^;?!yT`nkdBi~8a>N}+ozS_#;ehQ{^PxvlI+e6gO(q~iA0K^$5ce~^_yS0({ zbIo*Lbj7#*(c4os3AIBw4X5$;2OD*iCzOqoOvcxX{lh;KYd_PJ23zcLzw^UJMQsC@ z`2-djcnxBUF2>jN8M$e|;dDjO0;GlRg_-&HYc1h?BnvV>H@+6zcsxr) z9!ATZGQHnv{3CwjJPf`7LUAI*FejZ(qTv)F?Qf3U7u6w={=ky)-kPwQzCl zT}9XXa^F_WlQ)V((1=i$riOU%-|u=$%Z8v~98wFLFz`7L`;vF+3E4i~Jqd->5Xers z$5ON(&ikJtdJ)+@5nn1tp5Ctf`Q)Q3w0#6p?rBby7t&m#Gt*XhvQP#_&HBO}brVRV z{w5BkgJABocRy#_g}mip(NpIy8_j8ayX})U(YmubyAW1Wj`uoyR!#hgs^z{!AW0-t z1LIZQJ&sIYxB+d(Jo&cmEB^#@REvRVejGWREuTv+lAhQ!zKdS>B#l5kk~b_yzZZ5n zORq~EhiO(iZu|Uxz2Vml7P+J40c28Eg7LuT>z6ekbQod>QD;7X-hyu&zePoBM^1@7 z&hxYk$vU#uKme8_GOndZZN*kC;if3RU6b9L$fg9eiq>*pswVb+dBR!YQ^ybbnWKGf zbP-yqU!MKsjZoGCr(_A89z@nVpKg#VIxzF%)Nj5U`t?E6z%;ZEcOmfj&JKrWeG`uE zEkw`;*QfylZa`YF@lWp ziiw55H@6I&(Q&9nHlc7EmpHePas(^*r*K)*onkNwUurpsd=A+|Oo8)@hs_dJV1f}l zYla4nvL30tBJPf(<8|z_lKRBMWzan3}htaroS}DY6IP{<~B9I1^q22l0YpgS77)8 z{)= z>4*C7_pR|LS_z32!3%M-Mu*qGnVnM4cQ=U40M_>*k}iJ^-%T^Rte8HJgazK`9P&z~ z*JH|sdumY*EZNRTuWOA9%Z}0~!W|0ni_4%r_F$=C8-Tj#+?o_~*MS;~aoa*f;w5?W zf;ipSBZj!Klc_H+-NVm=!V1Rb8S-tS54+QNrVP9PGy*-Rh8gOmj6#}l5-Eee0CG)E zZW@LPk;qo(HPc`+r#auvy@W=Rw#6Z7F|kP{Vr?)-ho$sq^}o=OkUARJT9!h|5I+e` zNDYT8w{=&gHv0H#{`KI(vaHh<`ZPP0g{Y0j2qgZTK!V(G+%Of>HJlVo{@&YrURom8 zlBV5g*Bfx?61?enLET0_=NkyyV?ZUzf1gOq>}fwfb3sVss6FM9Bo>Ptt`^M+MbF?M z&0F04#k%{=X(FBb(k+^$=YixVTgd(dA&L7HmgHt7E#m&2$EaBP&%>0gwLpbMq4Y7Q zPMWe@yLQ1dBU9J6ng1-d108(Wfkg=D3p(O+)4`OT?Y*k? z;EeQiLqQ-(D>Og;-Au_Vx%Xx6k1|An4f4%PV$Q}bp5PB|rr8dKi2N*01eG#Iibm5v zryZ+UEWuQN)R3I`;$e(uSCf7nL+3-(#X}&`nbvHG)W9xx$S11{er@7p`q#yKEc5UwEtwTWD!j5&g+Sxa=OU1+4-5;bz$`?> zGfo+KklRTRYQ1ctN!tMu`TO;B0yXl!LUby@Fu8H$JbXG8su?*Wgp?K-m16BUt8Sa0 z8=4M*E+O-T1K>D^MVs5A&ek$G$O&bG&!&R$uw$k2SRBNM#CGlqky|Kap;;vEr@&RM zZf$9CONZLje3sD`PDni{KQaq+&zNi~Gqy$>EceNt)u~(K{*$PuvIm2VnQuKEH&&Rn zmJ8d!lL>%(RmD^wESp@yg`LHaUj!!`S60Zp<_n0`3L4Nf9OD9Us}?(pZG8>|A3@{? zJqQzjv(MW$%Sdq%?j&2xUDpy-(t!dumD}G)r+f;hBy`E96rOKq1Gmg_8LZbW4VB7m z@WCx);f*HbNtd$Rb<`pbW;N-AGI}UI19q`Ijb9D{j*mTAmeVt7HIS-k@I3Y8 zb;i%|CLhzhlcM-M{Mz{f3viHBul~+Y9+To4UMZf!xdRxbz@QuSz4Rp=b6QBi+3Nby77VBb~G zWW+){h^d-4Us@+Py<gQ%nm2|>sr4yq1MSpaRI9R)_^t&+fCCH_ja~uh ziXZ#VNCh&2q$f6(kBUR3uLQE)=%KBV>yr z-93dwZDycx5z2-y;G*Tnu%?X1b?hfVI*6EdpFE8xo8=NtEW`2!1QvaKk&-h9$|d&acmXPf82hG3bI> zr+k>yI~9E}b-3!x#XZF=bmpA&RNkgI@R+xohc{Y%SKX+eIuE&v!-2l<25BA8)}(zN zM&*4Hhmu=kR*M6Bhzt2TZD;HTr^nl@ukjN86hi)WuK`!5oHd?nz@5tMC!8*zKw+m_ zBa8Vj{DxZ6D>?iplckwkz?9cVL2h@@P8jKOTLL4k7Jpy*`=p6JE$C)aEd!Q)ZrxmIxLA?^h0`tds-A7TYMZS1ICzHk}gc@>N4NZb*aq?!ud20H^q;ycQ^&=w`fLazu#@K6SrW&4SX8~KJutW}T(GZ!k0I#iYq!CmgBg8(HcC~z9&R_&0)ovH~61ZJTRL|-jtk+GiY>aqZ z3j3-|cq@=4t4b0I0($hb(#eiM-4m!tjr(P?E>d8aU-~QOLf=M9j+|!)f2LA=+AK{X zq1;D#G!QN${mWRr9*Rq_08Zv96`J?i^`9NFxy0B9p|h(%O!1p?6pz`xdanr~J@p`A zmPKpY0%$h)AA!O&1n4$MB^JBtp_!u`c@7v+X{-v>1u+Ul$dC;JAADdvv|Q4^KUB$j zzpSzmB@{5Qx#8~4eo}*B`q&JKCm8{F2#L<~E2Tqgn0Q0z*uKAh27JQLrjU>0EB%NV z9DkRm2aNVuku%ntDE5?GyTN)AVW)^Pm=&e|Erx{OVGD{_F+h8&BPcCiWPn%=V?5Wg zI6m9K)<|VV2I*Fw&E$KYTy@DZsgy@_u|EICXqLe3!a2I$Pj=g}MNa4H?WR;WN2I=Q zZEBpD8ymY9!_^F3ktpsZYS@fL?HVj;fH6na zlYOAn!HGt|saX3?oR+C0I;?HnrG3?U3acwzb!r}*p*(7>XmFz}m$J=+dDSJq#?_d? z+bMn1@gubATm4$%b2{;()0lXB=ZzlOAsqM~)e6lqAzDi8o*I8uyYFBLxk3OA-6xR) z^t#NOFW?OhJscU*ud{eJ z@Q{`73EIe*W0l$zO1ah=|2=Cwx>0uc0Vk{Zi|96B=ahDdrBu$I{h~UkYJH1w&W-xC zd7h2hS}o#^D@+yH$fjY2Hp(}e7lzA7#eE1)b?K`C_`YRNDT|PN%DP%0x>?gych?u| zagTCOTYBm=fvFTjX0cZYAUt1*jjiGtG8pEu1v5t~@!jD*^f`Y4!GsmG2pvm>;bfrq z6QfAZvz#N7fXJSdhkEk3_T_%T9M#wzTN^J14^}n40rZl0Mmz+;pQVi(+b#8vIBM8Y zUP$=%?DapB&n$|b=~~*%7fQW?Z$;61#NUInj-!6s^1(|7cW+wLlHs&g8>ec1k16Tr zqIy_X8klGry;~RL5aR3re@5sB1oYk| ze-I1oBTkYfkV@E^!Ao8(lO|+;Sj?PRBGpoRQhL`ME8)h217c>rU!#-Jduq3z7Pe9@ z)F=ehFdG=}*7NYPs>Tm5L7>N)0StW#+QkOYu1{egp@ONM+#8t$^eadV8w-fJaL_nL zez%|1XzE0&{_6N1(&b&L;?G0jc^X_Fm+t;QJbL;Yn73&zp&ve>XH6Yum z%-<$<#EIP4f6TiDEOBJCvom;A-wQ9fob6jMDm##JYh#(^yxr5n-DkkfR+m;YxTO)F z-{@>q*YA@YfYBT;G>yBE{OY=Cohfu|3C+L&JkexVRbl`^gj-sv^_nE~mG&6{!LiK1 zk4Tfy-SApa)v%R6U{Y(GPb_<>0-5#=ws!5D3^`fz>m^_FmNF6xD44rh^h|9=#t*v5 zbVzBeHC$TFkN)ghU#^ir!cOQ(-XB2B9cfZxKRNEI%-IwQn?UwYo2bEvRukRWK;>Qeq7flN8mP1<3jhj(;oE^3 zLKGd(Tgc^`apRj05RF@R_aY%i$k;RAfz*={i;nkgQm*uO%UAu=AW}4&=Znr+V>xI! zZOCs2c0;NPU&;w(PK)z*`&KPG%Ir}NSn2VPLqBG3EE|r{=5x!) zk!hNZqwWbYqG~7B3i8-%@2DL^p2|)VR+O0#?-uWklVDk_T~kyRg$~Thn;v{1VMCCBk8h2VR#&{b3_TgdNBWO z0n3|-FZ9^{c7BWYglKB>n9%RW<%I%=@2EhJi1O^v zotAWIE#mL%U2rf?j!eo7?AWT}#jjz^tW|R+|&Zi)n^X7V+PcBQIV^hg*Gint9qM1i)1}R zb2Y$Hd3Szrq9XX*P?>dx3FL3>8QT*j$}1lUE4!=R!CIQadh5XZ_wMlhI+ZIfotN_` z55LUrOR5PM%9RzEfUpgE%$X+%iFEotSgY9dEt4=JP_8PvUZ;A&(}~}GZ@MCzNRnIL zcRlw=m)Z4uz}$>K@#-au)CX%qE;y|9w-%KQ)*Ux>j!aN6=~F9->y5@F%AyHCTcKKh zR~={6V4)>S04~Yo?O-IVFooLXXJd?q9L{Hkc-=y83#se#4VJ8dtQeaY9Gjk+6Hz;< zkLnmKdPGn>MtefPzZs{`y`d8@Ie?KuODC3?b;{%%~q07akH zd5earu)qbHF+k3NAdX73wE8#e=Mt2IL*PeTVF3CVA_S7n%Qwn>C5M!|*FOuhC<5Cg zt`7MzyX-%{>R`(yDIN#hkIcdYsy+p7RYcue^dOQ7#B5!@ha(oL?ziy1p1GToP6S6p zpknKE0gT&S2AjtWY=c`}%N~Y?dMPnw#;1yHvrYcG`A=)YJ-SbV%w~fobmH}uce};$ z-R-~L6LCi$H-j$XJlSXAn$q3+mC86!F#UVxxi-Jg`j*gb7BKXrAeVbx-bpGQHZ9pZ znb9x=j$}t|uS)Gs67nhcX|+sNvJW1CYUFE?JXqUT=H&09p=r zHfJR5$z2tNAtfC39k)Sk_s;U$BsA<86pz!1-`&x7Kew(X3bf(R0nuv7=}T9M*nX*z z-+e!p*?mZ1Q~Sj@IF(HAm*#XU112BzdzzaTUxE2vAt#ATCFXUEN7_tRmELACP3X9u zyfk#0NX|g_8H8ML&jkRj6{=Nbay7hopg;g=zkv+gzeIUPtzBCdP7-_~oc!*zlv7tu zA?rFH92lCWNxPCskdBA)k6gI0B(@g$-M|yI-HTe{Z2_9N{@em?#a|fU?xK5`@P1V6 zV4kh&zphy^&`A_{%Z{mXC3M{5E${VrmLR_TX2X(V02Q0YVUIR6_bAW2H?MeM5O(d) zx33j;fftXy%r9ulC`$4D^XJJG2}=Vp4@I9g_@3 z&B9z3d6~^4{ZZO$Vd`VBG4pqB*B4k4Zj<1{&Xcq{p)1=K^fim72cAEXKi0|Y zvzA6-XIEM0ee5fgS%dMQ$JFu(>8nIc=aIcN5FVG~t@r-KQ1pgNn+?a)TR@e2N8XWF0-QtS{^y5QP8>OqIQ$sf@TC&AqEv+Iytm0(Mgp(2xf zODg4ed6r@!%WUuGe6^XjQt%UKi(Epx>$PGID6CqrMm*{8eyoD2)pRnTT+=-}+ux23 z59q3*&ihmt^ae6yRX>s49~)k#U93Fpu9Z_P zan&0YtF8>oWH16i^@?K+6GM5%BnN&D3h9v|KkPV1k@B2czw}I z=c9#Ym;9c0Geoqi?<;u0Oee(&zW)haKlZ%bx9Qb!Fn0Q5Poz;#P-XaB$!cG5$}sn2 z%_5@Y*GC}h+Qn|cbZ=UG+9(dHv9xgm-(Qo%B~``#6BcY`prT?2KQ^;wjaF2ZHItsJ zrL!YLgNh$sh)kqir~UFeRHJ1+t8AvjReC2fsaiA_g2Y$b6ZuYefbvC|2nku{f027l zPsUa#8R!3sKXWXP>RB7TU67d&IEaPFnTWB<`Ud9WGz8{;WwQZxl)q-_Y3ujc5yQUD z6>Xly8Z3|mVJVGhDepEzW)oNcJ@Lv{cbGVIEhLKk6|P_8*P-HVzGdqAE!2pt#t|1SR*zku!P*HLqQ0S#DOC>e1qI~&-#A`kQv0B=ZMhkK^a=Ph+u zVkB?}8>GuKtSXgR$?tzXS)7X%+MjFr`Jl<*%5-K;H_QKwWL_TeTjY{_OG)?t5^#M4 z*1Q0O&bR}`sQLFt;K-oOw+=Q2SoGdrh+>!3RG!`558qRT`)ikiA%jNV>lQPy{~n^X zSo8{C&x(39bu8koB=s^$Bk2_ zF63F6OIEPhY!JrktD)H9`FKUdK&H~;s-mCm`E(*iAb+h18^R^H;o{b8@V7Z4#+ z$1=Nw!2cPFmV`W*eZXxi z!u}<jK6J0wmH%*t6qoKxHs-EsfYL4Qnuw!URA* zF94G!DzEt{hwcswdJ2}x>2sFB^dcxhV=rwvfiBg#sB~F+VNUo{YJAf7na#s1Gwi=cEEp~+%vlh?^`ks&*!^whO zb*EbFt6yfJwit(po~St#^qCdX?PMmrhQ7;C9Lyupq0kOe+mO3mf0tiyi;3o$tH$IX z!72@PlKb&6^QU(@zC+gN{aK5$#Z{qgQkI)L(Qk#dJtN0B9pMC!(`-dl$my18MLWIF ze-AS|T}q(Q7?~Qa!owFknB_IJE7hVjv&_8Zr0TEV2M}Vf!34hD@}!F!@PyRsoRz0? za%8Y)O6g#}L~r!y?RbpTzah_YY;pZuDny8adYRy%aTS2gRUIw>CBHWk3a>)>LC|0z z-73H+gOrR%;o0cwQ5vJ6O5TX$I!D;23dL6|9Y-UjsUSW1tPnx<9oQe8{+P07Q%bMU zqZ}sQxU}(d3Arf0l2bYOFs^N)J+oiVGv8<}*paUHw{?Tx_#?Y_n{le2!yh6v(LZ%} zZfIu0MB#OBpfg=YvGoV0#h_-=&)ezqW!I{Q2I55_f_6vgBw^_eYbg*P&UV!Rqp%t( z+;UHm;ruk6G~U2SD#kOTENl2#`Q&@C>!~q;L4gww1-eK2?a}TcB8k4%7T3HtX-wxP zoIob6gb=(*=HX|r$H{&Jwe(?*M4~O`m3&GMzp%rO9{=MQ4>j~6ly==7cK?Dm_X%`( zx+5>M>z37ca?tC4BdI`ID4nL!5z#Cdd5Aw!VUF31r!LKa zRM61s-O@gAK5#|=4KJf8RwVvAMz)@pSHkvV%j`m77gf_)*kN-HgG+&SqW!4eQ6)2Z zDDJwYDak*u_pLeyNt@)Q{EWLzd0fUQ9+0_zB2l5 zLGP-c8&GbWBpn(Q`=efm7FnU7K1#`rAhgjcZvyro|0&(L=SL132jcLDP17glYH6;HHTA!tC`9(s$F#bVJi zKnZDFW2q8b3#fnKDb-C!NB0E3%y`__W<_3bM2xL-j0b=<57?!OKOUF-BCFC<`Wf`d znP2BoRAr#jr+E6}OSi81W5wZ%G+Rn7JUfS3Czqmw^xH*<_%0q!Ss@S~?g-kKnm8ab zajn_OF1in|6QOO&To}fmVrB)8tqaI9agxWG5(OU+h7_Cod_SB4?nIDQ>}5@MG4PxQ z0%}pyOSn1gvP>jjY2uaS?g_m;2JCADuKCV@@`QZv*9Yc6 zK9vQf(V^^N`pPi{f+kO)No9w={EY@$oe$0n^(*||lVv?f|6l4{5Ht0Hk+H6sux6~% z6jC3rWWRhu5$&u`aO4!JOXg3E`P1UKE%c_d;;+32=GMem5~>B6@+>|i8K!zF#E6b6 zck%T**}EWro(?uzN~vVgLJNFRxlZ@q#!*uIc@BcqWJm0Y}qJ0<+N1Pykpsp zbYhpJ=F$8aa|8~}GwfD&5riyMGUx?QcwztYOdf0r3l%V^__K4 z9x#=b{>>8C!Us1`dSi^5ZTBvfN9x4)^F3T&2J&5O0_!4kv||W<&Js(eYdO`)2S*Xq z`lGNUFW+zs`*@wKZJKq_hys&MeKUW;+n}LrojA9oy7?4O$8B1#=Bz+TA+ksle|x*_ zr&wcOM5mcySS7V-En=Ia8cnGP_Vs1hke!T>OQ%G!{qKR_6irkh+Zx+8rM-c1KHuv z{4~QYprl^qOZfr~Wl=_%A+|zDF(Y181y=hp;H$fN!xp5qI#Cyc}5(&$h% zzJl_%BtG32yltp#XYusM5&_~st(IEx@d)qW8GWFnw2_E~9xbUx2Zw2RXEoo-n zSCSSrWjQdQ(jysrSR3LnUSrf;YiS;l)*HA==DaIQCg!d5$du!F+AtGVo8(M~Inr8S;k&-)o+Z-a+VQ;Wg%YZ`;%nk~+vd}% zK{izg*0t$(btySem0tGnx%7oLk|}$c{m!yvxjJzX-wmh~+b#!qzEO-Vm0!LbB^rx6Ad? zai#P1O?JQbU`eo7;ryKO)dSwkiYTjjiQ2+n zf9X-U6@z5GYcRT=2?7Xp^A>*D34-Y-KdW>eOX%=4eGLcB>Dgd4CtUeIRpzsV2i;va zih5hqJI77`9JTwCod#~3QzCPfvPBs)W0{Cw-a(^w9&GJjJKO{6)%lFtT8W-OM8wMN zMN{jElmrKChm)-PTIYI-S{$f&kiNVMu(?9BiMV|mlK-I8=BM9sEr$|=2Qeob6KQpW z`a*~E*7HXuwJcaHgpf%fgQvS=+bhrDZx?+?ik+5!Y6;P+ueX#@HN&73`uBt1n(wH% z@h#G9#V}9hS2o0D$ay%yJHy2v7=Dz)tZ3(73-%OIsahGunH+5kt39sM;Y;^CD6tjE zup1Pl*LcpiJK@Jb%90#Ri{5{@&?w^FR>k;4fv=Y2>0MUx=FhO?#-m10s|i#1cEbP~ zV`O?DVP^E5U!yH&wm!E4V0;TQ%`DW~SnC4vf_me>I5eHoh^Kd0^@SeGbA~#Hg9HQ^ z(Sy=EE~~)z6`F3VyJWfp3V=ri8BVIzXfCd{)i#yZwasJ|+51BzX}=jiWUl8@D{hgB zl>fGSDg4qShoYbz=E++=OApBDc7FywPeRl=1A{(099eeWJ4(lx;G4vHy)QYZSX`o- zF?cudc6$6#EF$0}X-_8+6@|@LBl0ZQhoKX6cipeW5Px%hJP!x~0{u>;q-{6?FEO~g z+nbNvmjC^1Jd!|KF7L6gKRgMY>rQXp-yXTtmN9K*_X*M&byzFGPP{xb5>9eoryj;1 z{YUNiuxM5pvw&eMl~_;i!kFpJn@3g}DZx&(FQw#5mSJA;A{d zJiRon!kKShjYR}IXEkG*lJNT3xzE%2EzXlO3j+WpvB2++AvhyJvdU+MT^P_t^Idh? z;QJB_%|lf+6m(y@Ee~3R3G?$yRLiwFJb$(tU?4Y!0U&YR*JEV(Z=3z^fxEq(gXQ%$ zs3=+h2B>$VXph~oJ;SG|h(}7B)m#aeS=-RBliFP{LEo zsTj9i|15aq4kk_&g4k_buoKgsi*UnQ%aep{NIq`vSuB?O4!y*Za zN8IJz&i^7E8&-e;00*iZeUks+@Y-h(BMUoYy|>vCNk)|rnaJO#F)nzz(c38r#v-G} zi#K%HsiB6pCAYW3s0pU&3;wvH3onQ78XkGcdJ4af5KaMGpz(NZlX*{aBtm~g!nyKp zw*B?xFv(?)sYjy08UD+X6|)DYcUg5i=EazXGAwgeBY-d}zfmJb{N8$F5qv%B89w56 z;87du!SErGkcjn?$iMmJmBa~(m?N24SY!k*>*Ora_)VJ%ID3Jp@fePi;6*X#eWh?r zYBD@W)jT-!P7}cO9vu%k`}HWCv&&rfbNZ(p)cp`MwGBi23f1n5KiiM`wV-WaHXys| zAWf<}YJV-jUv}6*XcN+&=kI7+|1_MbXJ|CsuMj?-ZXKS?CJjfVMK5hTtVNOwtoiDb zCM*Z;cGccIk2Hl7{x$mdfpcc*Ng8Isb1HD9>OD$n@XTCXVDE)iOvDm(I6vbNYc%x2 ztSm3yZ`F!4lU~e~A3WVcJE$>+W!x}14bNwj>UTBPZhF5xmchka8CXr^imjygnYk3^ zsy3S$xSr^MphQ7Os?Jargyg$QczT^MC#L)u2Rx!3Q=q31t)1-9zV65pwzPL|@$8bPT%E>8xFOQA*MdmEKxf#m4B{>$-Gm};t=K<3}?YX8x; zSs%wTuQ#nYH>?ZFh%lLyxF6tq)nAdJ1j^t@#;C~P_?0UoJ<2Z$x|AgTg9@jH`T%3h zB-j3!Jo|5PM_69Y!8IZkkZuUA1rQ=Q_Xb5r$>O)&hkJnGLEngC;_pb;Nn<9o^3N4)5-)E8tt{RI{6pLeH5 zMdULCHVEt8mK?Wd`=#?-^~{>iSE4HClNE^ToTl^-7XH+h@qwQO%Phy+3~;~_dVL&Y zKA!%J5nsgS z_HCTaXhNdy7bsndl`PHjl%?M5%`XMx;p4-FZK4 z=t;A$HG(?%lu#OW_IL^nJ#7Mt_M~Y-cM<(7U}rq}?Us=&NwDHQ^tvXR^14_)I>oHwzuTI& z5?7(D2Vpd*$aQBL;}9LWr&<^+n<+vc_+YocsO3~Y2F z6MEQ|9{&wT9iCctd;IxweufxM6j5i^(rt5r5$gF zT`pgs$6H%oGI5TBm8o8?AkVGS!LFZ^7a<(OSq3A~Wr#cJ_-C(hE*^4xJ+4UM(KIZS z);o+4+LieBn)!?MFL56gb^@jScB?IrQ#nzmp-}q?=xszdSkc+9O=i95u8{_@E*%fK z2Zyo^Eg)DwkIc+0&0G1T(!e%yqE&1wc#g_>yOa~b8uWG@U{=LEz_9Y*tZlJ zHSB?hYG21s2ckcn`|b;PqWze`TfkRtS>2-K>Jen$JAR?P=08N0pezyHxmhV5vCuoe z7#^NxX(R$`9Nrz(?!C)s_(;XQm_REL;>3!blMj}od%WydSb{u~>c3q=c0O+Jn7$qo z?wkEA&F!(PpP?2-i?_MrxB2)dK35zz@Y-v*v;2E1hJ}8(?&%zHn7qWFx<7{aJ)hW| z9!!XS_jYvxg%`Daa+6mQ!-pH?C0z5K+d8*;99~(Xz&YC9+LeBqTmbK7!fn^+ z<(;Ld_{+jfj*+qq=p#mc=q_2}Du~0Ux`6I_TAj2`PQL5A6Nt?AbNhx$CYnX_MIHMG z2OUhU8}FL;yG#FwiA7Vntcn87#{w>W#_V4;;@xc;WQnkcnsrbKvPX1~Ia|khqZAO6 z^(q$sICr$IVOBkYAiO@*C6y<5yPRZ=wb9Krcnj|iCM|Gz`EMS%#~4MMe#}@S8>?3F z&XD&~-b>D=O*ISm`TFr3t^Wz)OI;5i4(%eNJTW$LSNOAMG(yU9vbvP1F;uX#^V<6H zL>kk)t_p06fXkC{5??-2(}3F26urxk-xv_&#U{73zUyp{&}iDU@p{ShNrHskl_-az z(i@*tS*LF-p}S@6Scv9VhDQ1lRMvs5HA5?Uq1IB?$stXMdwT*L>t~ksHywosU z77khSr#2Ve%ssV+zVoBCSkJ6T%Ek)o4IH&&u$oU7_2GO-%adD4gN?S*yP7-VJCp@Q$eY5z4jAN%@i-p5GF>__imVoKYWuc&Sf)Y8Y# z3m+MW>41)}Fb)qbB+UQhadCL3x;F3924X$Cv$UcAonbYz;>7TS3_Ueq*PUIj^_CL* zN__qh5Y)D^t^cr%y@WNq!|m~SqgOdao2uB6b0G@!z$>BiZ~Av6Ix_a3E=GM#Pty5L zCoVf~(~o1kMds6>E4OC*03;%mqk`ucNy4q#$I(-odJ2a;8_@o5gK+qt+a8)m*l(|~ zJ#;FQ^j^z=J7i0pn^UsYj8~~~?}=t2R-(IC#;#jQz?Mnoj`YAJJQZ}996;};>~uJl zc5_`>`S`j{x!SD@2W^%TU5MffH?t3gR8qi&ByWEtG;_3E zI~Fm~Vsw9EGC3OAoVUd*N?qY~(3y}Zd1Cd`ze0j<{=1cte?hK5?LRExXN*hiXpdiQ zSgPk=j?DeOP;w1qy&d*o7506RJ=z(CRBqsIgZGjF!y!{fUwg@ChjFn5HuezYCR1c2 zhNIssuM zicI{wu>T>DM)3JZ5sNT$M)o9&YkN2G;XE(myf+H3PCkfpB+JRg5)@f;8LZtoyzAy% z!O>u)eJsIRR-H+y#4y2eTT4sR7Zl+9S)~PXUgJypua+LQB)8L!D-XsbU3tX`?5sH| z?!0*}d(fACg+W(!aS^!o7=SZe}jmhj+J$g7!2euxUH@^d*Qu`3x4GqebbpUqbqo2idqR z6@QP@`BK}u>3^%QtE|5+Iuk>fxvqcHIQH0y)V=DiIK0W}t;*Tjo=P8Ne_=gjYpD{{ z3-+PEDov$@y7TpZ32O;^_pNSzju2`Jx!Sn*1!AR{(1Nq8dCf+s{EYt-8KmZgP!2KP zz?&4D`fx7w8Lecrh>I(}tTCw9#S>$3YOy3o@M-Jz%T8`>B{NnGEZba^E{oC+PJLGifp(J*?$CMrKAEwX`~C`1_Wx#Cm) z?AU(^#reeZ33ujWWT#LV;VI46(aNdC0-rO~uldB2iT~v9snn0wUqey`@hXV!*5DsJ zThoW>ujBZEog2KrVypY?I*3%H!Nq?w}-`7rO)155Y+h-nhkLUdZ8*RR;kNa()kcXqX z@pjnJFgH}*Z}SuYd*}m0+piDDu~S^$nC*SUS_Q|~NyQK~-P%Cewdk$5V){~$ePZ={ zibn;tk;HM+6Y2AxaQ{l&0=h&;k@p~^{~ew~@ul3&?Hy<}0K;R)%s(d1h^fQe|Ddgr z)ObzLtW=~$Aj`gUAD>rE43aXp6H^?7gjc`Wd%t$1D)9Y_mX%zmfN#ZuUsP0WY}+$I zi}1-ot4|_kbJ)7w2{Z&#n;|VTm4!KJ%1hi~Q^BqRCAo-2D8!(KtJk#M_p+6}pU;OF%pb>j?Du@cJ* z0g6|TjLy9=Aw66}J8reBqz7u?gKsj*2BOzf<9N>Iy~Z7|bfb!!z};YgmB1|BuN54c z%#bFfuegnL;BCe`haX|T)o1o&IE>|$yML=Tl|?ga!;&$}KRIsbQ3|RHr4`eCC8xJx zEzlYAUZ=0Zl`b3Wa!X4&n=ZvtkI7-CEm3Fcjj8RllFQ)#^rmqZPt)!NGqGiqZ)~`P z;HxfE1V(Q)giIQnao`pz4|hapeMXQk7Mp+*zer9m1TZ|j!W6DounayD;)VhvIvHHk z|0X_X_vBzSy_mx|4Zd$pdT&1fN|ZX1-CC0og6ascemZ0Yhb{VE>20KXpkNNjI%fFZ-`aXy=0{5RGCtt2;>hjqW~|g z{`#q;=$gfH_eTrY-~-gnw}|x)n0AlBV$T!trC4+2ai3p2?qWWDH7h0suqwmj$p&ca zoqv<5{z~zBaEk)hT3)s$Tg=iQjkWE177Pfxq0Ff21mdGeKH~DNt;YcVJ$j(EfW9qT zIA>IE{J->d3vCZd!5${q+ecE|-fxT#HTLJjJ^#+JwItuH#=~PTscW6vl;=`iX^@RY_EdKGDiR7l8GXI@UXSc( zJq^A&rUbw}|Ah1CbK?hRwq4SS2n>vbkcD3K`cH0HRUvkdUK)5<;*hO62Hc%@`&D*_ zMTW}RouqlbD z+J@{Y^^J~)TJc0dIyzk6J@5JIJo3K&!@YP#R|Hnk`*Sv5+(b8$<;>OwCS&(EV)C2$ zcWlAM9{nM`qt^a1_w~tN;ur{f?@2sxW#ve49lwzbsX55|KWCLnizJYj`a>SRz8xxY z_6$K5X+40aUD37M6TIkxNN}9E}Xya6$vUS^i;CExGhF^ss8)|B0pQFi8 z??6{XE2X80U*e45usIJIPvg79lh=dbdqN+*LDMB$Jf1oGMM1NaFCX*WaQn@j(;{}f ziCJonnTYm3hx|U|74o&_8k9FK?te$r392-;Bj(X^4p8_eErmrZ3p#%_Lh?`zTP;eC zzRs_5YYtwi(tb2wwJLf*i2ZsHW7H>pnAKYEw0po~`6h@>g&$((OR{gSMcY$tQ2Kt2e6+ znbhL^yNExxZd61k%3m>+zG9{+u9d>z0zn2YDxV(IkDWaj(O%zq;+P_usyQ+T=)k4D0SRNY}zRyf`p5bw;7%hllU|(v;olr#(FXnzNaa zR;s4&Zw`fSXy^Qnygk3_w%9+MY@Kmfd)bHn*cPLGB8;QJdKQt=XVuy!Sa&@=8vm}K zTRg~|p26Er_qcQ&_3>i?p-?4-zQZF^wXN?*V@iR_wkN5YJ1 zVF<77%nFVOCQ9HIej4*?3vDQJa{#HnH#F4T@@;>;;>R&S`v;{Y{usdZ^gz8oK`L&3 zmV0sSUE@b9K$R3fnH-^=_xLP8yEy8SQl?y-+P7R0wMTFhp0b%MWzy2AoRof^c)q9O z$p`HAhsIW(ao~^PuD62(@W&p5^!i>AllL|{Xjk5CubH;T& z_*b$;&K(}IhSYud#eqAASrsCrCI`KB^Mmu~^vVwvR7)irv;ATz?5+dQDi_4;F}0y~ zYQ`=r8DUIHQ_)C`2X`Bx8m515=0CbEDViSRGP#qDn7wLwry^&0A1<>#XAWIO?(@xI zg?M(on-@RX2ifnfo|4w)<@5gcSb5d@ior&UTr=3{-f+UnEh?Kc)#mp`;&X+cwX7T) zm^eA68LO0o-%S{^L*MO{wD)DpOm0P|$XgPvF;8`05aYpJl8JEw-mJTcX}!(5?sS>o zK^A5d1zI)j8rfL5|AxSXRWlrSeiHPEm&0B>vR16{io4GEgo4t&IKuO z&r45Dd>)+SYC(F%_>s_?5Dd9d)PGc(xP@$pOWtwL{;K|B%gM_Mw;BXM{X|| z`~g-aE-|=t3~trbZk(zTXV)f;tg@%SiDKGz$1`r2{82P}ig7n{?-wK>*YTK!@@SLX z7WMRMQj}*n!E{Hwglzwa7-oT6j2H*-&6~sZ+;mA`S5T|&sg`s+R!~FXbW!q)<-*Yw zkd6$hU%LfWdUWqWYeI5iQp+Q?v&ot5${@2s7Su(Zm?S~-coeOjzAs~c?e}R2CsE-& z6o{OW@jWJdc?wwp7B*V*YQP?JAwmfi1b!>y>o#G`%0OmR(@X5tXIZHU?u*9vT_SMP#zoK``NEhtm-!o_r4Xexb^tWHKIZ;jN^)y~<`A@D1 zyn-8eNfX$i#iF9@JaSD_LhhR}R^hEwAZtl zmJt6jTYV-L3b}4E9gB_^Zl-)9@Go@u%S4Bwv0Y5>YwWeL-iyyAnhbUi?zGH@T4s#G zr3gNQxU=T@HpA{9QH-cQ4C`)RI>ZcZqTFIG4RB>GV{K6~dPC~|;agv37G%tZ3g_X& zseu=4iT^1)@~~?9m++T4FMj4J_CpSJr7kMlP+xCpy1v!;BzeG9e(5%*NwP%v)upM} z^v&#es}F8#@XV^vi+)jvb`(Y%+u?5}oIXM`Wv5+p7PQh)Qnt7*F;Q;%s$Y<$QCGT$ zk5>gdJLhsJi*W7^-tiKNtJX{hSX?N+EHso>Lj^Gy_1uZ$hE;KD2H8ZcNnbY*-{K3D z)AHF};P7s_`l;H^w^pu$OxZs57-4E}TFTK+CTG4n#RZ-OsC*HoOxBhLCe59F-_4@* z^+*W(f0q}0|K5g)4GidpL`}(DnS8o$&*cW9YL?)G2^JKk!a@P~EUzh+dr=GjECH}d?Ef4(hpiAJ9ntTmYX zM(N2*R~=}6nXU-7EaOCZjLgcD04g%M8`?ZFjVX z0Ny-6CwoYz2RZz;>0(0wDnSjO*W481rPfaczCl~u`ZB&vixW`dT3f`oxH90PLOdC` z4gDIt^4Up?W6x4CptuAc-vVmALp9tRHWx;*-A6Mgyoh9(oG+h9bW+5{2(=7_FBi_o z>y{?$BXqL5c{LajNB<(tvfb&G9PLx|B=iK5GYz5+K}q9Ql$6}gF~ zA;W^Gn!5OJkxJ-jPU3UPK3Zl&vf#EFcM%!c6X*H_jJCkOzr0P4^rwasfycZIdd7Pc zgb(TTjxQT17Y85GZQEGhJ~Oz>3S7DiPVNzZ(f?tg@hUv zyDd}diuS2t`f9t0(LJN!D1w*{~pr2tm&hq}uQ z3SVVhJb(AUrE=MEHuA#8KY5Ze;xc`P6kuOZ<7J2n-SD<)=$*Eu{tQ91^IBv~s}V_7 z{L20Vb!2t-GEodF_2X!L2wCbl9VhIs9LPXraI6#9K5>9i+tLQAX675NY2f8Yz=aeB zyTeM%MdEoxYzY+Kgor_l6hxdX9|SbCD5)qpY-)B*SAV__^?a^TTCY>&6!D^lj}gfn zkHXZ8nZ~4MgLV!Vz6XN|*Jidhmv|@2%_rvE_NbB$!aC+QZLnW=HT`#-jp|o))fcFr zIf{`ddI?*QFKA_5WhfG8#`k-;W`djC54)b2jctICC(xSs{aY&Xvw}r0O9OCBR}pKC z8-t55%ys7&laQrZC)2zwLu!p)aM>`KtYT^|lHW{Ot`by=_f!L4OOk$?X19o0{(Kdf zXLh9-I8^ah6?Nij?Xh~=J97aK^>f_vg9ps)(WbPC!QyMwy_nG%=Su2&Fv2s@8iTJ8}U(|Tr1UWTygH&Q^Nn_OgZOI zXzuG)Sp;g6`p2vLcdHOJUu!!BjGY}%LsD}1IAK*+PDsYQ1zCuu)fGk18=n-_M7MFKSi&}R5g?v-rS*H6?XetiFO>Sv(g?)d)P zR`$Z0?jy6kc&I)6N&K-M@5)P;VB7+tHPAO?z)d2N_nz$B>O?~AVXUyAAH(tP`>CK0 z!z-U#1hWGc@d;d09YypD8|}DX22}(G?HJIZLcmkqS9H{N!IbF_V5d!Yp?fI#+nAk1 zU6lK0=ZPHIb{`1ysx!U*iXJBZ9dnqtGe$0yRh_>=6~X4(7esj<(sw{*xB}#D4at!P zF%HjlVxGckJn^6?ePo)Tj`PoSF*sfjBaqo!%TRiC``5FOOHYwvZVzWZnZgXP{HG-R zc$)x#ooMr%x()77vj!UqrS<$~`sk4t^05gDp!R~$4FxgKqkFGQ z4vl`~W~aq_*m})K+Z?9xnJda)6LmR^=``&$dyd*em?2?uJZeGND`S)RVxS33!5{A9 zj~b|ux8&|P?uJ^)5@M_@j_Rpv9kTd~kU!LR&PTW!v@H6TVdyJs8NQ(9Gre&05em(8 zm9!-N$9{ApqGceR2F4cJp)V(Fa zv=Dr>5dHLou2?DMn@QuK8L{|t60rG-hhhYcqeVK^2vrfP)y^CiESum{;iW>N;lye| z8R11(;PgX~gKg52NKeX7$5+3Ici*UJ6SeQ8*tpA*UbXSqJx%jIkFX1Q*ll_LAO@{R=S~D8> zWVdisi^yAsX?No<(s$bSbWhR`SRZA*Z6yn~_&j+6USVePH9&=KjsTLheo`DPrni`| z+Y=!*nM`LJsoSjj1os~#bU^~*$X^CIO_h`Q>PcUILYHeRUB=Z>?SfIyMKBkmu5<1z zt{2X|@qLIW`Lv1BCqMm<1!%-`g8s58tB2%j1PUjIJh~jU|H@`TLRMQ_4%+tfyA+(c z6Vs2^$MgUJ7JAB0_#yqMD@ActEz+78ff#dJD22TNJyEwDxQ?bRv*k#UcBAxK`C?+< z>*$$BOabap8pCt!AKYR$iyT~+(T?zaxR;;z3@sJ>IAtyn1ptozGD@G1V%}4hFpbwr zqgWEsZ%f(I6)S^u=(zF}vqB-sgvaPd2lDh60Wk9H|Lc+L|M}4P|Hlc}G?>q%gMqX8 Uu|DcC&rmOAd3Cv}51+&T2WdAUYybcN