-
in
normedtype.v
:- definitions
contraction
andis_contraction
- lemma
contraction_fixpoint_unique
- definitions
-
in
constructive_ereal.v
:- lemmas
ltNye_eq
,sube_lt0
,subre_lt0
,suber_lt0
,sube_ge0
- lemmas
dsubre_gt0
,dsuber_gt0
,dsube_gt0
,dsube_le0
- lemmas
-
in
topology.v
:- lemma
near_inftyS
- lemma
-
in
sequences.v
:- lemmas
contraction_dist
,contraction_cvg
,contraction_cvg_fixed
,banach_fixed_point
,contraction_unique
- lemmas
-
in
mathcomp_extra.v
:- defintion
onem
and notation`1-
- lemmas
onem0
,onem1
,onemK
,onem_gt0
,onem_ge0
,onem_le1
,onem_lt1
,onemX_ge0
,onemX_lt1
,onemD
,onemMr
,onemM
- defintion
-
in
signed.v
:- lemmas
onem_PosNum
,onemX_NngNum
- lemmas
- in
measure.v
:- generalize
measurable_uncurry
- generalize
- in
constructive_ereal.v
:lte_pinfty_eq
->ltey_eq
- in
sequences.v
:nneseries_lim_ge0
->nneseries_ge0
- in
constructive_ereal.v
:le0R
->fine_ge0
lt0R
->fine_gt0
- in
measure.v
:ring_fsets
->ring_finite_set
discrete_measurable
->discrete_measurable_nat
- in
ereal.v
:lee_pinfty_eq
->leye_eq
lee_ninfty_eq
->leeNy_eq
- in
measure.v
:cvg_mu_inc
->nondecreasing_cvg_mu