forked from math-comp/analysis
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmeta.yml
195 lines (163 loc) · 6.15 KB
/
meta.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
fullname: Analysis library compatible with Mathematical Components
shortname: analysis
organization: math-comp
opam_name: coq-mathcomp-analysis
community: false
action: true
nix: false
coqdoc: false
synopsis: >-
An analysis library for mathematical components
description: |-
This repository contains an experimental library for real analysis for
the Coq proof-assistant and using the Mathematical Components library.
chat:
- url: https://coq.zulipchat.com/login/#narrow/stream/237666-math-comp-analysis
shield: zulip
authors:
- name: Reynald Affeldt
initial: true
- name: Yves Bertot
initial: false
- name: Cyril Cohen
initial: true
- name: Marie Kerjean
initial: false
- name: Assia Mahboubi
initial: true
- name: Damien Rouhling
initial: true
- name: Pierre Roux
initial: false
- name: Kazuhiko Sakaguchi
initial: false
- name: Zachary Stone
initial: false
- name: Pierre-Yves Strub
initial: true
- name: Laurent Théry
initial: false
opam-file-maintainer: Reynald Affeldt <[email protected]>
opam-file-version: dev
license:
fullname: CeCILL-C
identifier: CECILL-C
file: LICENSE
supported_coq_versions:
text: Coq 8.14 to 8.15 (or dev)
opam: '{ (>= "8.14" & < "8.16~") | (= "dev") }'
tested_coq_opam_versions:
- version: '1.13.0-coq-8.14'
repo: 'mathcomp/mathcomp'
- version: '1.13.0-coq-8.15'
repo: 'mathcomp/mathcomp'
- version: '1.14.0-coq-8.14'
repo: 'mathcomp/mathcomp'
- version: '1.14.0-coq-8.15'
repo: 'mathcomp/mathcomp'
- version: '1.15.0-coq-8.14'
repo: 'mathcomp/mathcomp'
- version: '1.15.0-coq-8.15'
repo: 'mathcomp/mathcomp'
- version: 'coq-8.14'
repo: 'mathcomp/mathcomp-dev'
- version: 'coq-8.15'
repo: 'mathcomp/mathcomp-dev'
dependencies:
- opam:
name: coq-mathcomp-ssreflect
version: '{ (>= "1.13.0" & < "1.16~") | (= "dev") }'
description: |-
[MathComp ssreflect 1.13 or later](https://math-comp.github.io)
- opam:
name: coq-mathcomp-fingroup
version: '{ (>= "1.13.0" & < "1.16~") | (= "dev") }'
description: |-
[MathComp fingroup 1.13 or later](https://math-comp.github.io)
- opam:
name: coq-mathcomp-algebra
version: '{ (>= "1.13.0" & < "1.16~") | (= "dev") }'
description: |-
[MathComp algebra 1.13 or later](https://math-comp.github.io)
- opam:
name: coq-mathcomp-solvable
version: '{ (>= "1.13.0" & < "1.16~") | (= "dev") }'
description: |-
[MathComp solvable 1.13 or later](https://math-comp.github.io)
- opam:
name: coq-mathcomp-field
version: '{ (>= "1.13.0" & < "1.16~") | (= "dev") }'
description: |-
[MathComp field 1.13 or later](https://math-comp.github.io)
- opam:
name: coq-mathcomp-finmap
version: '{ (>= "1.5.1" & < "1.6~") | (= "dev") }'
description: |-
[MathComp finmap 1.5.1](https://github.com/math-comp/finmap)
- opam:
name: coq-mathcomp-bigenough
version: '{ (>= "1.0.0") }'
description: |-
[MathComp bigenough 1.0.0](https://github.com/math-comp/bigenough)
- opam:
name: coq-hierarchy-builder
version: '{ (>= "1.2.0") }'
description: |-
[Hierarchy Builder >= 1.2.0](https://github.com/math-comp/hierarchy-builder)
namespace: mathcomp.analysis
keywords:
- name: analysis
- name: topology
- name: real numbers
categories:
- name: Mathematics/Real Calculus and Topology
publications:
- pub_url: https://jfr.unibo.it/article/view/8124
pub_title: Formalization Techniques for Asymptotic Reasoning in Classical Analysis
pub_doi: 10.6092/issn.1972-5787/8124
- pub_url: https://hal.inria.fr/hal-02463336
pub_title: Competing inheritance paths in dependent type theory---a case study in functional analysis
pub_doi: 10.1007/978-3-030-51054-1_1
- pub_url: http://www-sop.inria.fr/members/Damien.Rouhling/data/phd/thesis.pdf
pub_title: Formalisation Tools for Classical Analysis
documentation: |-
## Disclaimer
This library is still at an experimental stage. Contents may
change, definitions and theorems may be renamed, and inference
mechanisms may be replaced at any major version bump. Use at your
own risk.
## Documentation
Each file is documented in its header.
Changes are documented in [CHANGELOG.md](CHANGELOG.md) and
[CHANGELOG_UNRELEASED.md](CHANGELOG_UNRELEASED.md).
Overview presentation: [Classical Analysis with Coq](https://perso.crans.org/cohen/CoqWS2018.pdf) (2018)
See also "Related publication(s)" [above](https://github.com/math-comp/analysis#meta).
Other work using MathComp-Analysis: [A Formal Classical Proof of Hahn-Banach in Coq](https://lipn.univ-paris13.fr/~kerjean/slides/slidesTYPES19.pdf) (2019)
## Mathematical structures
MathComp-Analysis adds mathematical structures on top of MathComp's ones.
The following inheritance diagram displays the resulting hiearchy
(excluding `countalg` and `finalg` structures). MathComp-Analysis
mathematical structures are on the right, below `pointedType`
included.
![Inheritance diagram](./hierarchy.png "Inheritance diagram")
## Development information
[Detailed requirements and installation procedure](INSTALL.md)
[Developping with nix](NIX.md)
[Contributing](CONTRIBUTING.md)
## Previous work reused at the time of the first releases
This library was inspired by the [Coquelicot library](http://coquelicot.saclay.inria.fr/)
by Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond.
`topology.v` and `normedtype.v` contained a reimplementation of file
`Hierarchy.v` from the library Coquelicot.
The instantiation of the mathematical structures of the Mathematical Components library
with the real numbers of the standard Coq library used a well-known file (`Rstruct.v`)
from the [CoqApprox library](http://tamadi.gforge.inria.fr/CoqApprox/) (with
modifications from various authors).
Our proof of Zorn's Lemma in `classical_sets.v` (NB: new filename) is a reimplementation
of the one by Daniel Schepler (https://github.com/coq-community/zorns-lemma); we also took
inspiration from his work on topology (https://github.com/coq-community/topology) for parts
of `topology.v`.
[ORIGINAL_FILES.md](ORIGINAL_FILES.md) gives more details about the
files in the first releases.
## Acknowledgments
Many thanks to [various contributors](https://github.com/math-comp/analysis/graphs/contributors)