From f0b24bef66dc5502b299d6eaaccdf29f4d42dfbc Mon Sep 17 00:00:00 2001 From: jamesmckinna <31931406+jamesmckinna@users.noreply.github.com> Date: Sat, 30 Dec 2023 05:36:26 +0000 Subject: [PATCH] fixes issue #2237 (#2238) * fixes issue #2237 * leftover from #2182: subtle naming 'bug'/anomaly --- CHANGELOG.md | 4 ++-- src/Data/Nat/Divisibility.agda | 26 +++++++++++++------------- src/Data/Nat/Primality.agda | 2 +- 3 files changed, 16 insertions(+), 16 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 8a3ccbdae8..d454783b0b 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -58,8 +58,8 @@ Additions to existing modules ```agda quotient≢0 : m ∣ n → .{{NonZero n}} → NonZero quotient - m|n⇒n≡quotient*m : m ∣ n → n ≡ quotient * m - m|n⇒n≡m*quotient : m ∣ n → n ≡ m * quotient + m∣n⇒n≡quotient*m : m ∣ n → n ≡ quotient * m + m∣n⇒n≡m*quotient : m ∣ n → n ≡ m * quotient quotient-∣ : m ∣ n → quotient ∣ n quotient>1 : m ∣ n → m < n → 1 < quotient quotient-< : m ∣ n → .{{NonTrivial m}} → .{{NonZero n}} → quotient < n diff --git a/src/Data/Nat/Divisibility.agda b/src/Data/Nat/Divisibility.agda index abac2915a7..f980291cc4 100644 --- a/src/Data/Nat/Divisibility.agda +++ b/src/Data/Nat/Divisibility.agda @@ -42,20 +42,20 @@ open import Data.Nat.Divisibility.Core public hiding (*-pres-∣) quotient≢0 : (m∣n : m ∣ n) → .{{NonZero n}} → NonZero (quotient m∣n) quotient≢0 m∣n rewrite _∣_.equality m∣n = m*n≢0⇒m≢0 (quotient m∣n) -m|n⇒n≡quotient*m : (m∣n : m ∣ n) → n ≡ (quotient m∣n) * m -m|n⇒n≡quotient*m m∣n = _∣_.equality m∣n +m∣n⇒n≡quotient*m : (m∣n : m ∣ n) → n ≡ (quotient m∣n) * m +m∣n⇒n≡quotient*m m∣n = _∣_.equality m∣n -m|n⇒n≡m*quotient : (m∣n : m ∣ n) → n ≡ m * (quotient m∣n) -m|n⇒n≡m*quotient {m = m} m∣n rewrite _∣_.equality m∣n = *-comm (quotient m∣n) m +m∣n⇒n≡m*quotient : (m∣n : m ∣ n) → n ≡ m * (quotient m∣n) +m∣n⇒n≡m*quotient {m = m} m∣n rewrite _∣_.equality m∣n = *-comm (quotient m∣n) m quotient-∣ : (m∣n : m ∣ n) → (quotient m∣n) ∣ n -quotient-∣ {m = m} m∣n = divides m (m|n⇒n≡m*quotient m∣n) +quotient-∣ {m = m} m∣n = divides m (m∣n⇒n≡m*quotient m∣n) quotient>1 : (m∣n : m ∣ n) → m < n → 1 < quotient m∣n quotient>1 {m} {n} m∣n m