-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutilities.py
203 lines (170 loc) · 6.22 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# -*- coding: utf-8 -*-
"""
Created on Wed Sep 2 19:16:33 2015
@author: s1050238
"""
from operator import add, lt
import numpy as np
from scipy.stats import expon
from scipy.spatial.distance import euclidean
from scipy.linalg import expm
# Gillespie's Stochastic Simulation Algorithm
def gillespie(rate_funcs,stop_time,init_state,updates):
n_reacts = len(rate_funcs)
t = 0
s = tuple(init_state)
path = [(t,s)]
while True:
jump_rates = [f(s) for f in rate_funcs]
exit_rate = sum(jump_rates)
if exit_rate == 0:
break
probs = [r/exit_rate for r in jump_rates]
index = np.random.choice(n_reacts,p=probs)
t = t + expon.rvs(scale=1/jump_rates[index])
if t >= stop_time:
break
s = update_state(s,updates[index])
#s = tuple(map(add,s,updates[index])) #extra tuple() for Python 3.x
#s = tuple(x+y for (x,y) in zip(s,updates[index]))
path = path + [(t,s)]
path = path + [(stop_time,s)]
return path
# Functions for paths / trajectories
def extract_times(trace):
return [time for (time,state) in trace]
def extract_states(trace):
return [state for (time,state) in trace]
def combine_times_states(times,states):
if len(times) != len(states):
# Should probably raise some exception here
print('Time and state list must have equal length.')
return None
else:
return list(zip(times,states))
def split_path(trace):
return extract_times(trace), extract_states(trace)
def normalise_trace(trace,times):
#new_trace = []
new_trace = [None] * len(times)
i = j = 0
while i < len(times):
while trace[j][0] < times[i] and j < len(trace) - 1:
j = j + 1
#new_trace.append( (times[i],trace[j][1]) )
new_trace[i] = (times[i],trace[j][1])
i = i + 1
return new_trace
# Functions for states and state-spaces
def update_state(state,update):
return tuple(map(add,state,update))
def make_statespace(updates,initial,limits=None):
# check whether limits, updates and initial all have the same dimension
space = new_states = set(initial)
while True:
new_states = set(update_state(s,u) for s in new_states for u in updates)
#new_states = remove_negative_states(new_states)
#new_states = {s for s in new_states if is_nonnegative(s)}
new_states = set(filter(is_nonnegative,new_states))
if limits is not None:
new_states = crop_statespace(new_states,limits)
if new_states.issubset(space):
break
space.update(new_states)
return list(space)
def crop_statespace(space,limits):
outside_states = set(s for s in space if any(map(lt,limits,s)))
space_set = set(space)
space_set.difference_update(outside_states)
return space_set
# for s in space:
# if any(map(lt,limits,s)):
# space.remove(s)
#def remove_negative_states(states):
# return {s for s in states if all(x >= 0 for x in s)}
def is_nonnegative(state):
return all(x >= 0 for x in state)
def find_states(target_states,state_list):
indices = [None] * len(target_states)
for i,item in enumerate(state_list):
try:
ind = target_states.index(item)
except ValueError as ve:
continue
indices[ind] = i
if all(indices):
break
return indices
def make_generator(states,rate_funcs,updates):
# TODO: can definitely write this better
def make_generator_row(s):
end_states = [update_state(s,u) for u in updates]
end_indices = find_states(end_states,states)
rates = [(i,rate_funcs[i](s)) for i in range(len(rate_funcs))
if end_indices[i] is not None]
row = np.zeros(len(states))
#row = [0] * len(states)
for (i,r) in rates:
row[end_indices[i]] = r
state_index = find_states([s],states)[0]
row[state_index] = -sum(row)
return row
return np.array([make_generator_row(s) for s in states])
#return [make_generator_row(s) for s in states]
def make_generator2(states,rate_funcs,updates):
states_array = np.array(states)
n_states = len(states)
Q = np.zeros((n_states,n_states))
for rf,u in zip(rate_funcs,updates):
rates = rf(states_array.T)
end_states = states_array + u
end_indices = find_states([tuple(s) for s in end_states.tolist()],
states) #hacky
start_indices = find_not_none(end_indices)
end_indices = [end_indices[i] for i in start_indices]
Q[start_indices,end_indices] = rates[start_indices]
for i in range(n_states):
Q[i,i] = -sum(Q[i,:])
return Q
def find_not_none(the_list):
return [ind for (ind,obj) in enumerate(the_list) if obj is not None]
def parameterise_rates(rate_funcs,parameters):
return tuple(r(parameters) for r in rate_funcs)
#def square_diff(x,y):
# return (x-y)**2
# Convenience functions for common tasks
def transient_prob(Q,t,init_prob):
prob = init_prob.dot(expm(Q*t))
return prob
def euclid_trace_dist(trace,points):
#norm_trace = normalise_trace(trace,extract_times(points))
norm_trace = normalise_trace(trace,[p[0] for p in points])
#distances = map(square_diff,extract_states(norm_trace),
# extract_states(points))
#return sqrt(sum(distances))
#return euclidean(extract_states(norm_trace),[p[1:] for p in points])
distances = [euclidean(t1,t2) for (t1,t2) in
zip(extract_states(norm_trace),[p[1:] for p in points])]
return sum(distances)
def ess(samples):
N = len(samples)
autocorr = np.correlate(samples,samples,mode='full')
acf = autocorr[N-1:] / autocorr[N-1]
n = 0
S = 0
while acf[n] > 0:
S = S + acf[n]
E = N / (1 + 2*S)
return E
def ess_all(samples):
n_cols = samples.shape[1]
E = [ess(samples[:,i]) for i in range(n_cols)]
return E
if __name__ == "__main__":
def rf1(s):
return 0.4*s[0]*s[1]
def rf2(s):
return 0.5*s[1]
updates = [[-1,1,0],[0,-1,1]]
init = [10,5,0]
path = gillespie([rf1,rf2],5,init,updates)