-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtcr_kitti_eval.py
322 lines (260 loc) · 11.3 KB
/
tcr_kitti_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import time
import os
import numpy as np
import imageio
import saverloader
import skimage.morphology
from fire import Fire
import utils.misc
import utils.improc
import utils.vox
import utils.geom
import utils.eval
from utils.basic import print_, print_stats
from pseudokittidataset import PseudoKittiDataset
from simplekittidataset import SimpleKittiDataset
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from tensorboardX import SummaryWriter
import torch.nn.functional as F
import nets.centernet2d
import nets.seg2dnet
import random
device = 'cuda'
random.seed(125)
np.random.seed(125)
iou_thresholds = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
scene_centroid_x = 0.0
scene_centroid_y = 1.0
scene_centroid_z = 0.0
scene_centroid = np.array([scene_centroid_x,
scene_centroid_y,
scene_centroid_z]).reshape([1, 3])
scene_centroid = torch.from_numpy(scene_centroid).float().cuda()
XMIN, XMAX = -16, 16
ZMIN, ZMAX = 2, 34
YMIN, YMAX = -1, 3
bounds = (XMIN, XMAX, YMIN, YMAX, ZMIN, ZMAX)
Z, Y, X = 256, 16, 256
Z2, Y2, X2 = Z//2, Y//2, X//2
Z4, Y4, X4 = Z//4, Y//4, X//4
Z8, Y8, X8 = Z//8, Y//8, X//8
vis_dir = './tcr_vis'
utils.basic.mkdir(vis_dir)
def requires_grad(parameters, flag=True):
for p in parameters:
p.requires_grad = flag
def save_vis(rgb, name):
rgb = rgb.cpu().numpy()[0].transpose(1,2,0) # H x W x 3
vis_fn = os.path.join(vis_dir, '%s.png' % (name))
imageio.imwrite(vis_fn, rgb)
print('saved %s' % vis_fn)
def run_model(B, model_3d, d, sw, export_vis=False, step_name='temp', export_npzs=False):
total_loss = torch.tensor(0.0, requires_grad=True).to(device)
metrics = {}
metrics['maps_bev'] = [i*0 for i in iou_thresholds] # mAP=0 by default
metrics['maps_per'] = [i*0 for i in iou_thresholds] # mAP=0 by default
# ------------------
# set up the data
# ------------------
rgb_cam = d['rgb_cam'].float().cuda() # B, 3, H, W
xyz_cam = d['xyz_cam'].float().cuda() # B, V, 3
pix_T_cam = d['pix_T_cam'].float().cuda() # B, 4, 4
lrtlist_cam_g = d['lrtlist_cam'].float().cuda() # B, 4, 4
scorelist_g = d['scorelist'].float().cuda() # B, 4, 4
tidlist_g = d['tidlist'].long().cuda() # B, 4, 4
B, C, H, W = rgb_cam.shape
assert(B==1)
assert(C==3)
B, V, D = xyz_cam.shape
assert(B==1)
assert(D==3)
rgb_cam = utils.improc.preprocess_color(rgb_cam)
vox_util = utils.vox.Vox_util(
Z, Y, X,
scene_centroid=scene_centroid,
bounds=bounds,
assert_cube=False)
occ_mem = vox_util.voxelize_xyz(xyz_cam, Z, Y, X)
occ_feat = occ_mem.squeeze(1).permute(0, 2, 1, 3) # B, Y, Z, X (y becomes feature channel)
_, lrtlist_cam_e, scorelist_e, _ = model_3d(occ_feat, vox_util=vox_util, force_export_boxlist=True)
# since we only have annotations within the frustum,
# discard preds outside the frustum
clist_e = utils.geom.get_clist_from_lrtlist(lrtlist_cam_e)
xy_e = utils.geom.apply_pix_T_cam(pix_T_cam, clist_e)
# ok = xy_e[0,:,0] <
inds = utils.geom.get_image_inbounds(pix_T_cam, clist_e, H, W)
lrtlist_cam_e = lrtlist_cam_e[0:1,inds[0]]
scorelist_e = scorelist_e[0:1,inds[0]]
# also, discard gt outside our 3d bounds
scorelist_g = utils.misc.rescore_lrtlist_with_inbound(lrtlist_cam_g, scorelist_g, Z, Y, X, vox_util, pad=0.0)
if sw is not None and sw.save_this:
sw.summ_lrtlist_bev(
'0_bevdet/lrtlist_mem_e',
occ_mem,
lrtlist_cam_e[0:1],
scorelist_e[0:1], # scores
torch.ones_like(scorelist_e[0:1]).long(), # tids
vox_util,
already_mem=False)
sw.summ_lrtlist_bev(
'0_bevdet/lrtlist_mem_g',
occ_mem,
lrtlist_cam_g[0:1],
scorelist_g[0:1], # scores
torch.ones_like(scorelist_g[0:1]).long(), # tids
vox_util,
already_mem=False)
lrtlist_e, lrtlist_g, scorelist_e, scorelist_g = utils.eval.drop_invalid_lrts(
lrtlist_cam_e, lrtlist_cam_g, scorelist_e, scorelist_g)
boxlist_e = utils.geom.get_boxlist2d_from_lrtlist(pix_T_cam, lrtlist_e, H, W)
boxlist_g = utils.geom.get_boxlist2d_from_lrtlist(pix_T_cam, lrtlist_g, H, W)
if torch.sum(scorelist_g) > 0 and torch.sum(scorelist_e) > 0:
Ne = lrtlist_e.shape[1]
Ng = lrtlist_g.shape[1]
ious_3d = np.zeros((Ne, Ng), dtype=np.float32)
ious_bev = np.zeros((Ne, Ng), dtype=np.float32)
for i in list(range(Ne)):
for j in list(range(Ng)):
iou_3d, iou_bev = utils.eval.get_iou_from_corresponded_lrtlists(lrtlist_e[:, i:i+1], lrtlist_g[:, j:j+1])
ious_3d[i, j] = iou_3d[0, 0]
ious_bev[i, j] = iou_bev[0, 0]
ious_bev = torch.max(torch.from_numpy(ious_bev).float().cuda(), dim=1)[0]
ious_bev = ious_bev.unsqueeze(0)
ious_per = np.zeros((Ne), dtype=np.float32)
boxlist_e_np = boxlist_e.detach().cpu().numpy()
boxlist_g_np = boxlist_g.detach().cpu().numpy()
for i in list(range(Ne)):
iou_2d = utils.box.boxlist_2d_iou(boxlist_e_np[:,i:i+1].repeat(Ng, axis=1), boxlist_g_np)
ious_per[i] = np.max(iou_2d)
ious_per = torch.from_numpy(ious_per).float().cuda().reshape(1, Ne)
maps_3d, maps_bev = utils.eval.get_mAP_from_lrtlist(lrtlist_e, scorelist_e, lrtlist_g, iou_thresholds)
metrics['maps_bev'] = maps_bev
# print('maps_bev', maps_bev)
maps_per = utils.eval.get_mAP_from_2d_boxlists(boxlist_e, scorelist_e, boxlist_g, iou_thresholds)
metrics['maps_per'] = maps_per
# print('maps_per', maps_per)
tidlist_e = 2*torch.ones_like(scorelist_e).long()
tidlist_g = 5*torch.ones_like(scorelist_g).long()
if sw is not None and sw.save_this:
sw.summ_lrtlist('1_boxes/lrtlist_e', rgb_cam, lrtlist_e, ious_bev, tidlist_e, pix_T_cam, frame_id=maps_bev[0], include_zeros=True)
sw.summ_boxlist2d('1_boxes/boxlist_e', rgb_cam, boxlist_e, ious_per, tidlist_e, frame_id=maps_per[0])
sw.summ_lrtlist('1_boxes/lrtlist_g', rgb_cam, lrtlist_g, scorelist_g, tidlist_g, pix_T_cam)
sw.summ_boxlist2d('1_boxes/boxlist_g', rgb_cam, boxlist_g, scorelist_g, tidlist_g)
elif torch.sum(scorelist_g==0) and torch.sum(scorelist_e==0):
# mAP unaffected
metrics['maps_bev'] = None
metrics['maps_per'] = None
if sw.save_this and export_vis:
tidlist_e = 2*torch.ones_like(scorelist_e).long()
if metrics['maps_bev'] is not None:
mAP = metrics['maps_bev'][4] # [email protected]
else:
mAP = 0
# get perspective vis
vis_per = sw.summ_lrtlist('', rgb_cam, lrtlist_e, scorelist_e, tidlist_e, pix_T_cam, frame_id=mAP, include_zeros=True, only_return=True)
# get bev vis
occ_mem_high = vox_util.voxelize_xyz(xyz_cam, Z*2, Y*2, X*2)
vis_bev = sw.summ_lrtlist_bev('',occ_mem_high,lrtlist_cam_e,scorelist_e,tidlist_e,vox_util,only_return=True)
# pad bev to match the (wider) perspective vis
pad_w = int(W-Z*2)//2
vis_bev = F.pad(vis_bev, (pad_w, pad_w))
# cat and save
vis_both = torch.cat([vis_per, vis_bev], dim=2)
save_vis(vis_both, step_name)
return total_loss, metrics
def main(
init_dir_3d,
exp_name='eval',
max_iters=665, # size of val set
log_freq=100,
export_npzs=True,
export_vis=False,
shuffle=False,
seq_name='any',
sort=True,
skip_to=0,
show_thresh=0.5,
):
## autogen a name
model_name = "%s" % exp_name
model_name += "_%s" % init_dir_3d.split('/')[-1]
import datetime
model_date = datetime.datetime.now().strftime('%H:%M:%S')
model_name = model_name + '_' + model_date
print('model_name', model_name)
ckpt_dir = 'checkpoints/%s' % model_name
log_dir = 'logs_tcr_kitti_eval'
writer_t = SummaryWriter(log_dir + '/' + model_name + '/t', max_queue=10, flush_secs=60)
B = 1
S = 2
train_dataset = SimpleKittiDataset(S=1,shuffle=shuffle,dset='v',kitti_data_seqlen=2,seq_name=seq_name,sort=sort)
train_dataloader = DataLoader(
train_dataset,
batch_size=B,
shuffle=shuffle,
num_workers=4,
drop_last=True)
train_iterloader = iter(train_dataloader)
global_step = 0
stride = 4
model_3d = nets.centernet2d.Centernet2d(Y=Y, K=20, show_thresh=show_thresh, stride=stride).cuda()
parameters = list(model_3d.parameters())
_ = saverloader.load(init_dir_3d, model_3d)
requires_grad(parameters, False)
model_3d.eval()
n_pool = max_iters*2
loss_pool_t = utils.misc.SimplePool(n_pool, version='np')
map_bev_pools = [utils.misc.SimplePool(n_pool, version='np') for i in list(range(len(iou_thresholds)))]
map_per_pools = [utils.misc.SimplePool(n_pool, version='np') for i in list(range(len(iou_thresholds)))]
while global_step < max_iters:
torch.cuda.empty_cache()
read_start_time = time.time()
global_step += 1
total_loss = torch.tensor(0.0, requires_grad=True).to(device)
sw_t = utils.improc.Summ_writer(
writer=writer_t,
global_step=global_step,
log_freq=log_freq,
fps=12,
scalar_freq=int(log_freq/2),
just_gif=True)
try:
sample = next(train_iterloader)
except StopIteration:
train_iterloader = iter(train_dataloader)
sample = next(train_iterloader)
read_time = time.time()-read_start_time
iter_start_time = time.time()
if global_step >= skip_to:
step_name = '%s_%s_%04d' % (seq_name, exp_name, global_step)
_, metrics = run_model(B, model_3d, sample, sw_t, export_vis=export_vis, export_npzs=export_npzs, step_name=step_name)
if metrics['maps_bev'] is not None:
for i,m in enumerate(metrics['maps_bev']):
map_bev_pools[i].update([m])
for i,m in enumerate(metrics['maps_per']):
map_per_pools[i].update([m])
for i in range(len(iou_thresholds)):
sw_t.summ_scalar('map_bev/iou_%.1f' % iou_thresholds[i], map_bev_pools[i].mean())
sw_t.summ_scalar('map_per/iou_%.1f' % iou_thresholds[i], map_per_pools[i].mean())
iter_time = time.time()-iter_start_time
print('%s; step %06d/%d; rtime %.2f; itime %.2f; map@%.1f %.2f; map@%.1f %.2f; map@%.1f %.2f; map@%.1f %.2f' % (
model_name, global_step, max_iters, read_time, iter_time,
iou_thresholds[0], map_bev_pools[0].mean(),
iou_thresholds[2], map_bev_pools[2].mean(),
iou_thresholds[4], map_bev_pools[4].mean(),
iou_thresholds[6], map_bev_pools[6].mean(),
))
writer_t.close()
print('-'*10)
print('BEV accuracy summary:')
for i in range(len(iou_thresholds)):
print('map@iou=%.1f: %.2f' % (iou_thresholds[i], map_bev_pools[i].mean()))
print('-'*10)
print('perspective accuracy summary:')
for i in range(len(iou_thresholds)):
print('map@iou=%.1f: %.2f' % (iou_thresholds[i], map_per_pools[i].mean()))
print('-'*10)
if __name__ == '__main__':
Fire(main)