-
Notifications
You must be signed in to change notification settings - Fork 40
/
train_lora.py
1657 lines (1490 loc) · 76.4 KB
/
train_lora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""Modified from https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py
"""
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
import argparse
import copy
import gc
import logging
import math
import os
import pickle
import shutil
import sys
import accelerate
import diffusers
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.state import AcceleratorState
from accelerate.utils import ProjectConfiguration, set_seed
from diffusers import DDIMScheduler, DDPMScheduler
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version, deprecate, is_wandb_available
from diffusers.utils.torch_utils import is_compiled_module
from einops import rearrange
from packaging import version
from PIL import Image
from torch.utils.data import RandomSampler
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import T5EncoderModel, T5Tokenizer
from transformers.utils import ContextManagers
import datasets
current_file_path = os.path.abspath(__file__)
project_roots = [os.path.dirname(current_file_path), os.path.dirname(os.path.dirname(current_file_path))]
for project_root in project_roots:
sys.path.insert(0, project_root) if project_root not in sys.path else None
from cogvideox.data.bucket_sampler import (ASPECT_RATIO_512,
ASPECT_RATIO_RANDOM_CROP_512,
ASPECT_RATIO_RANDOM_CROP_PROB,
AspectRatioBatchImageVideoSampler,
RandomSampler, get_closest_ratio)
from cogvideox.data.dataset_image_video import (ImageVideoDataset,
ImageVideoSampler,
get_random_mask)
from cogvideox.models.autoencoder_magvit import AutoencoderKLCogVideoX
from cogvideox.models.transformer3d import CogVideoXTransformer3DModel
from cogvideox.pipeline.pipeline_cogvideox import CogVideoX_Fun_Pipeline
from cogvideox.pipeline.pipeline_cogvideox_inpaint import (
CogVideoX_Fun_Pipeline_Inpaint, add_noise_to_reference_video,
get_3d_rotary_pos_embed, get_resize_crop_region_for_grid)
from cogvideox.utils.lora_utils import create_network, merge_lora, unmerge_lora
from cogvideox.utils.discrete_sampler import DiscreteSampling
from cogvideox.utils.utils import get_image_to_video_latent, save_videos_grid
if is_wandb_available():
import wandb
def get_random_downsample_ratio(sample_size, image_ratio=[],
all_choices=False, rng=None):
def _create_special_list(length):
if length == 1:
return [1.0]
if length >= 2:
first_element = 0.75
remaining_sum = 1.0 - first_element
other_elements_value = remaining_sum / (length - 1)
special_list = [first_element] + [other_elements_value] * (length - 1)
return special_list
if sample_size >= 1536:
number_list = [1, 1.25, 1.5, 2, 2.5, 3] + image_ratio
elif sample_size >= 1024:
number_list = [1, 1.25, 1.5, 2] + image_ratio
elif sample_size >= 768:
number_list = [1, 1.25, 1.5] + image_ratio
elif sample_size >= 512:
number_list = [1] + image_ratio
else:
number_list = [1]
if all_choices:
return number_list
number_list_prob = np.array(_create_special_list(len(number_list)))
if rng is None:
return np.random.choice(number_list, p = number_list_prob)
else:
return rng.choice(number_list, p = number_list_prob)
def resize_mask(mask, latent, process_first_frame_only=True):
latent_size = latent.size()
batch_size, channels, num_frames, height, width = mask.shape
if process_first_frame_only:
target_size = list(latent_size[2:])
target_size[0] = 1
first_frame_resized = F.interpolate(
mask[:, :, 0:1, :, :],
size=target_size,
mode='trilinear',
align_corners=False
)
target_size = list(latent_size[2:])
target_size[0] = target_size[0] - 1
if target_size[0] != 0:
remaining_frames_resized = F.interpolate(
mask[:, :, 1:, :, :],
size=target_size,
mode='trilinear',
align_corners=False
)
resized_mask = torch.cat([first_frame_resized, remaining_frames_resized], dim=2)
else:
resized_mask = first_frame_resized
else:
target_size = list(latent_size[2:])
resized_mask = F.interpolate(
mask,
size=target_size,
mode='trilinear',
align_corners=False
)
return resized_mask
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.18.0.dev0")
logger = get_logger(__name__, log_level="INFO")
def log_validation(vae, text_encoder, tokenizer, transformer3d, network, args, accelerator, weight_dtype, global_step):
try:
logger.info("Running validation... ")
transformer3d_val = CogVideoXTransformer3DModel.from_pretrained_2d(
args.pretrained_model_name_or_path, subfolder="transformer",
).to(weight_dtype)
transformer3d_val.load_state_dict(accelerator.unwrap_model(transformer3d).state_dict())
scheduler = DDIMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
if args.train_mode != "normal":
pipeline = CogVideoX_Fun_Pipeline_Inpaint.from_pretrained(
args.pretrained_model_name_or_path,
vae=accelerator.unwrap_model(vae).to(weight_dtype),
text_encoder=accelerator.unwrap_model(text_encoder),
tokenizer=tokenizer,
transformer=transformer3d_val,
scheduler=scheduler,
torch_dtype=weight_dtype,
)
else:
pipeline = CogVideoX_Fun_Pipeline.from_pretrained(
args.pretrained_model_name_or_path,
vae=accelerator.unwrap_model(vae).to(weight_dtype),
text_encoder=accelerator.unwrap_model(text_encoder),
tokenizer=tokenizer,
transformer=transformer3d_val,
scheduler=scheduler,
torch_dtype=weight_dtype
)
pipeline = pipeline.to(accelerator.device)
pipeline = merge_lora(
pipeline, None, 1, accelerator.device, state_dict=accelerator.unwrap_model(network).state_dict(), transformer_only=True
)
if args.seed is None:
generator = None
else:
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)
for i in range(len(args.validation_prompts)):
with torch.no_grad():
if args.train_mode != "normal":
with torch.autocast("cuda", dtype=weight_dtype):
video_length = int((args.video_sample_n_frames - 1) // vae.config.temporal_compression_ratio * vae.config.temporal_compression_ratio) + 1 if args.video_sample_n_frames != 1 else 1
input_video, input_video_mask, _ = get_image_to_video_latent(None, None, video_length=video_length, sample_size=[args.video_sample_size, args.video_sample_size])
sample = pipeline(
args.validation_prompts[i],
num_frames = video_length,
negative_prompt = "bad detailed",
height = args.video_sample_size,
width = args.video_sample_size,
guidance_scale = 7,
generator = generator,
video = input_video,
mask_video = input_video_mask,
).videos
os.makedirs(os.path.join(args.output_dir, "sample"), exist_ok=True)
save_videos_grid(sample, os.path.join(args.output_dir, f"sample/sample-{global_step}-{i}.gif"))
video_length = 1
input_video, input_video_mask, _ = get_image_to_video_latent(None, None, video_length=video_length, sample_size=[args.video_sample_size, args.video_sample_size])
sample = pipeline(
args.validation_prompts[i],
num_frames = video_length,
negative_prompt = "bad detailed",
height = args.video_sample_size,
width = args.video_sample_size,
generator = generator,
video = input_video,
mask_video = input_video_mask,
).videos
os.makedirs(os.path.join(args.output_dir, "sample"), exist_ok=True)
save_videos_grid(sample, os.path.join(args.output_dir, f"sample/sample-{global_step}-image-{i}.gif"))
else:
with torch.autocast("cuda", dtype=weight_dtype):
sample = pipeline(
args.validation_prompts[i],
num_frames = args.video_sample_n_frames,
negative_prompt = "bad detailed",
height = args.video_sample_size,
width = args.video_sample_size,
generator = generator
).videos
os.makedirs(os.path.join(args.output_dir, "sample"), exist_ok=True)
save_videos_grid(sample, os.path.join(args.output_dir, f"sample/sample-{global_step}-{i}.gif"))
sample = pipeline(
args.validation_prompts[i],
num_frames = 1,
negative_prompt = "bad detailed",
height = args.video_sample_size,
width = args.video_sample_size,
generator = generator
).videos
os.makedirs(os.path.join(args.output_dir, "sample"), exist_ok=True)
save_videos_grid(sample, os.path.join(args.output_dir, f"sample/sample-{global_step}-image-{i}.gif"))
del pipeline
del transformer3d_val
gc.collect()
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
except Exception as e:
gc.collect()
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
print(f"Eval error with info {e}")
return None
def linear_decay(initial_value, final_value, total_steps, current_step):
if current_step >= total_steps:
return final_value
current_step = max(0, current_step)
step_size = (final_value - initial_value) / total_steps
current_value = initial_value + step_size * current_step
return current_value
def generate_timestep_with_lognorm(low, high, shape, device="cpu", generator=None):
u = torch.normal(mean=0.0, std=1.0, size=shape, device=device, generator=generator)
t = 1 / (1 + torch.exp(-u)) * (high - low) + low
return torch.clip(t.to(torch.int32), low, high - 1)
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--input_perturbation", type=float, default=0, help="The scale of input perturbation. Recommended 0.1."
)
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--variant",
type=str,
default=None,
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
)
parser.add_argument(
"--train_data_dir",
type=str,
default=None,
help=(
"A folder containing the training data. "
),
)
parser.add_argument(
"--train_data_meta",
type=str,
default=None,
help=(
"A csv containing the training data. "
),
)
parser.add_argument(
"--max_train_samples",
type=int,
default=None,
help=(
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
),
)
parser.add_argument(
"--validation_prompts",
type=str,
default=None,
nargs="+",
help=("A set of prompts evaluated every `--validation_epochs` and logged to `--report_to`."),
)
parser.add_argument(
"--output_dir",
type=str,
default="sd-model-finetuned",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="The directory where the downloaded models and datasets will be stored.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--random_flip",
action="store_true",
help="whether to randomly flip images horizontally",
)
parser.add_argument(
"--use_came",
action="store_true",
help="whether to use came",
)
parser.add_argument(
"--multi_stream",
action="store_true",
help="whether to use cuda multi-stream",
)
parser.add_argument(
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
)
parser.add_argument(
"--vae_mini_batch", type=int, default=32, help="mini batch size for vae."
)
parser.add_argument("--num_train_epochs", type=int, default=100)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.")
parser.add_argument(
"--non_ema_revision",
type=str,
default=None,
required=False,
help=(
"Revision of pretrained non-ema model identifier. Must be a branch, tag or git identifier of the local or"
" remote repository specified with --pretrained_model_name_or_path."
),
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help=(
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
),
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--prediction_type",
type=str,
default=None,
help="The prediction_type that shall be used for training. Choose between 'epsilon' or 'v_prediction' or leave `None`. If left to `None` the default prediction type of the scheduler: `noise_scheduler.config.prediciton_type` is chosen.",
)
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument(
"--checkpointing_steps",
type=int,
default=500,
help=(
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
" training using `--resume_from_checkpoint`."
),
)
parser.add_argument(
"--checkpoints_total_limit",
type=int,
default=None,
help=("Max number of checkpoints to store."),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
parser.add_argument("--noise_offset", type=float, default=0, help="The scale of noise offset.")
parser.add_argument(
"--validation_epochs",
type=int,
default=5,
help="Run validation every X epochs.",
)
parser.add_argument(
"--validation_steps",
type=int,
default=2000,
help="Run validation every X steps.",
)
parser.add_argument(
"--tracker_project_name",
type=str,
default="text2image-fine-tune",
help=(
"The `project_name` argument passed to Accelerator.init_trackers for"
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
),
)
parser.add_argument(
"--rank",
type=int,
default=128,
help=("The dimension of the LoRA update matrices."),
)
parser.add_argument(
"--network_alpha",
type=int,
default=64,
help=("The dimension of the LoRA update matrices."),
)
parser.add_argument(
"--train_text_encoder",
action="store_true",
help="Whether to train the text encoder. If set, the text encoder should be float32 precision.",
)
parser.add_argument(
"--snr_loss", action="store_true", help="Whether or not to use snr_loss."
)
parser.add_argument(
"--uniform_sampling", action="store_true", help="Whether or not to use uniform_sampling."
)
parser.add_argument(
"--enable_text_encoder_in_dataloader", action="store_true", help="Whether or not to use text encoder in dataloader."
)
parser.add_argument(
"--enable_bucket", action="store_true", help="Whether enable bucket sample in datasets."
)
parser.add_argument(
"--random_ratio_crop", action="store_true", help="Whether enable random ratio crop sample in datasets."
)
parser.add_argument(
"--random_frame_crop", action="store_true", help="Whether enable random frame crop sample in datasets."
)
parser.add_argument(
"--random_hw_adapt", action="store_true", help="Whether enable random adapt height and width in datasets."
)
parser.add_argument(
"--training_with_video_token_length", action="store_true", help="The training stage of the model in training.",
)
parser.add_argument(
"--noise_share_in_frames", action="store_true", help="Whether enable noise share in frames."
)
parser.add_argument(
"--noise_share_in_frames_ratio", type=float, default=0.5, help="Noise share ratio.",
)
parser.add_argument(
"--motion_sub_loss", action="store_true", help="Whether enable motion sub loss."
)
parser.add_argument(
"--motion_sub_loss_ratio", type=float, default=0.25, help="The ratio of motion sub loss."
)
parser.add_argument(
"--keep_all_node_same_token_length",
action="store_true",
help="Reference of the length token.",
)
parser.add_argument(
"--train_sampling_steps",
type=int,
default=1000,
help="Run train_sampling_steps.",
)
parser.add_argument(
"--token_sample_size",
type=int,
default=512,
help="Sample size of the token.",
)
parser.add_argument(
"--video_sample_size",
type=int,
default=512,
help="Sample size of the video.",
)
parser.add_argument(
"--image_sample_size",
type=int,
default=512,
help="Sample size of the video.",
)
parser.add_argument(
"--video_sample_stride",
type=int,
default=4,
help="Sample stride of the video.",
)
parser.add_argument(
"--video_sample_n_frames",
type=int,
default=17,
help="Num frame of video.",
)
parser.add_argument(
"--video_repeat",
type=int,
default=0,
help="Num of repeat video.",
)
parser.add_argument(
"--image_repeat_in_forward",
type=int,
default=0,
help="Num of repeat image in forward.",
)
parser.add_argument(
"--transformer_path",
type=str,
default=None,
help=("If you want to load the weight from other transformers, input its path."),
)
parser.add_argument(
"--vae_path",
type=str,
default=None,
help=("If you want to load the weight from other vaes, input its path."),
)
parser.add_argument("--save_state", action="store_true", help="Whether or not to save state.")
parser.add_argument(
'--tokenizer_max_length',
type=int,
default=226,
help='Max length of tokenizer'
)
parser.add_argument(
"--use_deepspeed", action="store_true", help="Whether or not to use deepspeed."
)
parser.add_argument(
"--low_vram", action="store_true", help="Whether enable low_vram mode."
)
parser.add_argument(
"--train_mode",
type=str,
default="normal",
help=(
'The format of training data. Support `"normal"`'
' (default), `"inpaint"`.'
),
)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
# default to using the same revision for the non-ema model if not specified
if args.non_ema_revision is None:
args.non_ema_revision = args.revision
return args
def main():
args = parse_args()
if args.report_to == "wandb" and args.hub_token is not None:
raise ValueError(
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
" Please use `huggingface-cli login` to authenticate with the Hub."
)
if args.non_ema_revision is not None:
deprecate(
"non_ema_revision!=None",
"0.15.0",
message=(
"Downloading 'non_ema' weights from revision branches of the Hub is deprecated. Please make sure to"
" use `--variant=non_ema` instead."
),
)
logging_dir = os.path.join(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config,
)
if accelerator.is_main_process:
writer = SummaryWriter(log_dir=logging_dir)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
rng = np.random.default_rng(np.random.PCG64(args.seed + accelerator.process_index))
torch_rng = torch.Generator(accelerator.device).manual_seed(args.seed + accelerator.process_index)
else:
rng = None
torch_rng = None
index_rng = np.random.default_rng(np.random.PCG64(43))
print(f"Init rng with seed {args.seed + accelerator.process_index}. Process_index is {accelerator.process_index}")
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# For mixed precision training we cast all non-trainable weigths (vae, non-lora text_encoder and non-lora transformer3d) to half-precision
# as these weights are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
args.mixed_precision = accelerator.mixed_precision
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
args.mixed_precision = accelerator.mixed_precision
# Load scheduler, tokenizer and models.
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
tokenizer = T5Tokenizer.from_pretrained(
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision
)
def deepspeed_zero_init_disabled_context_manager():
"""
returns either a context list that includes one that will disable zero.Init or an empty context list
"""
deepspeed_plugin = AcceleratorState().deepspeed_plugin if accelerate.state.is_initialized() else None
if deepspeed_plugin is None:
return []
return [deepspeed_plugin.zero3_init_context_manager(enable=False)]
# Currently Accelerate doesn't know how to handle multiple models under Deepspeed ZeRO stage 3.
# For this to work properly all models must be run through `accelerate.prepare`. But accelerate
# will try to assign the same optimizer with the same weights to all models during
# `deepspeed.initialize`, which of course doesn't work.
#
# For now the following workaround will partially support Deepspeed ZeRO-3, by excluding the 2
# frozen models from being partitioned during `zero.Init` which gets called during
# `from_pretrained` So CLIPTextModel and AutoencoderKL will not enjoy the parameter sharding
# across multiple gpus and only UNet2DConditionModel will get ZeRO sharded.
with ContextManagers(deepspeed_zero_init_disabled_context_manager()):
text_encoder = T5EncoderModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant,
torch_dtype=weight_dtype
)
vae = AutoencoderKLCogVideoX.from_pretrained(
args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant
)
transformer3d = CogVideoXTransformer3DModel.from_pretrained_2d(
args.pretrained_model_name_or_path, subfolder="transformer"
)
# Freeze vae and text_encoder and set transformer3d to trainable
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
transformer3d.requires_grad_(False)
# Lora will work with this...
network = create_network(
1.0,
args.rank,
args.network_alpha,
text_encoder,
transformer3d,
neuron_dropout=None,
add_lora_in_attn_temporal=True,
)
network.apply_to(text_encoder, transformer3d, args.train_text_encoder and not args.training_with_video_token_length, True)
if args.transformer_path is not None:
print(f"From checkpoint: {args.transformer_path}")
if args.transformer_path.endswith("safetensors"):
from safetensors.torch import load_file, safe_open
state_dict = load_file(args.transformer_path)
else:
state_dict = torch.load(args.transformer_path, map_location="cpu")
state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict
m, u = transformer3d.load_state_dict(state_dict, strict=False)
print(f"missing keys: {len(m)}, unexpected keys: {len(u)}")
assert len(u) == 0
if args.vae_path is not None:
print(f"From checkpoint: {args.vae_path}")
if args.vae_path.endswith("safetensors"):
from safetensors.torch import load_file, safe_open
state_dict = load_file(args.vae_path)
else:
state_dict = torch.load(args.vae_path, map_location="cpu")
state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict
m, u = vae.load_state_dict(state_dict, strict=False)
print(f"missing keys: {len(m)}, unexpected keys: {len(u)}")
assert len(u) == 0
# `accelerate` 0.16.0 will have better support for customized saving
if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
safetensor_save_path = os.path.join(output_dir, f"lora_diffusion_pytorch_model.safetensors")
save_model(safetensor_save_path, accelerator.unwrap_model(models[-1]))
if not args.use_deepspeed:
for _ in range(len(weights)):
weights.pop()
with open(os.path.join(output_dir, "sampler_pos_start.pkl"), 'wb') as file:
pickle.dump([batch_sampler.sampler._pos_start, first_epoch], file)
def load_model_hook(models, input_dir):
pkl_path = os.path.join(input_dir, "sampler_pos_start.pkl")
if os.path.exists(pkl_path):
with open(pkl_path, 'rb') as file:
loaded_number, _ = pickle.load(file)
batch_sampler.sampler._pos_start = max(loaded_number - args.dataloader_num_workers * accelerator.num_processes * 2, 0)
print(f"Load pkl from {pkl_path}. Get loaded_number = {loaded_number}.")
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
if args.gradient_checkpointing:
transformer3d.enable_gradient_checkpointing()
# Enable TF32 for faster training on Ampere GPUs,
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
# Initialize the optimizer
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
)
optimizer_cls = bnb.optim.AdamW8bit
elif args.use_came:
try:
from came_pytorch import CAME
except:
raise ImportError(
"Please install came_pytorch to use CAME. You can do so by running `pip install came_pytorch`"
)
optimizer_cls = CAME
else:
optimizer_cls = torch.optim.AdamW
logging.info("Add network parameters")
trainable_params = list(filter(lambda p: p.requires_grad, network.parameters()))
trainable_params_optim = network.prepare_optimizer_params(args.learning_rate / 2, args.learning_rate, args.learning_rate)
if args.use_came:
optimizer = optimizer_cls(
trainable_params_optim,
lr=args.learning_rate,
# weight_decay=args.adam_weight_decay,
betas=(0.9, 0.999, 0.9999),
eps=(1e-30, 1e-16)
)
else:
optimizer = optimizer_cls(
trainable_params_optim,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
# Get the training dataset
sample_n_frames_bucket_interval = vae.config.temporal_compression_ratio
patch_size_t = accelerator.unwrap_model(transformer3d).config.patch_size_t
train_dataset = ImageVideoDataset(
args.train_data_meta, args.train_data_dir,
video_sample_size=args.video_sample_size, video_sample_stride=args.video_sample_stride, video_sample_n_frames=args.video_sample_n_frames,
video_repeat=args.video_repeat,
image_sample_size=args.image_sample_size,
enable_bucket=args.enable_bucket, enable_inpaint=True if args.train_mode != "normal" else False,
)
if args.enable_bucket:
aspect_ratio_sample_size = {key : [x / 512 * args.video_sample_size for x in ASPECT_RATIO_512[key]] for key in ASPECT_RATIO_512.keys()}
aspect_ratio_random_crop_sample_size = {key : [x / 512 * args.video_sample_size for x in ASPECT_RATIO_RANDOM_CROP_512[key]] for key in ASPECT_RATIO_RANDOM_CROP_512.keys()}
batch_sampler_generator = torch.Generator().manual_seed(args.seed)
batch_sampler = AspectRatioBatchImageVideoSampler(
sampler=RandomSampler(train_dataset, generator=batch_sampler_generator), dataset=train_dataset.dataset,
batch_size=args.train_batch_size, train_folder = args.train_data_dir, drop_last=True,
aspect_ratios=aspect_ratio_sample_size,
)
def get_length_to_frame_num(token_length):
if args.image_sample_size > args.video_sample_size:
sample_sizes = list(range(args.video_sample_size, args.image_sample_size + 1, 128))
if sample_sizes[-1] != args.image_sample_size:
sample_sizes.append(args.image_sample_size)
else:
sample_sizes = [args.image_sample_size]
length_to_frame_num = {
sample_size: min(token_length / sample_size / sample_size, args.video_sample_n_frames) // sample_n_frames_bucket_interval * sample_n_frames_bucket_interval + 1 for sample_size in sample_sizes
}
return length_to_frame_num
def collate_fn(examples):
# Get token length
target_token_length = args.video_sample_n_frames * args.token_sample_size * args.token_sample_size
length_to_frame_num = get_length_to_frame_num(target_token_length)
# Create new output
new_examples = {}
new_examples["target_token_length"] = target_token_length
new_examples["pixel_values"] = []
new_examples["text"] = []
# Used in Inpaint mode
if args.train_mode != "normal":
new_examples["mask_pixel_values"] = []
new_examples["mask"] = []
# Get downsample ratio in image and videos
pixel_value = examples[0]["pixel_values"]
data_type = examples[0]["data_type"]
f, h, w, c = np.shape(pixel_value)
if data_type == 'image':
random_downsample_ratio = 1 if not args.random_hw_adapt else get_random_downsample_ratio(args.image_sample_size, image_ratio=[args.image_sample_size / args.video_sample_size], rng=rng)
aspect_ratio_sample_size = {key : [x / 512 * args.image_sample_size / random_downsample_ratio for x in ASPECT_RATIO_512[key]] for key in ASPECT_RATIO_512.keys()}
aspect_ratio_random_crop_sample_size = {key : [x / 512 * args.image_sample_size / random_downsample_ratio for x in ASPECT_RATIO_RANDOM_CROP_512[key]] for key in ASPECT_RATIO_RANDOM_CROP_512.keys()}
batch_video_length = args.video_sample_n_frames + sample_n_frames_bucket_interval
else:
if args.random_hw_adapt:
if args.training_with_video_token_length:
local_min_size = np.min(np.array([np.mean(np.array([np.shape(example["pixel_values"])[1], np.shape(example["pixel_values"])[2]])) for example in examples]))
# The video will be resized to a lower resolution than its own.
choice_list = [length for length in list(length_to_frame_num.keys()) if length < local_min_size * 1.25]
if len(choice_list) == 0: