From 0bc7c5990c36346ebbdb50a0cdfe031a3ef44007 Mon Sep 17 00:00:00 2001 From: Julia Borisova Date: Mon, 23 Oct 2023 15:39:50 +0300 Subject: [PATCH] add InputData from pd and numpy (#1184) add InputData from pd and numpy --- fedot/core/data/data.py | 82 +++++++++++++++++++++++++++++++++++++ test/unit/data/test_data.py | 9 +++- 2 files changed, 89 insertions(+), 2 deletions(-) diff --git a/fedot/core/data/data.py b/fedot/core/data/data.py index c75c0e9483..709f9dfd91 100644 --- a/fedot/core/data/data.py +++ b/fedot/core/data/data.py @@ -53,6 +53,88 @@ class Data: # Object with supplementary info supplementary_data: SupplementaryData = field(default_factory=SupplementaryData) + @classmethod + def from_numpy(cls, + features_array: np.ndarray, + target_array: np.ndarray, + idx: Optional[np.ndarray] = None, + task: Union[Task, str] = 'classification', + data_type: Optional[DataTypesEnum] = DataTypesEnum.table) -> InputData: + """Import data from numpy array. + + Args: + features_array: numpy array with features. + target_array: numpy array with target. + idx: indices of arrays. + task: the :obj:`Task` to solve with the data. + data_type: the type of the data. Possible values are listed at :class:`DataTypesEnum`. + + Returns: + data + """ + if isinstance(task, str): + task = Task(TaskTypesEnum(task)) + return array_to_input_data(features_array, target_array, idx, task, data_type) + + @classmethod + def from_numpy_time_series(cls, + features_array: np.ndarray, + target_array: Optional[np.ndarray] = None, + idx: Optional[np.ndarray] = None, + task: Union[Task, str] = 'ts_forecasting', + data_type: Optional[DataTypesEnum] = DataTypesEnum.ts) -> InputData: + """Import time series from numpy array. + + Args: + features_array: numpy array with features time series. + target_array: numpy array with target time series (if None same as features). + idx: indices of arrays. + task: the :obj:`Task` to solve with the data. + data_type: the type of the data. Possible values are listed at :class:`DataTypesEnum`. + + Returns: + data + """ + if isinstance(task, str): + task = Task(TaskTypesEnum(task)) + if not target_array: + target_array = features_array + return array_to_input_data(features_array, target_array, idx, task, data_type) + + @classmethod + def from_dataframe(cls, + features_df: Union[pd.DataFrame, pd.Series], + target_df: Union[pd.DataFrame, pd.Series], + task: Union[Task, str] = 'classification', + data_type: DataTypesEnum = DataTypesEnum.table) -> InputData: + """Import data from pandas DataFrame. + + Args: + features_df: loaded pandas DataFrame or Series with features. + target_df: loaded pandas DataFrame or Series with target. + task: the :obj:`Task` to solve with the data. + data_type: the type of the data. Possible values are listed at :class:`DataTypesEnum`. + + Returns: + data + """ + + if isinstance(task, str): + task = Task(TaskTypesEnum(task)) + if isinstance(features_df, pd.Series): + features_df = pd.DataFrame(features_df) + if isinstance(target_df, pd.Series): + target_df = pd.DataFrame(target_df) + + idx = features_df.index.to_numpy() + target_columns = target_df.columns.to_list() + features_names = features_df.columns.to_numpy() + df = pd.concat([features_df, target_df], axis=1) + features, target = process_target_and_features(df, target_columns) + + return InputData(idx=idx, features=features, target=target, task=task, data_type=data_type, + features_names=features_names) + @classmethod def from_csv(cls, file_path: PathType, diff --git a/test/unit/data/test_data.py b/test/unit/data/test_data.py index a3eb55bfaa..3f23fb289f 100644 --- a/test/unit/data/test_data.py +++ b/test/unit/data/test_data.py @@ -59,9 +59,14 @@ def test_data_from_csv(): idx=idx, task=task, data_type=DataTypesEnum.table).features - actual_features = InputData.from_csv( + actual_features_from_csv = InputData.from_csv( os.path.join(test_file_path, file)).features - assert np.array_equal(expected_features, actual_features) + assert np.array_equal(expected_features, actual_features_from_csv) + df.set_index('ID', drop=True, inplace=True) + features = df[df.columns[:-1]] + target = df[df.columns[-1]] + actual_features_from_df = InputData.from_dataframe(features, target).features + assert np.array_equal(expected_features, actual_features_from_df) def test_with_custom_target():