-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsymbll.py
executable file
·618 lines (532 loc) · 21.1 KB
/
symbll.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
#!/usr/bin/env python3
from __future__ import annotations
import abc
import functools
from dataclasses import dataclass, field
from typing import List, Optional, Any
from element import ALLOCATOR, Element, SExpr, Atom, Cons, Error, Func, FuncClass, Symbol
from opcodes import SExpr_FUNCS, Op_FUNCS, Opcode
from bll import OpAtom
from workitem import fn_fin, fn_quote, fn_op, fn_partial
####
@dataclass
class SymbolInfo:
is_func: bool
position: Optional[int] = None
sexpr: Optional[Element] = None
params: Optional[List[str]] = None
class SymbolContainer(abc.ABC):
@abc.abstractmethod
def __getitem__(self, n):
pass
class SymbolTable(SymbolContainer):
"""maps symbols (by name) to values"""
def __init__(self):
self.refcnt = 1
self.syms = {}
@classmethod
def mkinfo(cls, symvalue):
if isinstance(symvalue, tuple):
return SymbolInfo(is_func=True, sexpr=symvalue[1], params=symvalue[0])
else:
return SymbolInfo(is_func=False, sexpr=symvalue)
@classmethod
def from_list(cls, symlist : Element) -> SymbolTable:
s = cls()
while isinstance(symlist, Cons):
v, symlist = symlist.steal_children()
assert isinstance(v, Cons) and isinstance(v.val2, Symbol)
if v.val2.val2 not in s.syms:
s.set(v.val2.val2, v.val1.bumpref())
v.deref()
assert symlist.is_nil()
symlist.deref()
return s
def __iter__(self):
yield from self.syms.keys()
def __getitem__(self, symname):
if symname not in self.syms:
return None
return self.mkinfo(self.syms[symname])
def set(self, symname, value):
# XXX: cope with default values for parameters
assert self.refcnt == 1
assert isinstance(symname, str)
if not isinstance(value, Element):
assert isinstance(value, tuple) and len(value) == 2
assert all(isinstance(v, Element) for v in value)
if symname in self.syms:
if isinstance(self.syms[symname], tuple):
for e in self.syms[symname]:
e.deref()
else:
self.syms[symname].deref()
self.syms[symname] = value
def unset(self, symname):
assert self.refcnt == 1
assert isinstance(symname, str), f"{repr(symname)} not a str?"
if symname in self.syms:
if isinstance(self.syms[symname], tuple):
for e in self.syms[symname]:
e.deref()
else:
self.syms[symname].deref()
del self.syms[symname]
def bumpref(self):
self.refcnt += 1
return self
def deref(self):
self.refcnt -= 1
if self.refcnt == 0:
for _, v in self.syms.items():
v.deref()
self.syms = None
class SymbolIndex(SymbolContainer):
"""maps symbols (by name) to their position in a BLL environment"""
def __init__(self, vals, offset=1):
if isinstance(vals, SymbolTable):
vals = [(v, vals[v]) for v in vals]
else:
vals = [(v, SymbolInfo()) for v in vals]
x = []
for vsi in vals:
self.add(x, vsi)
x = self.finish(x)
m,a = 1,offset
while offset > 1:
m *= 2
offset //= 2
a -= m
self.ordering = [n for (n,si),pos in x]
self.indexes = {}
for (n,si),pos in x:
si.position = pos*m + a
self.indexes[n] = si
def __iter__(self):
yield from self.ordering
def __getitem__(self, n):
return self.indexes.get(n, None)
@staticmethod
def add(sofar, symname):
sofar.append( (1, [(symname, 1)]) )
while len(sofar) > 1 and sofar[-1][0] == sofar[-2][0]:
cntb, b = sofar.pop()
cnta, a = sofar.pop()
c = [(n, v*2) for n,v in a] + [(n, v*2+1) for n,v in b]
sofar.append( (cnta + cntb, c) )
@staticmethod
def finish(sofar):
if len(sofar) == 0: return []
res = sofar.pop()[1]
while sofar:
_, a = sofar.pop()
res = [(n, v*2) for n,v in a] + [(n, v*2+1) for n,v in res]
return res
def ResolveSymbol(localsyms : SymbolTable, globalsyms : SymbolTable, symname : str) -> Optional[Element]:
if symname == "if":
return Func(fn_if, None, Atom(0))
if symname == "q":
return Func(fn_quote, None, Atom(0))
if symname == "report":
return Func(fn_report, None, Atom(0))
if symname == "partial":
return Func(fn_partial, None, Atom(0))
if symname in SExpr_FUNCS:
opcls = Op_FUNCS[SExpr_FUNCS[symname]]
return Func(fn_op, (opcls, opcls.initial_int_state()), opcls.initial_state())
# locals override globals, but do not override builtins
r = localsyms[symname]
if r is None:
r = globalsyms[symname]
if r is None:
return None
if r.is_func:
return Func(fn_userfunc, None, Cons(r.sexpr.bumpref(), Cons(r.params.bumpref(), Atom(0))))
else:
return r.sexpr.bumpref()
#### evaluation model = workitem with continuations
@FuncClass.implements_API
class fn_symbll_eval(FuncClass):
@classmethod
def step(cls, state : Element, args : Element, env : Any, workitem : Any) -> None:
assert state.is_nil()
state.deref()
if isinstance(args, Atom) or isinstance(args, Error):
env.deref()
workitem.fin_value(args)
elif isinstance(args, Cons):
op, args = args.steal_children()
if op.is_symbol():
r = ResolveSymbol(env, workitem.globalsyms, op.val2)
if r is None:
args.deref()
env.deref()
workitem.error(f"undefined symbol {op}")
elif isinstance(r, Func):
workitem.new_continuation(r, args, env)
else:
workitem.error("symbolic expression treated as function")
r.deref()
args.deref()
env.deref()
op.deref()
else:
op.deref()
args.deref()
env.deref()
workitem.error("expression does not have a function/operator")
elif args.is_func():
# not sure?
env.deref()
args.deref()
workitem.error("BUG? expression with raw function??")
elif args.is_symbol():
r = ResolveSymbol(env, workitem.globalsyms, args.val2)
if r is None:
env.deref()
workitem.error(f"undefined symbol {args}")
args.deref()
elif isinstance(r, Element):
workitem.fin_value(r)
args.deref()
env.deref()
else:
workitem.error(f"BUG? symbol {args}={r} isn't an element")
args.deref()
env.deref()
else:
# internal error
args.deref()
env.deref()
workitem.error("BUG? not sure what to eval")
@FuncClass.implements_API
class fn_if(FuncClass):
@classmethod
def step(cls, state : Element, args : Element, env : Any, workitem : Any) -> None:
assert state.is_nil()
state.deref()
if not isinstance(args, Cons):
args.deref()
env.deref()
workitem.error("if requires at least one argument")
return
cond, args = args.steal_children()
workitem.new_continuation(Func(cls, None, Atom(0)), args, env)
workitem.eval_arg(cond, env.bumpref())
@classmethod
def feedback(cls, state : Element, value : Element, args : Element, env : Any, workitem : Any) -> None:
assert state.is_nil()
state.deref()
assert not isinstance(value, Error)
if isinstance(args, Cons):
iftrue, args = args.steal_children()
elif args.is_nil():
iftrue = Atom(1)
if isinstance(args, Cons):
iffalse, args = args.steal_children()
elif args.is_nil():
iffalse = Atom(0)
if not args.is_nil():
is_cons = isinstance(args, Cons)
Element.deref_all(iftrue, iffalse, value, args)
env.deref()
if is_cons:
workitem.error("if must have at most three arguments")
else:
workitem.error("argument to if are improper list")
return
args.deref()
if value.is_nil():
iftrue.deref()
workitem.eval_arg(iffalse, env)
else:
iffalse.deref()
workitem.eval_arg(iftrue, env)
value.deref()
@FuncClass.implements_API
class fn_report(FuncClass):
@staticmethod
def report(state):
a = []
while state.is_cons():
a.append(state.val1)
state = state.val2
if not a:
last = state
else:
last = a[-1]
print(f"report: ({' '.join(map(str, reversed(a)))})")
return last.bumpref()
@classmethod
def step(cls, state : Element, args : Element, env : Any, workitem : Any) -> None:
if args.is_nil():
result = cls.report(state)
env.deref()
Element.deref_all(state, args)
workitem.fin_value(result)
elif isinstance(args, Cons):
arg, rest = args.steal_children()
workitem.new_continuation(Func(cls, None, state), rest, env)
if not state.is_nil() and isinstance(arg, Cons) and isinstance(arg.val1, Symbol) and isinstance(arg.val2, Symbol) and arg.val1.val1 == 'q':
# special case: when reporting, quoting a symbol is legal if it's not the value that will be returned
workitem.fin_value(arg, arg.val2.bumpref())
else:
workitem.eval_arg(arg, env.bumpref())
else:
env.deref()
Element.deref_all(state, args)
workitem.error("argument to report is improper list")
@classmethod
def feedback(cls, state : Element, value : Element, args : Element, env : Any, workitem : Any) -> None:
assert not isinstance(value, Error)
workitem.new_continuation(Func(cls, None, Cons(value, state)), args, env)
@FuncClass.implements_API
class fn_userfunc(FuncClass):
# state is:
# ( expr . (dangling . satisfied) )
# dangling is a list of symbols
# satisfied is a list of (expr . symbol) pairs
@classmethod
def step(cls, state : Element, args : Element, env : Any, workitem : Any) -> None:
assert isinstance(state, Cons)
expr, dangsat = state.steal_children()
assert isinstance(dangsat, Cons)
dangling, satisfied = dangsat.steal_children()
if args.is_nil():
env.deref()
args.deref()
if dangling.is_nil():
# done!
dangling.deref()
workitem.eval_arg(expr, SymbolTable.from_list(satisfied))
#elif self.params.is_cons() and self.params.val1.is_cons():
# XXX fill in default arguments
else:
Element.deref_all(expr, dangling, satisfied)
workitem.error("insufficient arguments for user defined function")
elif isinstance(args, Cons):
if dangling.is_nil():
env.deref()
Element.deref_all(expr, dangling, satisfied, args)
workitem.error(f"too many arguments for user defined functions {state}")
elif isinstance(dangling, Cons) and isinstance(dangling.val1, Symbol):
# XXX handle default arguments here too
val, args = args.steal_children()
myfunc = Func(cls, None, Cons(expr, Cons(dangling, satisfied)))
workitem.new_continuation(myfunc, args, env)
workitem.eval_arg(val, env.bumpref())
else:
env.deref()
Element.deref_all(expr, dangling, satisfied, args)
workitem.error("user defined function has non-symbol as param name?")
else:
env.deref()
Element.deref_all(expr, dangling, satisfied, args)
workitem.error("call to user defined function is not proper list")
@classmethod
def feedback(cls, state : Element, value : Element, args : Element, env : Any, workitem : Any) -> None:
assert not isinstance(value, Error)
assert isinstance(state, Cons)
expr, dangsat = state.steal_children()
assert isinstance(dangsat, Cons)
dangling, satisfied = dangsat.steal_children()
assert isinstance(dangling, Cons)
toassign, dangling = dangling.steal_children()
assert isinstance(toassign, Symbol)
satisfied = Cons( Cons(value, toassign), satisfied )
myfunc = Func(cls, None, Cons(expr, Cons(dangling, satisfied)))
workitem.new_continuation(myfunc, args, env)
@dataclass
class Continuation:
fn: Func
args: Element # (remaining) arguments to fn
localsyms: SymbolTable
def __repr__(self):
return f"Continuation({self.fn}, {self.args})"
def deref(self):
self.fn.deref()
self.args.deref()
self.localsyms.deref()
@dataclass
class WorkItem:
globalsyms: SymbolTable
continuations: List[Continuation]
dummylocalsyms: SymbolTable
costleft: int = 100000
@classmethod
def begin(cls, sexpr, syms):
wi = WorkItem(globalsyms=syms, continuations=[], dummylocalsyms=SymbolTable())
wi.eval_arg(sexpr, wi.dummylocalsyms.bumpref())
return wi
def get_partial_func(self, value : Element) -> Optional[Element]:
if isinstance(value, Func):
if issubclass(value.val1[0], (fn_op, fn_partial)):
return value
value.deref()
return None
def new_continuation(self, fn : Element, args : Element, env : SymbolTable) -> None:
if isinstance(fn, Error):
self.fin_value(fn)
else:
assert isinstance(fn, Func)
self.continuations.append(Continuation(fn, args, env))
def fin_value(self, value : Element) -> None:
self.new_continuation(Func(fn_fin, None, Atom(0)), value, self.dummylocalsyms.bumpref())
def eval_arg(self, args : Element, env : SymbolTable) -> None:
self.new_continuation(Func(fn_symbll_eval, None, Atom(0)), args, env)
def error(self, msg):
self.fin_value(Error(msg))
def step(self) -> None:
c = self.continuations.pop()
fnobj, state = c.fn.steal_func()
fnobj.step(state, c.args, c.localsyms, self)
self.costleft -= 1
if self.costleft <= 0 and self.continuations[-1].fn.val1[0] != fn_fin:
self.error("cost overrun, aborting")
if ALLOCATOR.x > 400000:
self.error("memory overrun, aborting")
def feedback(self, value : Element) -> None:
if isinstance(value, Error):
for c in self.continuations:
c.deref()
self.continuations = []
if self.continuations:
c = self.continuations.pop()
fnobj, state = c.fn.steal_func()
fnobj.feedback(state, value, c.args, c.localsyms, self)
else:
self.fin_value(value)
def finished(self) -> bool:
return len(self.continuations) == 1 and self.continuations[0].fn.val1[0] == fn_fin
def get_result(self) -> Element:
assert self.finished()
r = self.continuations[0].args.bumpref()
self.continuations.pop().deref()
if r.is_bll() or r.is_error():
return r
else:
err = Error(f"result was not bll {r}")
r.deref()
return err
def symbolic_eval(sexpr, globalsyms):
wi = WorkItem.begin(sexpr, globalsyms)
while not wi.finished():
wi.step()
return wi.get_result()
def ResolveIndex(symname, globalidx, localidx):
s = localidx[symname]
if s is None:
s = globalidx[symname]
if s is None:
return s
assert isinstance(s, SymbolInfo) and s.position is not None
return s
def compile_args(args, globalidx, localidx):
l = []
while isinstance(args, Cons):
l.append(compile_expr(args.val1, globalidx, localidx))
args = args.val2
l = SExpr.list_to_element(l)
if not args.is_nil():
l.deref()
raise Exception("call via improper list")
return l
def compile_expr(sexpr, globalidx, localidx):
assert isinstance(sexpr, Element)
assert isinstance(globalidx, SymbolIndex)
assert isinstance(localidx, SymbolIndex)
assert not sexpr.is_func() and not sexpr.is_error()
if sexpr.is_nil():
return sexpr.bumpref()
elif sexpr.is_atom():
return Cons(Atom(0), sexpr.bumpref())
elif sexpr.is_symbol():
s = ResolveIndex(sexpr.val2, globalidx, localidx)
if s is None:
raise Exception(f"invalid symbol {sexpr.val2}")
return Atom(s.position)
else:
assert isinstance(sexpr, Cons) and isinstance(sexpr.val1, Symbol)
symname = sexpr.val1.val2
if symname == 'q':
assert sexpr.val2.is_bll()
return Cons(Atom(0), sexpr.val2.bumpref())
elif symname == "report":
if isinstance(sexpr.val2, Cons):
return compile_expr(sexpr.val2.val1, globalidx, localidx)
elif sexpr.val2.is_nil():
# weird thing to do
return compile_expr(sexpr.val2, globalidx, localidx)
else:
raise Exception(f"report with improper list {sexpr}")
elif symname == 'if':
assert sexpr.val2.is_cons()
cond_expr = compile_expr(sexpr.val2.val1, globalidx, localidx)
if not sexpr.val2.val2.is_cons():
assert sexpr.val2.val2.is_nil()
return SExpr.list_to_element([OpAtom("i"), cond_expr])
elif not sexpr.val2.val2.val2.is_cons():
assert sexpr.val2.val2.val2.is_nil()
then_expr = Cons(OpAtom('q'), compile_expr(sexpr.val2.val2.val1, globalidx, localidx))
i_expr = SExpr.list_to_element([OpAtom("i"), cond_expr, then_expr])
return SExpr.list_to_element([OpAtom("a"), i_expr])
elif not sexpr.val2.val2.val2.val2.is_cons():
assert sexpr.val2.val2.val2.val2.is_nil()
then_expr = Cons(OpAtom('q'), compile_expr(sexpr.val2.val2.val1, globalidx, localidx))
else_expr = Cons(OpAtom('q'), compile_expr(sexpr.val2.val2.val2.val1, globalidx, localidx))
i_expr = SExpr.list_to_element([OpAtom("i"), cond_expr, then_expr, else_expr])
return SExpr.list_to_element([OpAtom("a"), i_expr])
else:
raise Exception("invalid if expression")
elif symname == "partial":
args = sexpr.val2
if not isinstance(args, Cons):
raise Exception("partial requires an argument")
fn, rest = args.val1, args.val2
l = compile_args(rest, globalidx, localidx)
if isinstance(fn, Symbol) and fn.val2 in SExpr_FUNCS:
return Cons(OpAtom(symname), Cons(Cons(Atom(0), OpAtom(fn.val2)), l))
else:
fn = compile_expr(fn, globalidx, localidx)
return Cons(OpAtom(symname), Cons(fn, l))
elif symname in SExpr_FUNCS:
l = compile_args(sexpr.val2, globalidx, localidx)
return Cons(OpAtom(symname), l)
else:
s = ResolveIndex(symname, globalidx, localidx)
if s is None:
raise Exception("invalid symbol")
loc_l = Cons(OpAtom('b'), compile_args(sexpr.val2, globalidx, localidx))
globloc_l = [OpAtom('rc'), loc_l, Atom(2)]
a_l = [OpAtom('a'), Atom(s.position), SExpr.list_to_element(globloc_l)]
return SExpr.list_to_element(a_l)
def compile_fn(symname, globs, globidx):
loc = SymbolTable()
if isinstance(globs.syms[symname], Element):
sexpr = globs.syms[symname]
else:
params = globs.syms[symname][0]
while params.is_cons():
if params.val1.is_symbol():
loc.set(params.val1.val2, Atom(0))
else:
raise Exception("function parameters aren't symbols")
params = params.val2
sexpr = globs.syms[symname][1]
x = compile_expr(sexpr, globidx, SymbolIndex(loc, offset=3))
loc.deref()
return x
def compile_program(symname, globalsyms):
# (a (q a N) (rc 1 (b GLOBALS)))
assert isinstance(symname, str)
assert isinstance(globalsyms, SymbolTable)
assert symname in globalsyms.syms
globidx = SymbolIndex(globalsyms, offset=2)
b_lst = [OpAtom('b')]
for globsym in globidx:
globex = compile_fn(globsym, globalsyms, globidx)
b_lst.append(Cons(OpAtom('q'), globex))
rc_lst = [OpAtom('rc'), Atom(1), SExpr.list_to_element(b_lst)]
in_lst = [OpAtom('q'), OpAtom('a'), Atom(globidx[symname].position)]
fin_lst = [OpAtom('a'), SExpr.list_to_element(in_lst), SExpr.list_to_element(rc_lst)]
return SExpr.list_to_element(fin_lst)