-
Notifications
You must be signed in to change notification settings - Fork 158
/
Copy pathdhedfreader.py
executable file
·218 lines (181 loc) · 6.66 KB
/
dhedfreader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
'''
Reader for EDF+ files.
TODO:
- add support for log-transformed channels:
http://www.edfplus.info/specs/edffloat.html and test with
data generated with
http://www.edfplus.info/downloads/software/NeuroLoopGain.zip.
- check annotations with Schalk's Physiobank data.
Copyright (c) 2012 Boris Reuderink.
'''
import re, datetime, operator, logging
import numpy as np
from collections import namedtuple
from functools import reduce
EVENT_CHANNEL = 'EDF Annotations'
log = logging.getLogger(__name__)
class EDFEndOfData(BaseException): pass
def tal(tal_str):
'''Return a list with (onset, duration, annotation) tuples for an EDF+ TAL
stream.
'''
exp = '(?P<onset>[+\-]\d+(?:\.\d*)?)' + \
'(?:\x15(?P<duration>\d+(?:\.\d*)?))?' + \
'(\x14(?P<annotation>[^\x00]*))?' + \
'(?:\x14\x00)'
def annotation_to_list(annotation):
#return str(annotation, 'utf-8').split('\x14') if annotation else []
return annotation.split('\x14') if annotation else []
def parse(dic):
return (
float(dic['onset']),
float(dic['duration']) if dic['duration'] else 0.,
annotation_to_list(dic['annotation']))
return [parse(m.groupdict()) for m in re.finditer(exp, tal_str)]
def edf_header(f):
h = {}
assert f.tell() == 0 # check file position
assert f.read(8) == '0 '
# recording info)
h['local_subject_id'] = f.read(80).strip()
h['local_recording_id'] = f.read(80).strip()
# parse timestamp
(day, month, year) = [int(x) for x in re.findall('(\d+)', f.read(8))]
(hour, minute, sec)= [int(x) for x in re.findall('(\d+)', f.read(8))]
h['date_time'] = str(datetime.datetime(year + 2000, month, day,
hour, minute, sec))
# misc
header_nbytes = int(f.read(8))
subtype = f.read(44)[:5]
h['EDF+'] = subtype in ['EDF+C', 'EDF+D']
h['contiguous'] = subtype != 'EDF+D'
h['n_records'] = int(f.read(8))
h['record_length'] = float(f.read(8)) # in seconds
nchannels = h['n_channels'] = int(f.read(4))
# read channel info
channels = list(range(h['n_channels']))
h['label'] = [f.read(16).strip() for n in channels]
h['transducer_type'] = [f.read(80).strip() for n in channels]
h['units'] = [f.read(8).strip() for n in channels]
h['physical_min'] = np.asarray([float(f.read(8)) for n in channels])
h['physical_max'] = np.asarray([float(f.read(8)) for n in channels])
h['digital_min'] = np.asarray([float(f.read(8)) for n in channels])
h['digital_max'] = np.asarray([float(f.read(8)) for n in channels])
h['prefiltering'] = [f.read(80).strip() for n in channels]
h['n_samples_per_record'] = [int(f.read(8)) for n in channels]
f.read(32 * nchannels) # reserved
assert f.tell() == header_nbytes
return h
class BaseEDFReader:
def __init__(self, file):
self.file = file
def read_header(self):
self.header = h = edf_header(self.file)
# calculate ranges for rescaling
self.dig_min = h['digital_min']
self.phys_min = h['physical_min']
phys_range = h['physical_max'] - h['physical_min']
dig_range = h['digital_max'] - h['digital_min']
assert np.all(phys_range > 0)
assert np.all(dig_range > 0)
self.gain = phys_range / dig_range
def read_raw_record(self):
'''Read a record with data and return a list containing arrays with raw
bytes.
'''
result = []
for nsamp in self.header['n_samples_per_record']:
samples = self.file.read(nsamp * 2)
if len(samples) != nsamp * 2:
raise EDFEndOfData
result.append(samples)
return result
def convert_record(self, raw_record):
'''Convert a raw record to a (time, signals, events) tuple based on
information in the header.
'''
h = self.header
dig_min, phys_min, gain = self.dig_min, self.phys_min, self.gain
time = float('nan')
signals = []
events = []
for (i, samples) in enumerate(raw_record):
if h['label'][i] == EVENT_CHANNEL:
ann = tal(samples)
time = ann[0][0]
events.extend(ann[1:])
# print(i, samples)
# exit()
else:
# 2-byte little-endian integers
dig = np.fromstring(samples, '<i2').astype(np.float32)
phys = (dig - dig_min[i]) * gain[i] + phys_min[i]
signals.append(phys)
return time, signals, events
def read_record(self):
return self.convert_record(self.read_raw_record())
def records(self):
'''
Record generator.
'''
try:
while True:
yield self.read_record()
except EDFEndOfData:
pass
def load_edf(edffile):
'''Load an EDF+ file.
Very basic reader for EDF and EDF+ files. While BaseEDFReader does support
exotic features like non-homogeneous sample rates and loading only parts of
the stream, load_edf expects a single fixed sample rate for all channels and
tries to load the whole file.
Parameters
----------
edffile : file-like object or string
Returns
-------
Named tuple with the fields:
X : NumPy array with shape p by n.
Raw recording of n samples in p dimensions.
sample_rate : float
The sample rate of the recording. Note that mixed sample-rates are not
supported.
sens_lab : list of length p with strings
The labels of the sensors used to record X.
time : NumPy array with length n
The time offset in the recording for each sample.
annotations : a list with tuples
EDF+ annotations are stored in (start, duration, description) tuples.
start : float
Indicates the start of the event in seconds.
duration : float
Indicates the duration of the event in seconds.
description : list with strings
Contains (multiple?) descriptions of the annotation event.
'''
if isinstance(edffile, str):
with open(edffile, 'rb') as f:
return load_edf(f) # convert filename to file
reader = BaseEDFReader(edffile)
reader.read_header()
h = reader.header
log.debug('EDF header: %s' % h)
# get sample rate info
nsamp = np.unique(
[n for (l, n) in zip(h['label'], h['n_samples_per_record'])
if l != EVENT_CHANNEL])
assert nsamp.size == 1, 'Multiple sample rates not supported!'
sample_rate = float(nsamp[0]) / h['record_length']
rectime, X, annotations = list(zip(*reader.records()))
X = np.hstack(X)
annotations = reduce(operator.add, annotations)
chan_lab = [lab for lab in reader.header['label'] if lab != EVENT_CHANNEL]
# create timestamps
if reader.header['contiguous']:
time = np.arange(X.shape[1]) / sample_rate
else:
reclen = reader.header['record_length']
within_rec_time = np.linspace(0, reclen, nsamp, endpoint=False)
time = np.hstack([t + within_rec_time for t in rectime])
tup = namedtuple('EDF', 'X sample_rate chan_lab time annotations')
return tup(X, sample_rate, chan_lab, time, annotations)