-
Notifications
You must be signed in to change notification settings - Fork 158
/
Copy pathsummary.py
executable file
·175 lines (146 loc) · 4.9 KB
/
summary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#! /usr/bin/python
# -*- coding: utf8 -*-
import argparse
import os
import re
import numpy as np
from sklearn.metrics import confusion_matrix, f1_score
from deepsleep.sleep_stage import W, N1, N2, N3, REM
def print_performance(cm):
tp = np.diagonal(cm).astype(np.float)
tpfp = np.sum(cm, axis=0).astype(np.float) # sum of each col
tpfn = np.sum(cm, axis=1).astype(np.float) # sum of each row
acc = np.sum(tp) / np.sum(cm)
precision = tp / tpfp
recall = tp / tpfn
f1 = (2 * precision * recall) / (precision + recall)
mf1 = np.mean(f1)
print("Sample: {}".format(np.sum(cm)))
print("W: {}".format(tpfn[W]))
print("N1: {}".format(tpfn[N1]))
print("N2: {}".format(tpfn[N2]))
print("N3: {}".format(tpfn[N3]))
print("REM: {}".format(tpfn[REM]))
print("Confusion matrix:")
print(cm)
print("Precision: {}".format(precision))
print("Recall: {}".format(recall))
print("F1: {}".format(f1))
print("Overall accuracy: {}".format(acc))
print("Macro-F1 accuracy: {}".format(mf1))
def perf_overall(data_dir):
# Remove non-output files, and perform ascending sort
allfiles = os.listdir(data_dir)
outputfiles = []
for idx, f in enumerate(allfiles):
if re.match("^output_.+\d+\.npz", f):
outputfiles.append(os.path.join(data_dir, f))
outputfiles.sort()
y_true = []
y_pred = []
for fpath in outputfiles:
with np.load(fpath,allow_pickle=True) as f:
print((f["y_true"].shape))
if len(f["y_true"].shape) == 1:
if len(f["y_true"]) < 10:
f_y_true = np.hstack(f["y_true"])
f_y_pred = np.hstack(f["y_pred"])
else:
f_y_true = f["y_true"]
f_y_pred = f["y_pred"]
else:
f_y_true = f["y_true"].flatten()
f_y_pred = f["y_pred"].flatten()
y_true.extend(f_y_true)
y_pred.extend(f_y_pred)
print("File: {}".format(fpath))
cm = confusion_matrix(f_y_true, f_y_pred, labels=[0, 1, 2, 3, 4])
print_performance(cm)
print(" ")
y_true = np.asarray(y_true)
y_pred = np.asarray(y_pred)
cm = confusion_matrix(y_true, y_pred)
acc = np.mean(y_true == y_pred)
mf1 = f1_score(y_true, y_pred, average="macro")
total = np.sum(cm, axis=1)
print("DeepSleepNet (current)")
print_performance(cm)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", type=str, default="/home/akara/Workspace/deepsleep_output/results/outputs",
help="Directory where to load prediction outputs")
args = parser.parse_args()
if args.data_dir is not None:
perf_overall(data_dir=args.data_dir)
sharman2017 = np.asarray([
[7944, 11, 12, 6, 30],
[183, 113, 123, 4, 181],
[48, 4, 3334, 149, 86],
[13, 0, 198, 1088, 0],
[52, 11, 207, 0, 1339]
], dtype=np.int)
hassan2017 = np.asarray([
[3971, 28, 6, 0, 23],
[53, 117, 43, 0, 89],
[70, 5, 1641, 54, 41],
[33, 0, 104, 513, 0],
[41, 24, 84, 1, 655]
], dtype=np.int)
tsinalis2016 = np.asarray([
[2744, 441, 34, 23, 138],
[472, 1654, 262, 8, 366],
[621, 1270, 13696, 1231, 760],
[143, 7, 469, 4966, 6],
[308, 899, 340, 0, 6164]
], dtype=np.int)
dong2016 = np.asarray([
[5022, 577, 188, 19, 395],
[407, 2468, 989, 4, 965],
[130, 630, 27254, 1021, 763],
[13, 0, 1236, 6399, 5],
[103, 258, 609, 0, 9611]
], dtype=np.int)
hsu2013 = np.asarray([
[34, 2, 7, 2, 3],
[0, 20, 23, 3, 9],
[3, 4, 574, 8, 1],
[0, 0, 3, 26, 0],
[3, 5, 13, 4, 213]
], dtype=np.int)
liang2012 = np.asarray([
[195, 24, 4, 0, 3],
[61, 72, 48, 3, 69],
[12, 103, 4078, 216, 220],
[1, 4, 196, 1309, 0],
[8, 8, 22, 6, 1818]
], dtype=np.int)
fraiwan2012 = np.asarray([
[2407, 89, 111, 38, 40],
[56, 185, 52, 8, 48],
[69, 85, 1897, 174, 131],
[14, 9, 86, 482, 3],
[33, 60, 92, 3, 719]
], dtype=np.int)
print(" ")
print("Sharma (2017)")
print_performance(sharman2017)
print(" ")
print("Hassan (2017)")
print_performance(hassan2017)
print(" ")
print("Tsinalis (2016)")
print_performance(tsinalis2016)
print(" ")
print("Dong (2016)")
print_performance(dong2016)
print(" ")
print("Hsu (2013)")
print_performance(hsu2013)
print(" ")
print("Liang (2012)")
print_performance(liang2012)
print(" ")
print("Fraiwan (2012)")
print_performance(fraiwan2012)
if __name__ == "__main__":
main()