-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathChE765Project.py
142 lines (107 loc) · 3.51 KB
/
ChE765Project.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import numpy as np
import scipy as sp
import pandas as pd
import seaborn as sns
import time
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
import umap
import sklearn.discriminant_analysis
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score
from sklearn.cross_decomposition import PLSRegression as pls
training_data = pd.read_excel('PV_train_nonZero.xls')
tc = training_data['Label']
tv = training_data.drop('Label', axis=1)
# separation of class labels and (non-zero)
training_class = tc.to_numpy()
training_vals = tv.to_numpy()
# standardize/scale dataset
X = StandardScaler().fit_transform(training_vals)
# PCA dimensionality red/vis; n_components 3
principal1 = PCA(n_components=3)
pca_3comp = principal1.fit_transform(X)
pca_3comp = np.vstack((pca_3comp.T, training_class)).T
principal1_DF = pd.DataFrame({
'PCA Component 1':pca_3comp[:,0],
'PCA Component 2':pca_3comp[:,1],
'PCA Component 3':pca_3comp[:,2],
'Label':pca_3comp[:,3]})
fig_principal1 = plt.figure(figsize=(10,10))
sns.scatterplot(
x='PCA Component 1', y='PCA Component 2',
hue='Label',
palette=sns.color_palette("hls",3),
data=principal1_DF,
alpha=0.5,
legend=False
)
# PCA dimensionality red/vis; n_components 4
time_start = time.time()
principal2 = PCA(n_components=4)
pca_4comp = principal2.fit_transform(X)
print('\nPCA compute time: {} seconds'.format(time.time()-time_start))
pca_4comp = np.vstack((pca_4comp.T, training_class)).T
principal2_DF = pd.DataFrame({
'PCA Component 1 (n=4)':pca_4comp[:,0],
'PCA Component 2 (n=4)':pca_4comp[:,1],
'PCA Component 3 (n=4)':pca_4comp[:,2],
'PCA Component 4 (n=4)':pca_4comp[:,3],
'Label':pca_4comp[:,4]}
)
print('\nExplained variation per principal component: {}\n'.format(principal2.explained_variance_ratio_))
# tSNE
# PCA init, early_exaggeration yields no discernible benefit
time_start = time.time()
tsne = TSNE(
n_components=3,
verbose=1,
method='barnes_hut',
metric='euclidean',
learning_rate=10,
angle=0.2,
# variables
perplexity=110,
early_exaggeration=60,
n_iter=1000
)
tsne_output=tsne.fit_transform(X)
print('\ntSNE compute time: {} seconds'.format(time.time()-time_start))
tsne_df=pd.DataFrame({'t-SNE Component 1':tsne_output[:,0],'t-SNE Component 2':tsne_output[:,1], 'Label':pca_3comp[:,3]})
fig_tsne=plt.figure(figsize=(10,10))
sns.scatterplot(
x="t-SNE Component 1", y ="t-SNE Component 2",
hue="Label",
palette=sns.color_palette("hls",3),
data=tsne_df,
alpha=0.3,
legend=False
)
# # UMAP in 2D space
# time_start=time.time()
# umap=umap.UMAP(
# n_components=3,
# metric='euclidean',
# spread=1,
# learning_rate=10,
# verbose=1,
# # variables
# n_neighbors=50,
# min_dist=0.50,
# transform_queue_size=200
# )
# umap_output=umap.fit_transform(X)
# print('\nUMAP compute time: {} seconds\n'.format(time.time()-time_start))
# umap_df=pd.DataFrame({'UMAP Component 1':umap_output[:,0],'UMAP Component 2':umap_output[:,1], 'Label':pca_3comp[:,3]})
# fig_umap=plt.figure(figsize=(10,10))
# sns.scatterplot(
# x="UMAP Component 1", y="UMAP Component 2",
# hue="Label",
# palette=sns.color_palette("hls",3),
# data=umap_df,
# alpha=0.3,
# legend=False
# )
plt.show()