-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_default.c
637 lines (539 loc) · 19.8 KB
/
main_default.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
#include <LPC17xx.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
//Timeslice frequency Hz, CURRENTLY UNUSED
const int timeslice_frequency = 1;
// Define task status macros
typedef uint8_t task_status;
#define task_ready 1
#define task_blocked 0
#define task_blocked_semaphore 2//Need this to tell scheduler to disregard variables which keep track of how long delay is
//Function declarations
uint32_t storeContext(void);
void restoreContext(uint32_t sp);
uint8_t find_next_task();
uint8_t remove_front_node(uint8_t priority);
void add_node(uint8_t priority_, uint8_t taskNum);
// Node data structure
typedef struct Node_t{
uint8_t task_num;
struct Node_t *next;
}Node_t;
// System clock and pre-empt
uint32_t msTicks = 0;
void SysTick_Handler(void) {
// When context switch required
if (!(msTicks % 2000)) {
// Write 1 to PENDSVSET bit of ICSR
SCB->ICSR |= (1 << 28);
}
msTicks++;
}
// Semaphore struct
typedef struct{
uint32_t count;
//Wait list
Node_t *head;
bool block_current_task_next_preempt;
}sem_t;
//Mutex struct
typedef struct{
bool available;
//Owner (acquirer) of mutex, is 99 if not acquired
uint8_t task_owner;
}mutex_t;
mutex_t mutex_lock;
// Declare TCB
typedef struct{
//Bottom of task stack (highest address)
uint32_t *base;
//Temp pointer
uint32_t *current;
//Top of stack, could also be on top of pushed registers (lowest address)
uint32_t *stack_pointer;
uint8_t priority;
task_status status;
//Total number of timeslices to be blocked, >1 if rtosDelay called, 1 if rtosYield or rtosDelay(0) is called
uint32_t timeslices_to_be_blocked;
//Timeslices that have been blocked so far. Incremented in PendSV_Handler, and if >timeslices_to_be_blocked, task is blocked->activated
uint32_t timeslices_since_blocked;
sem_t *when_unblocked_decrease_semaphore;
//Temporary priority promotion flag, if task inherits priority to release mutex needed by higher priority task
bool temporary_promotion;
bool add_in_different_priority;
uint8_t different_priority;
}tcb_t;
tcb_t TCBS[6];
//Created tasks is number of total tasks
uint8_t createdTasks;
//Numtasks is number of active tasks
uint8_t numTasks;
uint8_t currTask;
uint8_t next_task;
Node_t *schedule_array[6];
void mutex_init(mutex_t *s, uint32_t count_) {
(*s).available = true;
(*s).task_owner = 99;
}
void mutex_acquire(mutex_t *s) {
__disable_irq();
while(!((*s).available)) {
//Check if mutex is owned (acquired) by owner of lower priority
if (TCBS[(*s).task_owner].priority < TCBS[currTask].priority)
{
printf("I AM EXPLICITY INVOKING PENDSV HANDLER BECAUSE I HAVE TEMPORARILY PROMOTED LOWER PRIORITY TASK <%d> TO HIGHER PRIORITY OF CURRENT TASK <%d>====================================", (*s).task_owner, currTask);
TCBS[(*s).task_owner].different_priority = TCBS[(*s).task_owner].priority;
//Find lower priority owner
Node_t *target = NULL;
//Case 1, only 1 item at beginning
if (((*schedule_array[TCBS[(*s).task_owner].priority]).task_num == (*s).task_owner) && ((*schedule_array[TCBS[(*s).task_owner].priority]).next == NULL))
{
printf("case 1\n");
target = schedule_array[TCBS[(*s).task_owner].priority];
schedule_array[TCBS[(*s).task_owner].priority] = NULL;
}
else if (((*schedule_array[TCBS[(*s).task_owner].priority]).task_num == (*s).task_owner) && ((*schedule_array[TCBS[(*s).task_owner].priority]).next != NULL))//Case 2, target at beginning but not alone
{
printf("case 2\n");
target = schedule_array[TCBS[(*s).task_owner].priority];
Node_t *afterTarget = (*schedule_array[TCBS[(*s).task_owner].priority]).next;
schedule_array[TCBS[(*s).task_owner].priority] = afterTarget;
}
else//if not only one item
{
printf("case 3.");
target = (*schedule_array[TCBS[(*s).task_owner].priority]).next;
Node_t *beforeTarget = schedule_array[TCBS[(*s).task_owner].priority];
while ((*target).task_num != (*s).task_owner)
{
target = (*target).next;
beforeTarget = (*beforeTarget).next;
}
if ((*target).next == NULL)//If target is at end of linked list
{
printf("1\n");
(*beforeTarget).next = NULL;
}
else//If target not at end of linked list
{
printf("2\n");
Node_t *afterTarget = (*target).next;
(*beforeTarget).next = afterTarget;
}
}
if (schedule_array[TCBS[currTask].priority] == NULL)//Case 1, empty list, won't happen
{
schedule_array[TCBS[currTask].priority] = target;
(*target).next = NULL;
}
else
{
Node_t *afterTarget = schedule_array[TCBS[currTask].priority];
schedule_array[TCBS[currTask].priority] = target;
(*target).next = afterTarget;
}
//Set new priority and promotion flag
TCBS[(*s).task_owner].temporary_promotion = true;
TCBS[(*s).task_owner].priority = TCBS[currTask].priority;
}
__enable_irq();
printf("I am waiting for the mutex to be released by the owner. Thus I am enabling and disabling IRQs\n");
printf("Current value of mutex count is <%d>\n", (*s).available);
__disable_irq();
}
(*s).task_owner = currTask;
(*s).available = false;
printf("=================================THE MUTEX IS NOW <UNAVAILABLE> WITH OWNER TASK <%d>=======================================\n", currTask);
__enable_irq();
}
void mutex_release(mutex_t *s) {
if (currTask == (*s).task_owner)
{
__disable_irq();
(*s).task_owner = 99;
(*s).available = true;
printf("=================================THE MUTEX IS NOW <AVAILABLE>=======================================\n");
if (TCBS[currTask].temporary_promotion)
{
TCBS[currTask].temporary_promotion = false;
TCBS[currTask].add_in_different_priority = true;
__enable_irq();
printf("I AM EXPLICITY INVOKING PENDSV HANDLER BECAUSE I AM DONE BEING TEMPORARILY PROMOTED\n");
SCB->ICSR |= (1 << 28);
}
else
__enable_irq();
}
else
{
printf("=================================YOU ARE NOT THE OWNER!!!!!!!!!!!!!!!!!!!!!!!!!=======================================\n");
printf("=================================YOU ARE NOT THE OWNER!!!!!!!!!!!!!!!!!!!!!!!!!=======================================\n");
printf("=================================YOU ARE NOT THE OWNER!!!!!!!!!!!!!!!!!!!!!!!!!=======================================\n");
printf("=================================YOU ARE NOT THE OWNER!!!!!!!!!!!!!!!!!!!!!!!!!=======================================\n");
printf("=================================YOU ARE NOT THE OWNER!!!!!!!!!!!!!!!!!!!!!!!!!=======================================\n");
printf("=================================YOU ARE NOT THE OWNER!!!!!!!!!!!!!!!!!!!!!!!!!=======================================\n");
printf("=================================YOU ARE NOT THE OWNER!!!!!!!!!!!!!!!!!!!!!!!!!=======================================\n");
printf("=================================YOU ARE NOT THE OWNER!!!!!!!!!!!!!!!!!!!!!!!!!=======================================\n");
printf("=================================YOU ARE NOT THE OWNER!!!!!!!!!!!!!!!!!!!!!!!!!=======================================\n");
return;
}
}
void semaphore_init(sem_t *s, uint32_t count_) {
(*s).count = count_;
(*s).head = NULL;
(*s).block_current_task_next_preempt = false;
}
void wait(sem_t *s) {
__disable_irq();
//Why in his notes does he do s<-s-1 in page 8 week 8
//If semaphore is available
if ((*s).count > 0)
{
(*s).count--;
__enable_irq();
return;
}
else//If semaphore is not available
{
//Iterates down wait list and adds new node
Node_t *currNode;
if ((*s).head == NULL)
{
Node_t* newNode = (Node_t*)malloc(sizeof(Node_t));
(*s).head = newNode;
(*((*s).head)).task_num = currTask;
(*((*s).head)).next = NULL;
}
else
{
currNode = (*s).head;
while ((*currNode).next != NULL)
{
currNode = (*currNode).next;
}
Node_t* newNode = (Node_t*)malloc(sizeof(Node_t));
(*newNode).task_num = currTask;
(*newNode).next = NULL;
(*currNode).next = newNode;
}
//Blocks that task because it is trying to access an unavailable semaphore
TCBS[currTask].status = task_blocked_semaphore;
TCBS[currTask].when_unblocked_decrease_semaphore = s;
//Invokes PendSV_Handler
printf("I AM EXPLICITY INVOKING PENDSV HANDLER====================================");
__enable_irq();
SCB->ICSR |= (1 << 28);
}
}
void signal(sem_t *s) {
__disable_irq();
if ((*s).head == NULL)//No other threads waiting, does nothing
{}
else if ((*((*s).head)).next == NULL)//Deletes first task in wait list
{
//Unblock first task in wait list
TCBS[(*((*s).head)).task_num].status = task_ready;
add_node(TCBS[(*((*s).head)).task_num].priority, (*((*s).head)).task_num);
//Deletes first task in wait list
free((*s).head);
(*s).head = NULL;
}
else//Deletes first task in wait list and rewires it
{
//Unblock first task in wait list
TCBS[(*((*s).head)).task_num].status = task_ready;
add_node(TCBS[(*((*s).head)).task_num].priority, (*((*s).head)).task_num);
//Deletes first task in wait list and rewires it
Node_t *secondInWaitList = (*((*s).head)).next;
free((*s).head);
(*s).head = secondInWaitList;
}
(*s).count++;
__enable_irq();
printf("I AM EXPLICITY INVOKING PENDSV HANDLER====================================");
SCB->ICSR |= (1 << 28);
}
sem_t lock1;
sem_t lock2;
void rtosDelay(int num_timeslices)
{
//Blocks current task, current task node is already removed from linked list array so just need to update its
//status, and the next PendSV_Handler will handle everything
TCBS[currTask].status = task_blocked;
TCBS[currTask].timeslices_to_be_blocked = num_timeslices;
TCBS[currTask].timeslices_since_blocked = 0;
}
void PendSV_Handler(void) {
printf("\n\n=============PENDSV BEGIN===============\n\n");
printf("numTasks: %d\n", numTasks);
printf("createdTasks: %d\n", createdTasks);
printf("currTask: %d\n", currTask);
//Increments each blocked task's timeslices_since_blocked, and checks if blocked tasks are to be made active
for (int i=0; i<createdTasks; i++)
{
if (TCBS[i].status == task_blocked)
{
TCBS[i].timeslices_since_blocked++;
if (TCBS[i].timeslices_since_blocked > TCBS[i].timeslices_to_be_blocked)
{
add_node(TCBS[i].priority, i);
TCBS[i].status = task_ready;
printf("==============================================Task: %d no longer blocked\n", i);
}
}
}
for (int i=0; i<createdTasks; i++)
printf("TASK %d STATUS: %d\n", i, TCBS[i].status);
//TWO THINGS CHECKED HERE: 1. If it hasnt been blocked in last timeslice, put back. 2. If block flag set, DO NOT put back.
if (TCBS[currTask].status == task_ready)
{
//If needs to be added in different priority because done priority inheritance
if (TCBS[currTask].add_in_different_priority)
{
add_node(TCBS[currTask].different_priority, currTask);
TCBS[currTask].add_in_different_priority = false;
TCBS[currTask].different_priority = 99;
}
else//Normal add back
add_node(TCBS[currTask].priority, currTask);
}
else
printf("I have blocked task <%d>\n", currTask);
//==================Print out bit vector lists
for (int priority = 0; priority<6; priority++)
{
Node_t *currNode = schedule_array[priority];
printf("\t\t\t\tPriority list %d:", priority);
while (currNode != NULL)
{
printf("%d ", (*currNode).task_num);
currNode = (*currNode).next;
}
printf("\n");
}
printf("\n");
//=================================================
//Finds next task
next_task = find_next_task();
//Pushes register contents onto current task's stack and updates its stack pointer
TCBS[currTask].stack_pointer = (uint32_t *)storeContext();
//Pops new task's registers content (stored on its stack) into registers
restoreContext((uint32_t)TCBS[next_task].stack_pointer);
printf("prev task: %d\n", currTask);
//Updates current task
currTask = next_task;
printf("next task: %d\n", currTask);
//Decreases semaphore if unblocked after waiting for semaphore to be available
if (TCBS[currTask].when_unblocked_decrease_semaphore != NULL)
{
(*TCBS[currTask].when_unblocked_decrease_semaphore).count--;
TCBS[currTask].when_unblocked_decrease_semaphore = NULL;
}
//Removes next task's node
remove_front_node(TCBS[next_task].priority);
//Reset PENDSVSET bit of ICSR to 0
SCB->ICSR &= !(1 << 28);
printf("\n\n=============PENDSV END===============\n\n");
}
//Function pointer to create task function
typedef void(*rtosTaskFunc_t)(void *args);
//Gets called in taks initialization and pre-emting
void add_node(uint8_t priority_, uint8_t taskNum)
{
//Iterate down linked list
Node_t* currNode = schedule_array[priority_];
//Case 1: if this priority's linked list is empty, just insert)
if (schedule_array[priority_] == NULL)
{
Node_t* newNode = (Node_t*)malloc(sizeof(Node_t));
(*newNode).task_num = taskNum;
(*newNode).next = NULL;
schedule_array[priority_] = newNode;
}
//Case 2: if not empty
else
{
//Get to last node
while ((*currNode).next != NULL)
currNode = (*currNode).next;
//Set last node pointer to pointer of new node, and set its members
Node_t* newNode = (Node_t*)malloc(sizeof(Node_t));
(*newNode).task_num = taskNum;
(*newNode).next = NULL;
(*currNode).next = newNode;
}
}
void task_create(rtosTaskFunc_t taskFunction, void *R0, uint8_t priority_)
{
//Protects against more than 6 tasks being created
if (numTasks > 5)
return;
add_node(priority_, numTasks);
//Initialize TCB members
TCBS[numTasks].stack_pointer = TCBS[numTasks].base - 15;
TCBS[numTasks].priority = priority_;
TCBS[numTasks].status = task_ready;
TCBS[numTasks].timeslices_since_blocked = 0;
TCBS[numTasks].timeslices_to_be_blocked = 0;
//Setting R0
*(TCBS[numTasks].base - 7) = (uint32_t)R0;
//Setting task function address
*(TCBS[numTasks].base - 1) = (uint32_t)(*taskFunction);
//Setting P0 to default value of 0x01000000 as specified in manual
*(TCBS[numTasks].base) = (uint32_t)(0x01000000);
numTasks++;
createdTasks++;
}
//Returns task number of task removed, 0 if no ready tasks at priority, -1 if invalid priority
uint8_t remove_front_node(uint8_t priority)
{
uint8_t taskNumOfRemoved = 0;
if (priority > 5)
return 99;
if (schedule_array[priority] == NULL)
return 0;
taskNumOfRemoved = (*schedule_array[priority]).task_num;
Node_t* secondNode = (*schedule_array[priority]).next;
free(schedule_array[priority]);
schedule_array[priority] = secondNode;
return (uint8_t)taskNumOfRemoved;
}
//Return -1 if no available next task
uint8_t find_next_task()
{
//Iterate down bit vector until find next available priority
int next_priority = 5;
while (schedule_array[next_priority] == NULL && next_priority >= 0) {
next_priority--;
}
//If no available next task
if (next_priority == -1)
{
printf("No available next task, ERROR");
return 99;
}
//If available next task, return first task num of linked list.
//Because available tasks are added at back of linked list
//and ready tasks are removed at front of linked list,
//tasks of equal priority that are ready are round robined
return (uint8_t)(*schedule_array[next_priority]).task_num;
}
void initialization(void) {
// Find address of main stack (first 32 bit value at 0x0 is base address)
uint32_t **mainstack = 0x0;
//This used to copy over main stack to task 1 stack
uint32_t *mainstack_address = *mainstack;
//This used to remember where main stack base is
uint32_t *mainstack_base = *mainstack;
TCBS[5].base = (uint32_t *)(mainstack_address - 0x0800/4);
TCBS[4].base = (uint32_t *)(mainstack_address - 0x1200/4);
TCBS[3].base = (uint32_t *)(mainstack_address - 0x1600/4);
TCBS[2].base = (uint32_t *)(mainstack_address - 0x2000/4);
TCBS[1].base = (uint32_t *)(mainstack_address - 0x2400/4);
TCBS[0].base = (uint32_t *)(mainstack_address - 0x2800/4);
numTasks = 0;
//Initialize schedule array to all point to NULL. Will be populated by task create function.
for (int i=0; i<6; i++)
schedule_array[i] = NULL;
for (int i=0; i<6; i++)
{
TCBS[i].when_unblocked_decrease_semaphore = NULL;
TCBS[i].temporary_promotion = false;
TCBS[i].add_in_different_priority = false;
TCBS[i].different_priority = 99;
}
// Copy the main stack contents to process stack of new main() task and set the MSP to the main stack base address
// Loop through each item and then save to next stack from mainstack_address - 0x8000
uint32_t *MSP = (uint32_t *)__get_MSP();
TCBS[0].current = TCBS[0].base;
//Copy everything in main stack to task 1 stack
while (mainstack_address >= MSP) {
*TCBS[0].current = *mainstack_address;
TCBS[0].current--;
mainstack_address--;
}
TCBS[0].stack_pointer = TCBS[0].current + 1;
//Set MSP to mainstack base address
__set_MSP((uint32_t)mainstack_base);
//Switches control from MSP to PSP
__set_CONTROL(__get_CONTROL() | (1 << 1));
//Set PSP to top of task 1 stack
__set_PSP((uint32_t)TCBS[0].stack_pointer);
//Begin multithread by running task 0. Correct next task will be determined at next pre-empt
currTask = 0;
//Set task 1 priority to 0, acts as idle task
TCBS[0].priority = 0;
//Set task 1 status to ready
TCBS[0].status = task_ready;
TCBS[0].timeslices_since_blocked = 0;
TCBS[0].timeslices_to_be_blocked = 0;
//Increment numtasks now that there is a task
numTasks++;
createdTasks++;
}
void first_task(void *args) {
while (1)
{
wait(&lock1);
printf("=========================================FIRST TASK IS NOW RUNNING===============================================\n");
mutex_acquire(&mutex_lock);
uint32_t i = 0;
while(1)
{
printf("%d", currTask);
if (!(i%100))
printf("\n");
i++;
}
}
}
void second_task(void *args) {
while (1)
{
mutex_acquire(&mutex_lock);
printf("======================================TASK 2: I HAVE ACQUIRED THE MUTEX======================================\n");
signal(&lock1);
for (uint32_t i=0; i<2500; i++)
{
printf("%d", currTask);
if (!(i%100))
printf("\n");
}
printf("======================================TASK 2: I HAVE RELEASED THE MUTEX======================================\n");
mutex_release(&mutex_lock);
}
}
int main(void) {
printf("\n _____ ____ _ _____ _____ _____ _____ _______ ____ _____ \n");
printf(" / ____|/ __ \| | /\ | __ \|_ _|/ ____| | __ \__ __/ __ \ / ____|\n");
printf(" | (___ | | | | | / \ | |__) | | | | (___ | |__) | | | | | | | (___ \n");
printf(" \___ \| | | | | / /\ \ | _ / | | \___ \ | _ / | | | | | |\___ \ \n");
printf(" ____) | |__| | |____ / ____ \| | \ \ _| |_ ____) | | | \ \ | | | |__| |____) |\n");
printf(" |_____/ \____/|______/_/ \_\_| \_\_____|_____/ |_| \_\ |_| \____/|_____/ \n");
//Initialization creates task 0
initialization();
mutex_init(&mutex_lock, 1);
semaphore_init(&lock1, 0);
rtosTaskFunc_t task1 = &first_task;
task_create(task1, NULL, 5);
rtosTaskFunc_t task2 = &second_task;
task_create(task2, NULL, 1);
SysTick_Config(SystemCoreClock/(1000));
while(true) {
printf("\n\n=========================================TASK 0, IDLE TASK====================================\n\n");
for (int priority = 0; priority<6; priority++)
{
Node_t *currNode = schedule_array[priority];
printf("\t\t\t\tPriority list %d:", priority);
while (currNode != NULL)
{
printf("%d ", (*currNode).task_num);
currNode = (*currNode).next;
}
printf("\n");
}
printf("\n");
}
}