-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathEqlib.f
executable file
·283 lines (249 loc) · 12.7 KB
/
Eqlib.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
subroutine eqlib
c******************************************************************************
c This routine solves the equations of molecular dissociative
c equilibrium. the equations can include neutral and ionized molecules
c and atoms
c******************************************************************************
implicit real*8 (a-h,o-z)
include 'Atmos.com'
include 'Mol.com'
include 'Quants.com'
include 'Dummy.com'
real*8 xfic(30), xcorr(30), deltax(30), c(30,30), ans(30,30)
real*8 uu(2)
real*8 lth
integer ident(30,110)
c*****clear the arrays
iorder(1) = 0
neq = iorder(1)
tdel = (t(ntau)-t(1))/4.0 + 1.0
do k=1,30
iorder(k) = 0
xcorr(k) = 0.
do kk=1,110
ident(k,kk) = 0
enddo
enddo
c*****either read in the dissociation data for a molecular species
do jmol=1,nmol
if (amol(jmol) .ge. 100.) then
do k=1,110
if (datmol(1,k) .eq. amol(jmol)) go to 11
enddo
write (nf1out,1001) amol(jmol)
stop
11 do kk=1,6
const(kk,jmol) = datmol(kk+1,k)
enddo
c*****or read the ionization data for an atomic species
else
iatom1 = amol(jmol) + 0.0001
atom = iatom1
const(1,jmol) = xchi1(iatom1)
do kk=1,5
ti = t(1) + (kk-1)*tdel
it = ti
do jj=1,2
att = atom+0.1*(jj-1)
if (partflag(iatom1,jj) .gt. 0) then
uu(jj) = partnew(att,jj,it)
else
uu(jj) = ucalc(att,it)
endif
enddo
const(kk+1,jmol) = uu(2)/uu(1)
enddo
endif
enddo
if (molopt .ge. 2)
. write (nf1out,1002) (amol(i),(const(j,i),j=1,6),i=1,nmol)
c*****set up the molecular equilibrium array. each element of array
c*****'ident' contains the identifier (subscript of an element of
c*****array 'amol') of an ion or a molecule. the neutral atom is always
c*****understood, but is not explicitly contained in 'ident'.
nmax = 1
do jmol=1,nmol
atom = amol(jmol)
2 call sunder(atom,iatom1,iatom2)
do k=1,30
if (iatom1 .eq. iorder(k)) go to 4
enddo
neq = neq + 1
iorder(neq) = iatom1
ident(neq,1) = jmol
go to 6
4 do kk=1,nmax
if (ident(k,kk).eq.0 .or. ident(k,kk).eq. jmol) go to 7
enddo
nmax = nmax + 1
kk = nmax
7 ident(k,kk) = jmol
6 if (iatom2 .ne. 0) then
atom = iatom2
go to 2
endif
enddo
if (molopt .ge. 2) then
do i=1,neq
dummy1(i) = iorder(i)
enddo
write (nf1out,1003) (dummy1(i),i=1,neq),(amol(i),i=1,nmol)
endif
c*****now begin the loop that goes through all the atmosphere tau layers
do 21 kev=1,ntau
c*****calculate *xfic* and make a first guess at *xatom*
i = ntau + 1 - kev
lev = i
tk = 1.38054d-16*t(i)
do k=1,neq
korder = iorder(k)
xfic(k) = xabund(korder)*nhtot(i)
enddo
if (i .lt. ntau) then
do k=1,neq
xatom(k) = xatom(k)*nhtot(i)/nhtot(i+1)
enddo
else
do k=1,neq
xatom(k) = xfic(k)
enddo
endif
c*****compute the number of molecules:
c*****Here is some information about the equilibrium constants.
c*****The equilibrium constants, Kp, are defined as follows:
c
c
c P(A)*P(B) N(A)*N(B)
c Kp(AB) = --------- = kT--------- =
c P(AB) N(AB)
c
c 2*pi*kT 3/2 M(A)*M(B) 3/2 Q(A)*Q(B)
c = kT*(-------) * (---------) * --------- * exp(-D(AB)/kT)
c h^2 M(AB) Q(AB)
c
c
c*****MOOG uses: n(AB)/n(A)n(B) = kt/Kp
c
c Kp - dissociation constant, Q - partition functions, M - masses
c P - partial pressures, N - number densities, T - temperature,
c D - dissociation energy, h - plank constant. Remember to use
c masses in grams (1 amu = 1.660540E-24 g) and energy in ergs
c (1 eV = 1.60219E-12 ergs). Also, k = 1.38066E-16 erg/K,
c h = 6.626076E-27 erg s, and pi = 3.1415926536.
27 do jmol=1,nmol
atom = amol(jmol)
if (atom .ge. 100.) then
if (t(i) .gt. 12000.) then
xmol(jmol,i) = 1.0d-20
else
xmol(jmol,i) = 1.
count = 0.
37 call sunder(atom,iatom1,iatom2)
count = count + 1.
do k=1,neq
if (iorder(k) .eq. iatom1)
. xmol(jmol,i) = xmol(jmol,i)*xatom(k)
enddo
if (iatom2 .ne. 0) then
atom = iatom2
go to 37
endif
hion = 10.0*(amol(jmol) - dint(amol(jmol)))
th = 5040./t(i)
lth = log10(th)
xmol(jmol,i) = xmol(jmol,i)*(((1.38066d-16 * t(i))**
. (count-1.0))/(10.0**(const(2,jmol)+(const(3,jmol)*
. lth)+(const(4,jmol)*(lth**2))+(const(5,jmol)*
. (lth**3))+(const(6,jmol)*(lth**4))-
. (const(1,jmol)*th))))/(ne(i)**hion)
endif
c*****compute the number of ions:
else
delt = (t(i)-t(1))/tdel
m = min0(idint(delt)+2,5)
delt = delt - idint(delt)
u1 = const(m,jmol) +
. (const(m+1,jmol)-const(m,jmol))*delt
iatom1 = atom
do k=1,neq
if (iorder(k) .eq. iatom1) xmol(jmol,i) =
. 4.825d15*u1*t(i)**1.5/ne(i)*dexp(-1.1605d4*
. const(1,jmol)/t(i))*xatom(k)
enddo
endif
enddo
c*****compute matrix *c*, which is the derivative of each equation with
c*****respect to each atom.
do k=1,neq
deltax(k) = -xfic(k) + xatom(k)
do kk=1,neq
c(k,kk) = 0.
enddo
c(k,k) = 1.
korder = iorder(k)
do kk=1,neq
kderiv = iorder(kk)
do 28 j=1,nmax
jmol = ident(k,j)
if (jmol .eq. 0) go to 28
call discov(amol(jmol),kderiv,num2)
if (num2 .eq. 0) go to 28
call discov(amol(jmol),korder,num1)
c(k,kk) = c(k,kk) + xmol(jmol,i)*num1*num2/xatom(kk)
if (k .eq. kk) deltax(k) = deltax(k) + num1*xmol(jmol,i)
28 continue
enddo
enddo
c*****calculate array 'xcorr', the change in 'xatom'. array 'xcorr' is
c*****'deltax' multiplied by the inverse of 'c'
call invert (neq,c,ans,30)
do k=1,neq
x1 = xcorr(k)
xcorr(k) = 0.
do kk=1,neq
xcorr(k) = xcorr(k) + ans(k,kk)*deltax(kk)
enddo
enddo
c*****decide if another iteration is needed
iflag = 0
do k=1,neq
c*****here oscillations are damped out
if (x1*xcorr(k) .lt. -0.5*x1**2) xcorr(k) = 0.5*xcorr(k)
x1 = xatom(k)
if (dabs(xcorr(k)/xatom(k)) .gt. 0.005) iflag = 1
xatom(k) = xatom(k) - xcorr(k)
c*****fix element number densities which are ridiculous
if (xatom(k).le.0.0 .or. xatom(k).ge.1.001*xfic(k)) then
iflag = 1
xatom(k) = 1.0d-2*dabs(xatom(k)+xcorr(k))
endif
enddo
if (iflag .ne. 0) go to 27
c*****print out atomic and molecular partial pressures. *xamol* is the
c*****number density for each neutral atom
do k=1,neq
xamol(k,i) = xatom(k)
patom(k) = dlog10(xatom(k)*tk)
enddo
do jmol=1,nmol
pmol(jmol) = dlog10(xmol(jmol,i)*tk)
enddo
if (molopt .ge. 2) then
pglog = dlog10(pgas(lev))
write (nf1out,1004) lev,int(t(lev)+0.001),pglog,
. (patom(i),i=1,neq), (pmol(i),i=1,nmol)
endif
c*****here the big loop in tau ends
21 continue
return
c*****format statements
1001 format ('I do not know this molecule: ',f10.0)
1002 format (/'INPUT EQUILIBRIUM DATA:'/1x, 'species', 2x,
. 'D0/Chi ', 3x, 'const1', 6x, 'const2', 6x,
. 'const3', 6x, 'const4', 6x, 'const5'/
. (0pf8.1, f8.3, 1p5d12.4))
1003 format (/'MOLECULAR EQUILIBRIUM SOLUTIONS: (log partial',
. ' pressures listed under names)'/
. 2x,'i',5x,'T',2x,'Pgas',8f8.1/(15x,8f8.1))
1004 format (i3,i6,f6.2,8f8.2/(15x,8f8.2))
end