-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearn_texture_mem.cu
189 lines (168 loc) · 7.03 KB
/
learn_texture_mem.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
/*
* This program should've use texture memory to speed up the data fetching, but texture reference is deprecated!!!
* No more work on this... ABANDONED
*/
#include <cuda.h>
#include "cuda_texture_types.h"
#include "iostream"
#include "random"
#include <cstdio>
#include "./includes/book.h"
#include "./includes/cpu_anim.h"
#include "check_error.cuh"
#include <cstdio>
#define DIM 1024
#define FLOW_SPEED 0.25f
#define ANIMATION_SPEED 90
#define MAX_TEMP 1.0f
#define MIN_TEMP 0.0001f
struct DataBlock {
unsigned char *d_output_bitmap;
float *d_iptr;
float *d_optr;
float *d_sptr;
CPUAnimBitmap *h_bitmap;
cudaEvent_t start, stop;
float total_time;
unsigned int frames_count;
};
__global__ void maintain_source_constant_temperature_kernel(float *iptr, const float *sptr) {
unsigned int x = threadIdx.x + blockDim.x * blockIdx.x;
unsigned int y = threadIdx.y + blockDim.y * blockIdx.y;
unsigned int offset = x + y * gridDim.x * blockDim.x;
// if sptr[i] is not zero, set iptr[i] to sptr[i] to maintain the source temperature
// we can compare to 0 safely because value of sptr will be written as 0, this won't cause problem
if (sptr[offset] != 0) {
iptr[offset] = sptr[offset];
}
}
// instead of directly update the iptr, we will output result to optr
// because if we do it on iptr, the result value will depend on the order of execution of code, which is not ideal
__global__ void heat_flow_kernel(float *optr, const float *iptr) {
unsigned int x = threadIdx.x + blockDim.x * blockIdx.x;
unsigned int y = threadIdx.y + blockDim.y * blockIdx.y;
unsigned int offset = x + y * gridDim.x * blockDim.x;
unsigned int left_offset = offset - 1;
unsigned int right_offset = offset + 1;
// prevent overflow, the reason we still keep this is because later, that term will cancel out
// like when x == 0, left == 0, ptr[left] = ptr[x], so T_new = ... T_left + ... - 4T_old, they cancel out
if (x == 0) {
left_offset += 1;
} else if (x == DIM - 1) {
right_offset -= 1;
}
unsigned int up_offset = offset - DIM;
unsigned int down_offset = offset + DIM;
if (y == 0) {
up_offset += DIM;
} else if (y == DIM - 1) {
down_offset -= DIM;
}
optr[offset] = iptr[offset]
+ FLOW_SPEED * (iptr[left_offset]+iptr[right_offset]+iptr[up_offset]+iptr[down_offset] - 4 * iptr[offset]);
}
__global__ void float_to_color_kernel(unsigned char *obitmap, const float *iptr) {
unsigned int x = threadIdx.x + blockDim.x * blockIdx.x;
unsigned int y = threadIdx.y + blockDim.y * blockIdx.y;
unsigned int offset = x + y * gridDim.x * blockDim.x;
float value = iptr[offset];
if (value > MAX_TEMP) {
value = MAX_TEMP;
}
if (value < MIN_TEMP) {
value = MIN_TEMP;
}
// when it's MAX_TEMP, it's red, when it's MIN_TEMP, it's blue, we will do a linear interpolation
// to get the color value
float color_value = (value - MIN_TEMP) / (MAX_TEMP - MIN_TEMP);
obitmap[offset * 4 + 0] = (unsigned char)(255 * color_value);
obitmap[offset * 4 + 1] = 0;
obitmap[offset * 4 + 2] = (unsigned char)(255 * (1 - color_value));
obitmap[offset * 4 + 3] = 255;
}
void anim_gpu(DataBlock *data_block, int tick) {
CHECK_ERROR(cudaEventRecord(data_block->start, nullptr));
dim3 grid(DIM/16, DIM/16);
dim3 block(16, 16);
CPUAnimBitmap *h_bitmap = data_block->h_bitmap;
for (int i = 0; i != ANIMATION_SPEED; ++i) {
maintain_source_constant_temperature_kernel<<<grid, block>>>
(data_block->d_iptr, data_block->d_sptr);
heat_flow_kernel<<<grid, block>>>(data_block->d_optr, data_block->d_iptr);
// swap
// float *d_temp = data_block->d_iptr;
// data_block->d_iptr = data_block->d_optr;
// data_block->d_optr = d_temp;
std::swap(data_block->d_iptr, data_block->d_optr);
}
float_to_color<<<grid, block>>>
(data_block->d_output_bitmap, data_block->d_iptr);
CHECK_ERROR(cudaMemcpy(h_bitmap->get_ptr(), data_block->d_output_bitmap,
h_bitmap->image_size(), cudaMemcpyDeviceToHost));
float elapsed_time = 0.0f;
CHECK_ERROR(cudaEventRecord(data_block->stop, nullptr));
CHECK_ERROR(cudaEventSynchronize(data_block->stop));
CHECK_ERROR(cudaEventElapsedTime(&elapsed_time, data_block->start, data_block->stop));
data_block->total_time += elapsed_time;
data_block->frames_count += 1;
printf("[INFO] Tick: %u, FPS(current): %3.1f, FPS(average): %3.1f\n",
tick, 1000.0f / elapsed_time, 1000.0f / (data_block->total_time / data_block->frames_count));
}
void anim_exit_gpu(DataBlock *data_block) {
CHECK_ERROR(cudaFree(data_block->d_iptr));
CHECK_ERROR(cudaFree(data_block->d_optr));
CHECK_ERROR(cudaFree(data_block->d_sptr));
CHECK_ERROR(cudaEventDestroy(data_block->start));
CHECK_ERROR(cudaEventDestroy(data_block->stop));
}
int main() {
DataBlock data_block{};
CPUAnimBitmap bitmap(DIM, DIM, &data_block);
data_block.h_bitmap = &bitmap;
data_block.total_time = 0.0f;
data_block.frames_count = 0;
CHECK_ERROR(cudaEventCreate(&data_block.start));
CHECK_ERROR(cudaEventCreate(&data_block.stop));
CHECK_ERROR(cudaMalloc((void**)&data_block.d_output_bitmap, bitmap.image_size()));
unsigned int float_bitmap_size = DIM * DIM * sizeof(float);
CHECK_ERROR(cudaMalloc((void**)&data_block.d_iptr, float_bitmap_size));
CHECK_ERROR(cudaMalloc((void**)&data_block.d_optr, float_bitmap_size));
CHECK_ERROR(cudaMalloc((void**)&data_block.d_sptr, float_bitmap_size));
auto *h_sptr = new float[DIM * DIM];
for (int i = 0; i != DIM * DIM; ++i) {
h_sptr[i] = 0.0f;
unsigned int x = i % DIM;
unsigned int y = i / DIM;
if ((x > 300) && (x < DIM-300) && (y > 310) && (y < 601)) {
h_sptr[i] = MAX_TEMP;
}
}
h_sptr[DIM * 100 + 100] = (MAX_TEMP + MIN_TEMP) / 2;
h_sptr[DIM * 700 + 100] = MIN_TEMP;
h_sptr[DIM * 300 + 300] = MIN_TEMP;
h_sptr[DIM * 200 + 700] = MIN_TEMP;
for (int y = 800; y != 900; ++y) {
for (int x = 400; x != DIM-400; ++x) {
h_sptr[x + y * DIM] = MIN_TEMP;
}
}
for (int y = 100; y != 200; ++y) {
for (int x = 400; x != DIM-400; ++x) {
h_sptr[x + y * DIM] = MIN_TEMP;
}
}
CHECK_ERROR(cudaMemcpy(data_block.d_sptr, h_sptr, float_bitmap_size, cudaMemcpyHostToDevice));
for (int y = 800; y != DIM - 100; ++y) {
for (int x = 100; x != 200; ++x) {
h_sptr[x + y * DIM] = MAX_TEMP;
}
}
CHECK_ERROR(cudaMemcpy(data_block.d_iptr, h_sptr, float_bitmap_size, cudaMemcpyHostToDevice));
delete[] h_sptr;
bitmap.anim_and_exit((void (*)(void *, int))anim_gpu, (void (*)(void *))anim_exit_gpu);
CHECK_ERROR(cudaFree(data_block.d_output_bitmap));
CHECK_ERROR(cudaFree(data_block.d_iptr));
CHECK_ERROR(cudaFree(data_block.d_optr));
CHECK_ERROR(cudaFree(data_block.d_sptr));
return 0;
}