请在阿里云人工智能平台PAI产品中填写专属镜像地址: dsw-registry.cn-wulanchabu.cr.aliyuncs.com/pai/pai-megatron-patch-vlm:24.11
运行下列代码克隆Pai-Megatron-Patch
cd /workspace
git clone --recurse-submodules https://github.com/alibaba/Pai-Megatron-Patch.git
cd /mnt
mkdir mistral-clip-ckpts
cd mistral-clip-ckpts
git clone https://modelscope.cn/models/rubraAI/Mistral-7B-Instruct-v0.3
git clone https://modelscope.cn/models/AI-ModelScope/clip-vit-large-patch14-336
mkdir llava-datasets
cd llava-datasets
git clone https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain
cd LLaVA-Pretrain
unzip images.zip
#convert to webdataset format:
cd /workspace/Pai-Megatron-Patch/toolkits/pretrain_data_preprocessing
python convert_llava_pretrain_to_wds.py /mnt/llava-datasets/LLaVA-Pretrain/
#convert to megatron-energon format:
cd /mnt/llava-datasets/LLaVA-Pretrain/wds
energon prepare ./
#select the following values for the presented options:
> Please enter a desired train/val/test split like "0.5, 0.2, 0.3" or "8,1,1": 9,1,0
> Do you want to create a dataset.yaml interactively? [Y/n]: Y
> Please enter a number to choose a class: 10 (VQAWebdataset)
> Do you want to set a simple field_map[Y] (or write your own sample_loader [n])? [Y/n]: Y
> Please enter a webdataset field name for 'image' (<class 'torch.Tensor'>): jpg
> Please enter a webdataset field name for 'context' (<class 'str'>): json[0][value]
> Please enter a webdataset field name for 'answers' (typing.Optional[typing.List[str]], default: None): json[1][value]
> Please enter a webdataset field name for 'answer_weights' (typing.Optional[torch.Tensor], default: None):
为方便起见,我们也提供了处理好的wds文件(26G)用于后续的测试,下载链接如下所示:
cd /mnt/llava-datasets/LLaVA-Pretrain/
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/vlm-datasets/wds.tgz
tar -zxf wds.tgz
运行hf2mcore_convertor_llava.sh
脚本,需要传入的参数列表如下
MODEL_SIZE=$1 # 模型参数:7B
SOURCE_LLM_CKPT_PATH=$2 # 源llm checkpoint路径
SOURCE_CLIP_CKPT_PATH=$3 # 源clip checkpoint路径
TARGET_CKPT_PATH=$4 # 目标checkpoint路径
TP=$5 # 模型并行度
PP=$6 # 流水并行度
mg2hf=$7 # 是否执行mcore2hf转换
PR=$8 # 精度设置,fp16/bf16/fp32
HF_CKPT_PATH=$9 # HF的CKPT的路径【可选,mg2hf=true时必须提供】
例如,使用下述脚本将checkpoint转换到MCore-Dense并检查输出
cd /workspace/Pai-Megatron-Patch/toolkits/model_checkpoints_convertor/llava
bash hf2mcore_convertor_llava.sh \
7B \
/mnt/mistral-clip-ckpts/Mistral-7B-Instruct-v0.3 \
/mnt/mistral-clip-ckpts/clip-vit-large-patch14-336 \
/mnt/mistral-clip-ckpts/Mistral-7B-Instruct-v0.3-to-mcore-tp4-pp1 \
4 \
1 \
false \
bf16
需要传入的参数列表如下:
ENV=$1 # 运行环境配置开关: dsw单机训练训练,dlc表示多机训练环境
MODEL_SIZE=$2 # 模型结构参数量级: 0.5B/1.5B/3B/7B/14B/32B/72B
BATCH_SIZE=$3 # 一次迭代一个数据并行内的样本数
GLOBAL_BATCH_SIZE=$4 # 一次迭代多个数据并行的总样本数
LR=$5 # 学习率
MIN_LR=$6 # 最小学习率
SEQ_LEN=$7 # 序列长度
DECODER_SEQ_LEN=$8 # 解码序列长度
PR=${9} # 训练精度: fp16, bf16, fp8
TP=${10} # 模型并行度
PP=${11} # 流水并行度
CP=${12} # 上下文并行度
DO=${13} # 是否使用Megatron版Zero-1降显存优化器: true, false
FL=${14} # 是否优先使用Flash Attention: true, false
AC=${15} # 激活检查点模式: sel, full, offload, false
OPTIMIZER_OFFLOAD=${16} # 是否启用Offload optimizer: false, static, auto
SAVE_INTERVAL=${17} # 保存ckpt的间隔
DATASET_PATH=${18} # 训练数据集路径
VALID_DATASET_PATH=${19} # 验证数据集路径
PRETRAIN_CHECKPOINT_PATH=${20} # 预训练模型路径
TRAIN_ITERS=${21} # 训练TOKEN或者Iter数
LR_WARMUP_ITERS=${22} # 预热TOKEN或者Iter数
OUTPUT_BASEPATH=${23} # 训练输出日志文件路径
使用以下命令启动对llaVA的继续预训练。
备注:当加载mcore模型时出现无法加载extra_states
时,可设置Megatron-LM-241113/megatron/training/checkpointing
的1168行的strict
为False
。
cd /workspace/Pai-Megatron-Patch/examples/llava_mcore
sh run_mcore_llava.sh \
dsw \
7B \
1 \
256 \
0.00015 \
1e-5 \
576 \
1024 \
bf16 \
4 \
1 \
1 \
true \
true \
true \
false \
100000 \
/mnt/llava-datasets/LLaVA-Pretrain/wds \
/mnt/llava-datasets/LLaVA-Pretrain/wds \
/mnt/mistral-clip-ckpts/Mistral-7B-Instruct-v0.3-to-mcore-tp4-pp1 \
20000 \
200 \
/workspace/output_mcore_llava_pretrain
使用上述命令训练20k iters后,您应当能在tensorboard内看到如下loss曲线: