-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathevaluate.py
28 lines (25 loc) · 891 Bytes
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# -*- coding: utf-8 -*-
"""
Created on Tue Jul 27 14:19:13 2021
@author: alimi
"""
import torch
import pandas as pd
from torch import nn
import numpy as np
from metrics.ConfidenceIntervals import boostrapping_CI
def evaluate(model, testloader, device, batchDirectory = ''):
datasetSize = len(testloader.dataset)
df = pd.DataFrame()
with torch.set_grad_enabled(False):
for i, data in enumerate(testloader, 0):
inputs, labels = data
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
m = nn.Sigmoid()
pred_logits = m(outputs)
df = df.append(pd.DataFrame(torch.cat((labels, pred_logits),axis=1)).astype("float"))
df.to_csv(batchDirectory + 'saved_figs/testLabelLogits.csv', index=False)
boostrapping_CI(df)
print("Finished Evaluation")