-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
248 lines (208 loc) · 9.78 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# -*- coding: utf-8 -*-
"""
Created on Fri May 21 16:27:39 2021
@author: alimi
"""
# import argparse
# import collections
import torch
import numpy as np
import torchvision.models as models
from model.loss import CAMLoss
import pandas as pd
import random
from torch import nn
from ipdb import set_trace as bp
#from metrics.SupervisedMetricsImageNette import Evaluator
from metrics.SupervisedMetrics import Evaluator
from metrics.UnsupervisedMetrics import visualizeLossPerformance
def customTrain(model):
def _freeze_norm_stats(net):
try:
for m in net.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
except ValueError:
print("errrrrrrrrrrrrrroooooooorrrrrrrrrrrr with instancenorm")
return
model.train()
model.apply(_freeze_norm_stats)
def train(model, numEpochs, suptrainloader, unsuptrainloader, validloader, optimizer,
target_layer, target_category, use_cuda, resolutionMatch, similarityMetric, alpha,
training='alternating', batchDirectory='', scheduler=None, batch_size=4,
unsup_batch_size=12, perBatchEval=None, saveRecurringCheckpoint=None, maskIntensity=8):
print('alpha: ', alpha)
CAMLossInstance = CAMLoss(model, target_layer, use_cuda, resolutionMatch, similarityMetric, maskIntensity)
LossEvaluator = Evaluator()
CAMLossInstance.cam_model.activations_and_grads.remove_hooks()
device = torch.device("cuda:0" if use_cuda else "cpu")
model.to(device)
# def criteron(pred_label, target_label):
# m = nn.Softmax(dim=1)
# pred_label = m(pred_label)
# return (-pred_label.log() * target_label).sum(dim=1).mean()
# def criteron(pred_label, target_label):
# m = nn.BCEWithLogitsLoss()
# return m(pred_label, target_label)
# weight = torch.tensor([0.87713311, 1.05761317, 0.73638968, 1.11496746, 0.78593272, 1.33506494,
# 0.4732965, 0.514, 0.47548566, 1.9469697, 0.97348485, 0.43670348,
# 1.15765766, 1.06639004, 0.13186249, 1.05544148, 1.71906355, 1.04684318,
# 1.028, 0.93624772])
# weight = weight.to(device)
# criteron = nn.MultiLabelSoftMarginLoss(weight=weight)
#criteron = torch.nn.CrossEntropyLoss()
criteron = nn.BCEWithLogitsLoss()
print('pretraining evaluation...')
model.eval()
LossEvaluator.evaluateUpdateLosses(model, validloader, criteron, CAMLossInstance, device, optimizer, unsupervised=True, batchDirectory=batchDirectory) #unsupervised=training!='supervised')
LossEvaluator.plotLosses(batchDirectory=batchDirectory)
print('finished evaluating')
supdatasetSize = len(suptrainloader.dataset)
print("\n\nTotal Supervised Dataset: ", supdatasetSize)
unsupdatasetSize = len(unsuptrainloader.dataset)
print("Total Unsupervised Dataset: ", unsupdatasetSize)
if training == 'supervised':
totalDatasetSize = int(supdatasetSize / batch_size)
elif training == 'unsupervised':
totalDatasetSize = int(unsupdatasetSize / unsup_batch_size)
elif training == 'combining':
totalDatasetSize = int(supdatasetSize / batch_size)
# trainingRatio = alpha * (supdatasetSize / (alpha * supdatasetSize + unsupdatasetSize))
elif training == 'alternating':
totalDatasetSize = int(alpha * supdatasetSize / batch_size + unsupdatasetSize / unsup_batch_size)
trainingRatio = alpha * (supdatasetSize / (alpha * supdatasetSize + unsupdatasetSize))
print("Total Dataset: ", totalDatasetSize)
##Custom model.train that freezes the batch norm layers and only keeps others in train mode
customTrain(model)
for epoch in range(numEpochs):
# if scheduler:
# scheduler.step()
# running_corrects = 0
# running_loss = 0.0
supiter = iter(suptrainloader)
unsupiter = iter(unsuptrainloader)
supiter_reloaded = 0
unsupiter_reloaded = 0
if saveRecurringCheckpoint is not None and epoch % saveRecurringCheckpoint == saveRecurringCheckpoint - 1:
saveCheckpoint(epoch, model, optimizer, batchDirectory=batchDirectory)
print("saved checkpoint successfully")
counter = 0
if training == 'supervised':
supervised = True
alternating = False
combining = False
elif training == 'unsupervised':
supervised = False
alternating = False
combining = False
elif training == 'alternating':
alternating = True
combining = False
elif training == 'combining':
alternating = False
combining = True
# for i, data in enumerate(trainloader, 0):
#print('starting iterations...')
for i in range(totalDatasetSize):
if alternating:
if random.random() <= trainingRatio:
try:
data = supiter.next()
supervised = True
# print(str(i),' s')
except StopIteration:
supiter = iter(suptrainloader)
supiter_reloaded += 1
data = supiter.next()
supervised = True
# print(str(i),' -s')
else:
try:
data = unsupiter.next()
supervised = False
# print(str(i),' u')
except StopIteration:
unsupiter = iter(unsuptrainloader)
unsupiter_reloaded += 1
data = unsupiter.next()
supervised = False
# print(str(i),' -u')
elif combining:
data = supiter.next()
try:
data_u = unsupiter.next()
except StopIteration:
unsupiter = iter(unsuptrainloader)
unsupiter_reloaded += 1
data_u = unsupiter.next()
inputs_u, labels_u = data_u
elif supervised:
data = supiter.next()
#print('s')
elif not supervised:
data = unsupiter.next()
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
# zero the parameter gradients
with torch.set_grad_enabled(True):
if combining or supervised:
model.train()
optimizer.zero_grad()
CAMLossInstance.cam_model.activations_and_grads.remove_hooks()
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
try:
l1 = criteron(outputs, labels)
_, preds = torch.max(outputs, 1)
except:
l1 = criteron(outputs.logits, labels)
_, preds = torch.max(outputs.logits, 1)
# for pred in range(preds.shape[0]):
# running_corrects += labels[pred, int(preds[pred])]
if combining or not supervised:
customTrain(model)
optimizer.zero_grad()
# print('unsupervised')
CAMLossInstance.cam_model.activations_and_grads.register_hooks()
if combining:
l2 = CAMLossInstance(inputs_u, target_category)
else:
l1 = CAMLossInstance(inputs, target_category)
optimizer.zero_grad()
if combining:
l1 = l1 + alpha * l2
#print(l1)
l1.backward()
optimizer.step()
counter += 1
if perBatchEval != None and counter % perBatchEval == perBatchEval - 1:
print('Epoch {} counter {}'.format(epoch, counter))
model.eval()
optimizer.zero_grad()
LossEvaluator.evaluateUpdateLosses(model, validloader, criteron, CAMLossInstance, device, optimizer, unsupervised=True, batchDirectory=batchDirectory) #training!='supervised')
LossEvaluator.plotLosses(batchDirectory=batchDirectory)
if perBatchEval == None:
print('Epoch {} of {}'.format(epoch, numEpochs))
model.eval()
optimizer.zero_grad()
LossEvaluator.evaluateUpdateLosses(model, validloader, criteron, CAMLossInstance, device, optimizer, unsupervised=True, batchDirectory=batchDirectory) #training!='supervised')
LossEvaluator.plotLosses(batchDirectory=batchDirectory)
print('\n \n BEST SUP LOSS OVERALL: ', LossEvaluator.bestSupSum, '\n\n')
print('\n \n BEST MAP OVERALL: ', LossEvaluator.bestmAP, '\n\n')
#save a final checkpoint
saveCheckpoint(epoch, model, optimizer, batchDirectory=batchDirectory)
def saveCheckpoint(EPOCH, net, optimizer, batchDirectory=''):
PATH = batchDirectory+"saved_checkpoints/"+"model_"+str(EPOCH)+".pt"
torch.save({
'epoch': EPOCH,
'model_state_dict': net.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}, PATH)
def loadCheckpoint(model, optimizer, PATH):
checkpoint = torch.load(PATH)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
epoch = checkpoint['epoch']
loss = checkpoint['loss']
return model, optimizer, epoch, loss