Description | Dataset | Model | Test set(s) |
---|---|---|---|
Convolutional (Dauphin et al., 2017) |
Google Billion Words | download (.tar.bz2) | download (.tar.bz2) |
Convolutional (Dauphin et al., 2017) |
WikiText-103 | download (.tar.bz2) | download (.tar.bz2) |
These scripts provide an example of pre-processing data for the Language Modeling task.
Provides an example of pre-processing for WikiText-103 language modeling task:
Example usage:
$ cd examples/language_model/
$ bash prepare-wikitext-103.sh
$ cd ../..
# Binarize the dataset:
$ TEXT=examples/language_model/wikitext-103
$ fairseq-preprocess --only-source \
--trainpref $TEXT/wiki.train.tokens --validpref $TEXT/wiki.valid.tokens --testpref $TEXT/wiki.test.tokens \
--destdir data-bin/wikitext-103
# Train the model:
# If it runs out of memory, try to reduce max-tokens and max-target-positions
$ mkdir -p checkpoints/wikitext-103
$ fairseq-train --task language_modeling data-bin/wikitext-103 \
--max-epoch 35 --arch fconv_lm_dauphin_wikitext103 --optimizer nag \
--lr 1.0 --lr-scheduler reduce_lr_on_plateau --lr-shrink 0.5 \
--clip-norm 0.1 --dropout 0.2 --weight-decay 5e-06 --criterion adaptive_loss \
--adaptive-softmax-cutoff 10000,20000,200000 --max-tokens 1024 --tokens-per-sample 1024
# Evaluate:
$ fairseq-eval-lm data-bin/wikitext-103 --path 'checkpoints/wiki103/checkpoint_best.pt'