-
Notifications
You must be signed in to change notification settings - Fork 122
/
Copy pathhybrid_job_script.py
56 lines (44 loc) · 1.92 KB
/
hybrid_job_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
from braket.aws import AwsDevice, AwsQuantumJob
from braket.circuits import Circuit, FreeParameter, observables
from braket.devices import Devices
from braket.jobs import get_job_device_arn, save_job_result
from braket.jobs.metrics import log_metric
def run_hybrid_job(num_tasks: int):
# use the device specified in the hybrid job
device = AwsDevice(get_job_device_arn())
# create a parametric circuit
circ = Circuit()
circ.rx(0, FreeParameter("theta"))
circ.cnot(0, 1)
circ.expectation(observable=observables.X(0))
# initial parameter
theta = 0.0
for i in range(num_tasks):
# run task, specifying input parameter
task = device.run(circ, shots=100, inputs={"theta": theta})
exp_val = task.result().values[0]
# modify the parameter (e.g. gradient descent)
theta += exp_val
log_metric(metric_name="exp_val", value=exp_val, iteration_number=i)
save_job_result({"final_theta": theta, "final_exp_val": exp_val})
if __name__ == "__main__":
job = AwsQuantumJob.create(
device=Devices.Amazon.SV1, # choose priority device
source_module="hybrid_job_script.py", # specify file or directory with code to run
entry_point="hybrid_job_script:run_hybrid_job", # specify function to run
hyperparameters={"num_tasks": 5},
wait_until_complete=True,
)
print(job.result())