
University of the Basque Country

Final year project

About Tree Depth

Author:
Asier Mujika

Supervisor:
Dr. Hubert Chen

August 14, 2015

1 Introduction to Graph Theory

1.1 Definition of a graph

A graph is defined as a pair of sets G = (V, E), such that E⊆ {{a, b} | a 6= b ∧ a, b ∈ V }.
The members of V are called vertices and the ones of E edges. Take into ac-
count, that the vertices can be anything, they can even be sets themselves.
The usual way to draw a graph is by representing the vertices as individual
points and for each edge, draw a link between both elements of that edge.
The shape in which a graph is drawn is irrelevant, it will contain the same
information.

a

b

c

d e

f

Figure 1: A graph with V = {a, b, c, d, e, f} and E = {{a, b}, {a, d}, {b,
d}, {b, c}, {d, e}}

1.2 Definitions for undirected graphs

For a graph G, V(G) is its vertex set and E(G) its edge set.

Adjacency
a, b ∈ V(G) are said to be adjacent in G if {a, b} ∈ E(G).

Path
A path a1, a2, . . . , an is a series of pairwise distinct vertices in V(G)
such that if 2 ≤ i ≤ n, then ai−1 is adjacent to ai in G. n- is the length
of such a path.

1

Cycle
A cycle is a path of the form a, . . ., a of length greater than 1.

Subgraph
G’ is a subgraph of G, expressed as G’ ⊆ G, if V(G’) ⊆ V(G) and E(G’)
⊆ E(G). G’ ⊂ G means that G’ ⊆ G but V(G’) 6= V(G) or E(G’) 6=
E(G).

Connected component
A connected component G’ of G is a subgraph of G such that a path
exists between any two vertices of G’ and no H exists such that G’ ⊂
H and H is a connected component.

Tree
A tree is a graph with a single connected component and having no
cycle.

Forest
A forest is a graph such that every connected component is a tree.

Rooted Tree
A rooted tree is a tree with a special node that is called the root.

Rooted Forest
A rooted forest is a graph such that every connected component is a
rooted tree.

Height of a node
The height of a node in a rooted tree is the lenght of the path from
that node to the root. The height of the root itself is 1. In a rooted
forest, the height of a node is its height in the rooted tree it belongs to.

Height of a rooted forest
The height of a rooted forest is the maximum height of any of its nodes.

2 Introduction to Tree Depth

2.1 Basic definitions

Vertex x is said to be the ancestor of y in a rooted forest F , if and only if
x belongs to the path between y and the root of the component to which y
belongs.

2

Definition 2.1. The closure of a rooted forest F , expressed as C = clos(F),
is defined as follows:

• V(C) = V(F)

• E(C) = {{x, y} : x 6= y and x is an ancestor of y in F}

Root Root

Figure 2: The blue graph at the left is a rooted forest F , the red graph at
the right represents clos(F).

2.2 Tree Depth

Definition 2.2. The tree-depth td(G) of a graph G is the minimum height
of a rooted forest F such that G ⊆ clos(F)

3

A B

CD

a b

cd

B

a

D

A c

d

b

C

Figure 3: The graph G and tree T are in the left and right respectively. The
dotted edges in T , represent the clos(T). Because G ⊆ clos(T), height(T)
= 5 and the definition of tree depth we just gave, we know that td(G) is at
most 5.

The tree depth of a graph G is a numerical invariant of a graph. In
other words, the tree depth is a property that depends only on the abstract
structure of a graph, not on its representation.

2.3 Elimination Forest

An elimination forest F of a graph G is defined recursively as follows:

• If V(G)={x} then F is just {x}.

• If G is not connected, then F is the union of the elimination forests of
each component of G.

• Otherwise, r ∈ V(G) is chosen as the root of F and an elimination
forest is created for G− r. The roots of this elimination forest will be
the children of r in F .

The tree T in Figure 3 is an elimination forest for the graph G.

4

Lemma 2.3. Let G be a graph and F a rooted forest such that G ⊆ clos(F).
Then, there exists an elimination forest Y such that height(Y) ≤ height(F).

Proof.

Base case: If V(G) = {v}, then V(Y) = {v} and height(Y) = 1. Beware
that F can have nodes that are not in G but it must contain v, so height(Y)
≤ height(F).

Induction: If G is connected, set the root of F , v, as the root of Y . Clearly,
G−v ⊆ clos(F −v), so by induction an elimination forest Y ′ exists such that
G−v ⊆ clos(Y ′) and height(Y ′) ≤ height(F −v). The roots of Y ′ will be the
children of v in Y and as G − v ⊆ clos(Y ′), then G ⊆ clos(Y) and Y is an
elimination forest. With that we can prove the lemma like this: height(Y) =
1 + height(Y ′) ≤ 1 + height(F − v) = height(F), so height(Y) ≤ height(F).

If G is not connected, then every component Gi in G is contained in the
closure of a component Fi in F . Otherwise, the edge between two adjacent
nodes in G that are both in Gi but in two different components of F wouldn’t
be in clos(F) and that can’t happen. By induction we can assume that for
every component Gi, there exists an elimination forest Yi such that Gi ⊆
clos(Yi) and height(Yi) ≤ height(Fi). Y will be the union of all these Yi
which is clearly an elimination forest and because for every component of Y
there exists a component in F with higher or equal height, then height(Y)
≤ height(F).

From this lemma we can say that the tree depth of a graph is the minimal
height of an elimination forest for that graph. We can now recursively define
the tree depth of a graph using the definition of an elimination forest:

Definition 2.4. The tree depth of a graph G with G1, . . . , Gk components is
the following:

td(G) =

1 if |G| = 1
maxpi=1td(Gi) if G is not connected
1 +minv∈V (G)td(G− v) otherwise

3 Game Theoretic approach to Tree-Depth

3.1 Defining the game

For k ≥ 0, the k-step selection-deletion game is played by Alice and Bob
on a graph. The game is played by turns as follows:

5

• First, Alice selects a connected component of the graph, and the rest
of the components are deleted.

• Then, Bob deletes a node from the remaining graph and the next round
is played with this graph.

If Bob deletes the last node at the k-th round or earlier, he is said to win.
Otherwise, Alice wins.

From this definition we can observe that if Bob has a strategy to win in
k rounds that strategy will also guaranty a win in any game that lasts more
than k rounds. Conversely, if Alice has a winning strategy in k-rounds, that
same strategy will also win any game with less than k rounds.

3.2 Bob’s winning strategy

Lemma 3.1. Let G be a graph and let F be a rooted forest of height t such
that G ⊆ clos(F). Then, Bob has a winning strategy for the t-step selection-
deletion game.

Proof. Because of lemma 2.3 we know an elimination forest Y exists such
that height(Y) ≤ height(F). Consider h = height(Y), we will prove that a
winning strategy exists in h rounds which is also a winning strategy in the
t-step selection-deletion game because h ≤ t.

• Base case: If h = 1, then every component of G will have a single
vertex, so it’s clear that Bob will win the 1-step selection-deletion game.

• Induction: Let Gi ⊆ G be the component Alice chooses, then Yi exists
such that Yi is an elimination forest belonging to Y, Gi ⊆ clos(Yi) and
obviously height(Yi) ≤ h. Bob will delete v, the root of Yi. This will
leave us with G′ = Gi−v as the new graph. If we consider the children
of v the new roots in Y ′ = Yi−v, then G′ ⊆ clos(Y ′) because of how the
elimination forests are built. As height(Y ′) ≤ h-1, we can assume by
induction that Bob has a winning strategy in h-1 rounds for G′, which
together with the strategy for the first round we have just defined makes
a winning strategy for Bob in the h-step selection-deletion game on the
graph G.

6

3.3 Alice’s winning strategy

Definition 3.2. A shelter S in a graph G is a set of graphs with the next
properties:

• ∀H ∈ S, H ⊆ G and H is connected.

• H is said to be minimal if no H ′ exists in S such that H ′ ⊂ H.

• H is said to be maximal if no H ′ exists in S such that H ⊂ H ′.

• If H ∈ S and H is not minimal, then ∀v ∈ V (H), there exists H ′ ⊆
H − v such that H covers H ′. We will say that a ∈ S covers b ∈ S if
and only if b ⊂ a, and no c ∈ S exists such that b ⊂ c ⊂ a.

1

2 3
4

4 1

2 3

1
2 3

Figure 4: An example of a shelter. The arrows represent the covering relation.

The thickness of a shelter S is the shortest sequence of elements in S of the
form a1, . . . , an such that a1 is maximal and an is minimal and if 2 ≤ i ≤ n,
then ai−1 covers ai. The length of a chain is defined as the number of elements

7

in it. The thickness of the shelter in figure 4 is 2, because of the sequence
{1, 2, 3, 4}, {4}.

Lemma 3.3. Let G be a graph, S a shelter in G, and t the thickness of S.
Then, there exists a winning strategy for Alice in the (t-1)-step selection-
deletion game.

Proof. We will proof this by induction over t.

• Base case: If t = 1, then clearly Alice wins the 0-step selection-deletion
game.

• Induction: Let H be a maximal element in S. Then, Alice picks the
connected component Gi of G, such that H ⊆ Gi. Because t > 0, H
is not minimal, so for any vertex v that Bob removes, if v ∈ H there
exists H ′ ∈ S that is covered by H and v /∈ H ′. Otherwise, H is still a
subgraph of Gi − v. Let S ′ = {X | X ∈ S ∧ X ⊆ Gi − v}. It is clear
that S ′ is a shelter for Gi − v and that the thickness of S ′ is greater
than or equal to t-1. By induction we can assume Alice has a winning
strategy in t-2 steps in Gi− v, which together with the strategy for the
first round we have just defined is a winning strategy for the (t-1)-step
selection-deletion game.

3.4 Relation to Tree-Depth

It is clear that if Alice has a winning strategy in the t-step selection deletion
game, Bob can’t have a winning strategy in that same game. Because of this
and lemmas 3.1 and 3.3 we can state the following:

Theorem 3.4. Let G be a graph, S a shelter in G of thickness x and F a
rooted forest of height y such that G ⊆ clos(F). Then the following is true.

1. Alice has a winning strategy in the (t-1)-step selection-deletion game,
for any t smaller than or equal to x.

2. Bob has a winning strategy in the t-step selection-deletion game, for
any t greater than or equal to y.

3. Every rooted forest who’s closure contains G has an height higher than
or equal to x. Otherwise, Bob would have a winning strategy in the
(x-1)-step selection-deletion game, which contradicts statement 1.

8

4. Every shelter in G has a thickness smaller than or equal to y. Oth-
erwise, Alice would have a winning strategy in the y-step selection-
deletion game, which contradicts statement 2.

5. Because we have F, td(G) ≤ y. Also, from statement 3 it is clear that
x ≤ td(G). So we can say that x ≤ td(G) ≤ y.

With this theorem we can now give an upper-bound and a lower-bound to
a graphs tree depth.

Figure 5: This is a shelter of thickness 5 for the graph in Figure 3. Beware
that not all graphs in the shelter are drawn, but every graph in the shelter
is isomorphic to these. With this and the rooted forest from Figure 3 we can
say that td(G) = 5.

4 Cycle rank

4.1 Defining cycle rank

Cycle rank is a numerical invariant in a directed graph which is closely
related to the tree depth of an undirected graph.

9

Definition 4.1. The cycle rank of a digraph G = (V , E), denoted by r(G)
is defined as follows:

• If |V | = 1 , then r(G) = 0.

• If G is strongly connected and |V | > 1, then r(G) = 1 +
minv∈V {r(G− v)}.

• If G is not strongly connected, then r(G) is the maximum cycle rank
among all strongly connected components of G.

4.2 Directed elimination forest

Similar to the notion of elimination forests in undirected graphs, we have
directed elimination forests on digraphs.

Definition 4.2. A directed elimination forest for a digraph G is a rooted
forest F . F can be defined recursively as follows:

• For the k ≥ 0 strongly connected components of G with size strictly
greater than 1, Y1, . . . , Yk, (vi, Yi) are the roots in F, where vi ∈ Yi and
1 ≤ i ≤ k.

• For each (vi, Yi), a directed elimination forest is created for G[Yi] - vi
and the roots of that forest are the children of (vi, Yi) in F.

Lemma 4.3. Let F be directed elimination forest of minimum height for a
digraph G = (V , E). Then, r(G) = height(F).

Proof. We will proof this by induction on the number of vertices of G.

• Base case: If |V | = 1, then r(G) = 0. height(F) is 0 because we
assume that the height of the empty tree is 0.

• Induction: If G is strongly connected and |V | > 1, then v ∈ V exists,
such that r(G) = 1 + r(G − v). Let (v, V) be the root of F , then
height(F) = 1 + height(F ′) where F ′ is any directed elimination forest
of G− v because of definition 4.2. If we consider F ′ to be the directed
elimination forest of G − v of minimum height, by induction we can
assume that r(G− v) = 1 + height(F ′). So, r(G) = 1 + r(G− v) = 1
+ height(F ′) = height(F).

If G is not strongly connected but it has at least a cycle, then, for every
X that is a strongly connected component of G by induction we can

10

assume that r(G[X]) = height(FX) where FX is the directed elimination
tree of minimum height for G[X]. Because r(G) is the maximum among
all r(G[X]) and the height(F) is the maximum among all height(FX),
r(G) = height(F).

5 Game Characterization of Cycle Rank

5.1 Definitions

For this section, we will assume all our graphs are directed and contain
no self loops. We will also need some basic definitions before we can start
talking about the games we will use to define cycle rank.

Successor-closed
H ⊆ G is an successor-closed of G if H is there are no edges from H to
G \H.

String
A string is a sequencce of elements a1, . . . , an such that all ai belong to
the same set. That set is called the alphabet.

Length
The lenght of a string A = a1, . . . , an, denoted by |A| is n. The length
of the empty string is 0.

Concatenation
The concatenation of two string A = a1, . . . , an and B = b1, . . . , bk,
denoted by A·B is a1, . . . , an, b1, . . . , bk

V*
V* is the set of all possible finite words over the set V, including the
empty word.

Prefix
X ∈ V* is a prefix of Y ∈ V*, denoted by X�Y if Z ∈ V* exists such
that Y = X·Z.

String to set
For a string S = a1, . . . , an, {|S|} denotes the set {a1, . . . , an}.

Symmetric difference
For two sets A and B their symmetric difference, expressed as A∆B is
(A∪B)\(A ∩B).

11

5.2 Game description

Informal definition: We will use a cops and robbers game played on a
graph G, where the cops will try to catch a robber. In each step of the game
the cops can either place a cop on a node or remove only the most recently
placed one. This is why it’s called a LIFO search. The cops win if the manage
to place a cop in the same node where the robber is.

The are four variants of the game depending on how the robber moves
and which information do the cops have.

Invisible - i
The cops don’t know the position where the robber is located and he
can move along directed paths in G that contain no cops.

Visible - v
The cops know the position where the robber is located and he can
move along directed paths in G that contain no cops.

Invisible strongly connected - isc
The cops don’t know the position where the robber is located and he
can only move inside the same strongly connected component of G that
contain no cops.

Visible strongly connected - isc
The cops know the position where the robber is located and he can only
move inside the same strongly connected component of G that contain
no cops.

Formal definition: For a digraph G, the state of the game is described by
a pair (X, R). X ∈ V* is the position of the cops and the order in which they
were added. R is an induced subgraph of G\{|X|}. In the invisible variants,
R represents where the robber may be, while in the visible variants its means
which nodes can the robber reach. We will define the valid states for each
game variant.

i-state
R is successor closed in G\{|X|}. If R wouldn’t be successor closed the
robber would have an edge without cops which he could use to scape
R and R wouldn’t represent all possible positions of the robber.

v-state
R is successor closed in G\{|X|} and v ∈ V(R) exists such that a
directed path exist from v to any other node in V(R).

12

isc-state
R is a union of strongly connected components of G\ {|X|}.

vsc-state
R is a single strongly connected component of G\ {|X|}.

Let (X, R) be the current state of the game and (X ′, R′) a valid successor
(a possible next state). Then, |{|X|}∆{|X ′|}| = 1 and |X| � |X ′| or |X ′| �
|X|. R is defined differently for different game variants.

• In the i and v variants, for every v′ ∈ V (R′) there exists a v ∈ V (R)
such that a path exists from v to v′ in G \({|X|} ∩ {|X ′|}|).

• In the isc and vsc variants, for every v′ ∈ V (R′) there exists a v ∈
V (R) such that v and v′ are contained in the same strongly connected
component of G \ ({|X|} ∩ {|X ′|}|).

The initial state of a game in the invisible variants is clearly (ε, G). In
the visible variants this is not necessarily a valid state, so the initial state will
be any valid position of the form (ε, R). A strategy for the cops is a function
that given a game state (X, R) returns X’, the position the cops will take
in the next state. A strategy is said to be a winning strategy if no matter
which moves the robber makes the strategy reaches a state of the form (X,
∅) from any possible initial state.

For every previously mentioned game variants we can create a new mono-
tone variant (mi, mv, misc, mvsc). The monotone variant of each game is
equal to the non monotone one, except that for every position (Xi, Ri) and its
successor (Xi+1, Ri+1), the cops strategy must assure that Ri+1 is a subgraph
of Ri no matter what the robber does.

We are interested in the minimum number of cops necessary to capture the
robber. For any game variant, gv ∈ {i, v, isc, vsc, mi, mv, misc, mvsc}, we
will call LIFOgv(G) the minimum number of cops needed to capture a robber
in G in that game variant. We will also define one more game called searcher
stationary vsc, which is equal to the LIFO vsc but for every Xi,Xi ≺ Xi+1,
i.e, cops can only be added, not removed. SSvsc will be the minimum number
of cops needed in this strategy.

Theorem 5.1. For any digraph G the same number of cops are needed to
capture a robber in every game variant and that number is equal to the cycle
rank of G plus 1:

1 + r(G) = LIFOmi(G) = LIFOi(G) = LIFOmisc(G) = LIFOisc(G) =
LIFOmv(G) = LIFOv(G) = LIFOmvsc(G) = LIFOvsc(G) = SSvsc(G).

13

Observation 5.2. There are some trivial relations between these games

• Every monotone winning strategy is also a winning strategy in the non
monote variant of that same game.

• Every winning strategy for an invisible game variant is also a winning
strategy for the visible variant of that same game.

• Every winning strategy for when the robber is not restricted to only
move in strongly connected components is also winning when the robber
is restricted to only move in strongly connected components.

With this observation we can build the following figure.

LIFOmi(G)

LIFOi(G) LIFOmv(G) LIFOmisc(G)

LIFOv(G) LIFOisc(G) LIFOmvsc(G)

LIFOvsc(G)

1 + r(G)

SSvsc(G)

Figure 6: The arrows go from the bigger values to the smaller ones. We have
the normal arrows from the previous observation. We will prove the doted
arrows and that will prove that the lemma holds.

Lemma 5.3. For any digraph G, LIFOvsc(G) ≥ SSvsc(G).

@@TODO

Proof. We will proof this by contradiction. Lets assume state (X, R) and a
winning strategy f for the LIFO game variant exist such that, f(X, R) =

14

X ′, |X ′| < |X| and |R| ¿ 1. We will proof that the cops can’t win with such
an strategy. Define R′ ⊂ R such that (X ′, R′) is a valid successor of (X,
R).

Lemma 5.4. For any digraph G, SSvsc(G) ≥ 1 + r(G).

Proof. We will prove this by induction over the number of vertices of G.

1. If |V(G)| = 1, SSvsc(G) = 1 + r(G) = 1.
PROOF: A cop in the single node of G will always capture the robber
and |V(G)| = 1, so r(G) = 0 by definition.

2. Assume that for every G’ such that |V(G’)| < |V(G)|, SSvsc(G′) ≥ 1 +
r(G′).
PROOF: Induction hypothesis, we can assume it because 1.

3. If G is not strongly connected, then SSvsc(G) ≥ 1 + r(G)

3.1. G has k > 1 strongly connected components H1, . . . , Hk and for
every Hi, |V(HI)| < |V(G)|.
PROOF: In 3 we assume G is not strongly connected.

3.2. SSvsc(G) ≥ SSvsc(Hi) such that Hi is a strongly connected com-
ponent of G.
PROOF: SSvsc(G) must have a winning strategy for any strongly
connected component the robber may start in.

3.3. maxHi
SSvsc(Hi) ≥ maxHi

(1 + r(Hi)).
PROOF: By 2 and 3.1.

3.4. SSvsc(G) ≥ maxHi
SSvsc(Hi) ≥ maxHi

(1 + r(Hi)) = 1 + r(G).
PROOF: The first equality by 3.2. The second inequality by 3.3.
The last one by definition of cycle rank.

4. If G is strongly connected, then SSvsc(G) ≥ 1 + r(G)

4.1. Let φ be a minimal strategy, that uses SSvsc(G) cops and v =
{|φ(ε, G)|}.
PROOF: By 4, (ε, G) is the initial state, so v exists.

4.2. SSvsc(G) = 1 + SSvsc(G - v).
PROOF: By 4.1 φ induces a winning strategy for SSvsc(G - v)
using SSvsc(G)-1 cops.

4.3. SSvsc(G) = 1 + SSvsc(G - v) ≥ 2 + r(G-v) ≥ 1 + r(G).
PROOF: The first inequality by 4.2. The second inequality by
2. The last one is by the definition of cycle rank, as r(G) is the
smallest r(G-u) + 1, then 1+ r(G-u) ≥ r(G) for any u ∈ V(G).

15

5. Q.E.D.
PROOF: By 3 and 4.

Lemma 5.5. 1 + r(G) ≥ LIFOmi(G)

Proof. We will prove this by induction over the number of vertices of G.

1. If |V(G)| = 1, LIFOmi(G) = 1 + r(G) = 1.
PROOF: A cop in the single node of G will always capture the robber
and |V(G)| = 1, so r(G) = 0 by definition.

2. Assume that for every G’ such that |V(G’)| < |V(G)|, 1 + r(G’) ≥
LIFOmi(G’).
PROOF: Induction hypothesis.

3. If G is strongly connected, 1 + r(G) ≥ LIFOmi(G).

3.1. v ∈ V(G) exists, such that r(G) = 1+ r(G-v).
PROOF: By definition of cycle rank.

3.2. 1 + LIFOmi(G-v) ≥ LIFOmi(G).
PROOF: We can place a cop in v in the first step of the game,
never remove it and win the game in G using 1 + LIFOmi(G-v)
cops.

3.3. 1 + r(G) = 2 + r(G-v) ≥ 1 + LIFOmi(G-v) ≥ LIFOmi(G).
PROOF: By 3.1, 2 and 3.2

4. If G is not strongly connected, 1 + r(G) ≥ LIFOmi(G).

4.1. G has k > 1 strongly connected components H1, . . . , Hk and for
every Hi, |V(Hi)| < |V(G)|.
PROOF: In 4 we assume G is not strongly connected.

4.2. A strongly connected component Hi exists such that there is no
edge from G \Hi to Hi.
PROOF: By 4.1 G is not strongly connected, so Hi must exist.

4.3. LIFOmi(G) ≥ max(LIFOmi(G \Hi), LIFOmi(Hi)).
PROOF: The cops can search the robber only in Hi. Then, they
can remove every cop in Hi and search only in G\Hi. The robber
will never be able to go back to Hi because of 4.2

16

4.4. LIFOmi(G) ≥ max(LIFOmi(G\Hi), LIFOmi(Hi)) ≥ max(1+r(G\
Hi), 1 + r(Hi)) = 1 + r(G).
PROOF: The first inequality by 4.3. The second one by 2. The
last equality by the definition of cycle rank and the assumption
that G is not strongly connected.

5. Q.E.D.
PROOF: By 3 and 4.

6 Isomorphism

6.1 Problem definition

In the isomorphism problem we have to determine for two given graphs G
and H if there exists a bijection φ from V (G) to V (H) such that ∀u, v ∈
V (G), {u, v} ∈ E(G) ⇐⇒ {φ(u), φ(v)} ∈ E(H).

6.2 Parameterized complexity

In classical complexity we only take into account the length of the input to
study the complexity of a problem. Unfortunately, many problems become
intractable under this measure with the best algorithms we know. This is the
case of both the famous NP-complete problems and the graph isomorphism
problem. The fastest know exact algorithms for these run in exponential and
sub-exponential time respectively.

In parameterized complexity on the other hand, we don’t only take into
account the size of the input, but also a parameter about the input, e.g the
tree depth of the input graph in the isomorphism problem. An interesting
complexity class is the Fixed Parameter Tractable. We consider a problem to
be in this class, if we can find a solution in time @@TODO O(f(d)∗n), where
n is the size of the input, d is the parameter and @@TODO f : N− > N .
Beware, that such a function can be exponential or even worse.

In this chapter we will show that such an algorithm exists for the isomor-
phism problem parameterized by the tree depth of the graphs. This means
that we can solve the problem for any class of graphs with a bounded tree
depth in polynomial time with respect to their size.

17

6.3 Bounded roots

Definition 6.1. Let G be a connected graph with tree depth d. Then, root(G)
= {v ∈ G : td(G− v) = d− 1} is the set of roots of G.

For the algorithm we will need to proof that |root(G)| is bounded by a
function of the tree depth of G. Still, this is not a simple proof and we will
need to introduce new concepts and lemmas.

Definition 6.2. Let G be a connected graph and B a subset of the nodes of
G. For two connected components of G \ B, C1 and C2, we will say C1 and
C2 are equivalent in G with respect to B if and only if the following holds:
There exists a bijection Φ : C1 ∪ B −→ C2 ∪ B such that ∀b ∈ B, Φ(b) = b
and ∀u, v ∈ V (C1) ∪ V (B), {u, v} ∈ E(G) ⇐⇒ {Φ(u),Φ(v)} ∈ E(G).

We can visualize this equivalence relation as two components being iso-
morphic and connected in the same way to the set B.

Example 6.3. Let the graph in the image be G and B = {α, β}. The
component of the node δ in G \ B and the one of node ε are equivalent
with respect to B, but they are not equivalent to the one consisting of γ.

βα

γ δ ε

Lemma 6.4. Let G be a connected graph with td(G) = d and B a subset
of the nodes of G. Let C1, C2, . . . , Ck be equivalent components in G with
respect to B. Let G′ be the graph left after we remove all the Ci with i > d+1.
Then, td(G) = td(G′) and root(G) = root(G′).

Proof. @@TODO

6.4 Bounded roots in minimal graphs

Definition 6.5. We will say a graph G with td(G) = d is a minimal graph
if for any subset of its nodes B, it has at most d + 1 equivalent components
in G with respect to B.

We are interested in minimal trees because of the following lemma.

18

Lemma 6.6. For any graph G, there exists a graph G′ such that root(G) =
root(G′), td(G) = td(G′) and G′ is minimal.

Proof. @@TODO

By using this lemma, we only have to proof that the number of nodes is
bounded by the tree-depth in minimal graphs. This is easy to see, because
for any graph, there exists a minimal graph with the same roots and tree-
depth. As the roots are a subset of the nodes, proving that the set of nodes
is bounded is sufficient.

Lemma 6.7. Let G be a minimal graph with td(G) = d. Then, there exists
f(d, i) such that it returns the maximum possible size of the graph left after
i rounds of the d-selection-deletion game.

Proof. We will proof this by reverse induction on i.

• Base case: If i = d, then clearly f exists. f(d, i) = 0, because other-
wise Alice would have winning strategy in the d + 1-selection-deletion
game and td(G) would be higher than d, a contradiction.

• Induction: If i < d, we can assume f(d, k) exists for all k > i. Let B
be the set of nodes that Bob has removed in the first i rounds of the
game. We know that the size of each component of G \ B is at most
s = f(d, i + 1), because Alice will pick a component of G \ B for the
round i + 1 and Bob can only remove a node. There are less than 2s2

isomorphic graphs of size s. Each of this graphs can be connected to B
in 2i·s different ways, because each node in the component can have an
edge to each node in B. With all this we can calculate the total number
of equivalent components with respect to B, s′ = 2s2 · 2i·s = 2s2+i·s.
Because G is minimal, we know that each equivalent component will
appear at most d+ 1 times. Thus, f(d, i) = 1 + (d+ 1) · s′.

With this last lemma, we know that any minimal graph G with td(G)
= d will have at most f(d, 0) nodes. As we showed earlier this result also
generalizes to any non-minimal graph, so we have proven the following.

Theorem 6.8. Let G be a graph with td(G) = d. Then, a function f of d
exists such that |root(G)| = f(d).

19

6.5 An ordering on elimination trees

Definition 6.9. Let G be a connected graph, P = p1, . . . , pn a sequence of
vertices of G and T an elimination tree of a single component of G−P . For
a triple of the form (G, T , P):

• rT is the root of T

• T ′ = {T1, . . . , Tk} is the set of trees in T − rT .

• P ′ is P with the root of T appended.

• GT will be the graph induced by the nodes of T .

• For u, v ∈ V (G), EG(u, v) returns 1 if {u, v} ∈ E(G) and 0 otherwise.

We will now proceed to define an ordering on such triples.

Definition 6.10. Let (G, T, P), (H,Y, S) be two triples of the form we have
just defined such that |V (G)| = |V (H)| and |P | = |S|. We will say (G, T, P)
< (H, Y, S) if any of the following holds:

• |V (GT)| < |V (HY)|.

• |V (GT)| = |V (HY)| and |T ′| < |Y ′|.

• |V (GT)| = |V (HY)|, |T ′| = |Y ′| and (EG(p1, rT), . . . , EG(pn, rT))
< (EH(s1, rY), . . . , EH(sn, rY)) lexicographically.

• |V (GT)| = |V (HY)|, |T ′| = |Y ′| = k, ∀i = 1, . . . , n EG(pi, rT) =
EH(si, rY) and ((G, T1, P

′), . . . , (G, Tk, P
′)) < ((H, Y1, S

′), . . . , (H,Yk, S
′))

lexicographically, where each list is ordered by this relation.

Lemma 6.11. For two triples (G, T, P), (H, Y, S), if neither (G, T, P) <
(H,Y, S) nor (H,Y, S) < (G, T, P), then a bijection φ exists such that ∀v ∈
P ∪ V (GP) and ∀u ∈ V (GP), {u, v} ∈ E(G) ⇐⇒ {φ(u), φ(v)} ∈ E(H)
and φ(pi) = si.

Proof. We will proof this by induction on the height of T .

• Base case: If height(T) = height(Y) = 1, then there is only one
possible φ. This φ obviously preserves the conditions mentioned in the
lemma because of the third condition of the < operator.

20

• Induction: By induction a φi exists from each (G, Ti, P
′) to each

(H, Yi, S
′). We can build a φ from (G, T, P) to (H,Y, S) that pre-

serves the conditions mentioned in the Lemma simply by joining the
different φi.

Definition 6.12. For a connected graph G and P = p1, . . . , pn a sequence
of vertices of G, we will say an elimination tree T is minimal iff no Y exists
such that (G, Y, P) < (G, T, P).

6.6 Algorithm

Lemma 6.13. For two minimal (G, T, ε) and (H, Y, ε), G ∼= H ⇐⇒ neither
(G, T, ε) < (H,Y, ε) nor (H,Y, ε) < (G, T, ε).

Proof. =⇒: If G and H are isomorphic, then the second condition holds
because otherwise T or Y wouldn’t be minimal.
⇐=: This is proven in lemma 6.11.

With this lemma we can now build an algorithm to check whether or
not two graphs are isomorphic. We find a minimal elimination tree for each
graph and then we just have to compare them.

21

Algorithm 1: Recursively generate a minimal elimination tree

1 function MinET (G,P,G′);
Input : G is a connected graph, P = (p1, . . . , pn) is a sequence of

nodes in V (G) and G′ is a connected component of G \ P .
Output: A minimal elimination tree of G′ for G and P

2 if td(G′) == 1 then
3 Output the single node of G′;
4 else
5 R← {r ∈ V (G′) : td(G′ − r) + 1 = td(G′)};
6 Remove from R every r ∈ R that doesn’t have a minimal number

of components in G′ − r;
7 Remove from R every r ∈ R that doesn’t have minimal values of

(EG(p1, r), . . . , EG(pn, r));
8 T ← ∅;
9 foreach r ∈ R do

10 P ′ ← (p1, . . . , pn, r);
11 ET ← tree formed by the single node r;
12 foreach connected component Hi ∈ G′ − r do
13 ETi ← MinET(G,P ′, Hi);
14 ET ← ETi connected to the root of ET ;

15 end
16 T ← T ∪ {ET};
17 end
18 Output the minimal elimination tree in T for graph G and

sequence P ;

19 end

Algorithm 2: Check isomorphism of two graphs

1 function CheckIso (G,H);
Input : G and H are connected graphs
Output: True if and only if G is isomorphic to H

2 T ←MinET (G, ε,G);
3 T ′ ←MinET (H, ε,H);
4 if (G, T, ε) < (H,T ′, ε) or (H,T ′, ε) < (G, T, ε) then
5 Output False;
6 else
7 Output True;
8 end

22

6.7 Complexity analysis

• Comparing two triples takes time O(n2).

• Finding R takes time f(d− 1)n2 per vertex.

• R is root(G), so |R| < g(d).

• Removing non minimal values for the second and third conditions takes
g(d)n2.

• Each step inside the loop takes
n∑

i=1

T (|V (Hi)|, d−1) to find the minimal

decomposition and O(n2k log k) to sort them.

• Selecting the smallest T1, . . . , Tk takes O(kn2).

From this we get the following:

T (n, d) ≤ f(d)n3+g(d)n2+g(d)

{(
k∑

i=1

T (|V (Hi)|, d− 1)

)
+O(n2k log k)

}
+

O(kn2)

23

