-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEFGNN.py
executable file
·221 lines (185 loc) · 9.62 KB
/
EFGNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import torch
import torch.nn as nn
from torch_geometric.utils import remove_self_loops, to_torch_csr_tensor, to_dense_adj, degree, add_self_loops, scatter
import torch.nn.functional as F
from math import sqrt
from AttLayer import AttLayer
# These use the old system, which is slightly more confusing. They still work, but I recommend using the new filters
# described below.
old_flts = [{"I": 1}, # 1
{"I": 1, "h1": (1, -1, 0)}, {"I": 1, "h1": (1, -0.5, -0.5)}, {"I": 1, "h1": (1, 0, -1)}, # 4
{"I": 1, "h1": (-1, -1, 0)}, {"I": 1, "h1": (-1, -0.5, -0.5)}, {"I": 1, "h1": (-1, 0, -1)}, # 7
{"h1": (1, -1, 0)}, {"h1": (1, -0.5, 0)}, {"h1": (1, 0, 0)}, {"h1": (1, 0.5, 0)}, {"h1": (1, 1, 0)}, # 12
{"I": 1, "h2": (1, -1, 0)}, {"I": 1, "h2": (1, -0.5, -0.5)}, {"I": 1, "h2": (1, 0, -1)}, # 15
{"I": 1, "h2": (-1, -1, 0)}, {"I": 1, "h2": (-1, -0.5, -0.5)}, {"I": 1, "h2": (-1, 0, -1)}, # 18
{"h2": (1, -1, 0)}, {"h2": (1, -0.5, 0)}, {"h2": (1, 0, 0)}, {"h2": (1, 0.5, 0)}, {"h2": (1, 1, 0)}] # 23
# A filter is represented by a list of 5-tuples, each tuple describing one term in the sum which makes up a filter.
# Tuples are of the form (l, k, r, p, q), where:
# l is the number of hops, k is the multiplier, r (bool) renormalisation trick, p&q determine the normalisation
# if l = 0, we get k*I (identity / ego nodes)
# if l = 1 we get D^p A D^q
# if l >= 2 we get D^p (A D^{-1})^{l-1} A D^q
# if r = True replace A by A+I and D by D+I (renormalisation trick)
# finally a filter is a sum of
class EFGNN(nn.Module):
def __init__(self, input_dim, hid_dim, output_dim, filters, prop2_filts, use_decoder=False, dp1=0.5, dp2=0.5,
use_alpha=True, use_deg=True, noise_mult=0.1, use_att=False, use_act=True):
"""
See forward for an explanation of what everything does
Args:
input_dim: num input features
hid_dim:
output_dim: num classes
filters: which filters to use, see above
prop2_filts: which 2nd propagation filters to use (see report...)
use_decoder: whether to use an additional 2-layer MLP at the end
dp1: dropout after first layer
dp2: dropout in the decoder (only relevant if use_decoder==True)
use_alpha: whether to use alpha as a learnable param, otherwise it is fixed
use_deg: whether to inject the degree as a feature
noise_mult: inject Gaussian noise into the first layer embeddings (noise mult gives st dev)
use_att: whether to use attention
use_act: if True, use leakyReLU(0.01) else id
"""
super(EFGNN, self).__init__()
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.input_dim = input_dim
self.hid_dim = hid_dim
self.output_dim = output_dim
self.filters = filters
self.prop2_filts = prop2_filts
self.num_in_flts = len(self.filters)
self.num_out_flts = self.num_in_flts + len(self.prop2_filts)
self.dp1 = dp1
self.noise_mult = noise_mult
self.layer1 = nn.Linear(input_dim, self.num_in_flts * hid_dim)
self.leaky = nn.LeakyReLU(0.01) if use_act else None
self.lay_2_dim = 2*hid_dim if use_decoder else output_dim
self.out_layers = nn.ModuleList([nn.Linear(hid_dim, self.lay_2_dim) for i in range(self.num_out_flts)])
def get2prop_layer():
return nn.Linear(self.num_in_flts * hid_dim, len(self.prop2_filts) * hid_dim)
self.double_prop_layer = get2prop_layer() if len(self.prop2_filts) > 0 else None
self.decoder = None
if use_decoder:
self.decoder = nn.Sequential(
nn.LeakyReLU(0.03),
nn.Dropout(p=dp2),
nn.Linear(2*hid_dim, output_dim)
)
self.att_layer = AttLayer(input_dim, hid_dim//4, use_cos_sim=True, use_dist=True) if use_att else None
self.deg_layer = None
self.alpha = torch.ones((self.num_out_flts + int(use_deg),), dtype=torch.float, device=self.device)
self.gamma = torch.tensor(1.0, dtype=torch.float, device=self.device)
self.alpha_params = []
if use_deg:
self.deg_layer = nn.Linear(1, self.lay_2_dim)
self.alpha = torch.ones((self.num_out_flts + 1,), dtype=torch.float, device=self.device)
if use_alpha:
self.alpha = nn.Parameter(self.alpha, requires_grad=True)
self.gamma = nn.Parameter(self.gamma, requires_grad=True)
self.alpha_params = [self.alpha]
self.layer_params = [self.gamma]
for lay in [self.layer1, self.double_prop_layer, self.deg_layer, self.decoder, self.out_layers]:
if lay is not None:
self.layer_params.extend(lay.parameters())
def apply_filter(self, filt, z, data, att=None):
"""
Explained at the top of this file.
:param data: the data object (which has all the csrs and powers of degree precomputed)
:param filt: the filter (either in old form (dict) or in new form (list))
:param z: node feature embedding
:param att: attention-based adjacency (not very helpful)
:return:
"""
res = torch.zeros(z.shape, dtype=torch.float, device=self.device)
if isinstance(filt, list):
for l, k, r, p, q in filt:
if l == 0:
res = torch.add(res, alpha=k, other=z)
adj = data.renorm_csr if r else data.one_hop_csr
degs = data.renorm_deg_pows if r else data.h1_deg_pows
diffused = adj @ (degs[q] * z)
for i in range(l-1):
diffused = adj @ diffused
diffused = degs[p] * diffused
res = torch.add(res, alpha=k, other=diffused)
return res
if "I" in filt:
res = res + filt["I"] * z
for hop in ["h1", "h2"]:
if hop in filt:
mult, j_exp, i_exp = filt[hop]
adj = data.one_hop_csr
degs = data.h1_deg_pows
diffused = adj @ (degs[j_exp] * z)
if hop == "h2":
diffused = adj @ (degs[-1] * diffused)
diffused = degs[i_exp] * diffused
res = torch.add(res, alpha=mult, other=diffused)
if "h2!" in filt:
mult, j_exp, i_exp = filt["h2!"]
adj = data.two_hop_csr
degs = data.h2_deg_pows
diffused = degs[i_exp] * (adj @ (degs[j_exp] * z))
res = torch.add(res, alpha=mult, other=diffused)
if "att" in filt:
assert att is not None
values, edge_idx, degs = att
mult, j_exp, i_exp = filt["att"]
diffused = degs[j_exp] * z
diffused = diffused[edge_idx[0]] * values
diffused = degs[i_exp] * scatter(diffused, edge_idx[1], dim=0, dim_size=data.num_nodes)
res = torch.add(res, alpha=mult, other=diffused)
return res
def forward(self, data):
n = data.num_nodes
one_hop_csr = data.one_hop_csr
h1_deg_pows = data.h1_deg_pows
alpha = self.gamma * F.softmax(self.alpha, dim=0)
x = data.x
x = self.layer1(x) # Compute the embedding
# add Gaussian noise to embeddings (for regularisation...)
if self.noise_mult > 0 and self.training:
x = x + self.noise_mult * torch.randn(x.shape, dtype=torch.float, device=self.device)
# Split into channels, one per filter, each channel is of width self.hid_dim
xs = list(torch.split(x, self.hid_dim, dim=1))
# empty result tensor
out = torch.zeros((n, self.lay_2_dim), dtype=torch.float, device=self.device)
att = None # attention matrix (usually not used)
if self.att_layer is not None:
att = self.att_layer(data)
# Start with single-pass filters
for i, z in enumerate(xs):
filt = self.filters[i]
# use the function above
z = self.apply_filter(filt, z, data, att)
z = F.normalize(z, p=2, dim=1) # HOPNORM
if self.leaky is not None:
z = self.leaky(z)
z = F.dropout(z, p=self.dp1, training=self.training)
xs[i] = z
out = out + alpha[i] * F.normalize(self.out_layers[i](z))
# 2nd-propagation filters take the results of the starting filters and convolve them to neighbours again
if self.double_prop_layer is not None:
x_cat = torch.cat(xs, dim=1)
assert x_cat.shape == (n, self.num_in_flts * self.hid_dim)
double_prop = self.double_prop_layer(x_cat)
double_prop = list(torch.split(double_prop, self.hid_dim, dim=1))
for i, filt in enumerate(self.prop2_filts):
z_ego = double_prop[i]
z = h1_deg_pows[filt[2]] * (one_hop_csr @ (h1_deg_pows[filt[1]] * z_ego))
if filt[0] != 0:
z = torch.add(z, alpha=filt[0], other=z_ego)
z = F.normalize(z, p=2, dim=1)
if self.leaky is not None:
z = self.leaky(z)
z = F.dropout(z, p=self.dp1, training=self.training)
out = out + alpha[i + self.num_in_flts] * F.normalize(self.out_layers[i](z))
# A layer which can inject the degree of each node as a feature
if self.deg_layer is not None:
out = out + alpha[-1] * self.deg_layer(h1_deg_pows[1])
# An additional two-layer MLP
if self.decoder is not None:
out = self.decoder(out)
y_hat = F.log_softmax(out, dim=1)
return y_hat