-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·79 lines (68 loc) · 2.93 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import torch
import torch.nn as nn
import torch.optim as optim
# This is partially copied from one of the practicals (why fix what isn't broken...). Thanks!!
def train(model, data, num_epochs, use_edge_index=False, variable_lrs=None, layer_lr=0.001, alpha_lr=0.0001, wgt_dec=0,
print_reports=True, noise_off_ep=-2):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Set up the loss and the optimizer
loss_fn = nn.CrossEntropyLoss()
opt = optim.Adam([{"params": model.layer_params, "lr": layer_lr}, {"params": model.alpha_params, "lr": alpha_lr}],
weight_decay=wgt_dec)
# layer_optimizer = optim.Adam(model.layer_params, lr=layer_lr, weight_decay=wgt_dec)
# alpha_optimizer = optim.Adam(model.alpha_params, lr=alpha_lr, weight_decay=wgt_dec)
# A utility function to compute the accuracy
def get_acc(outs, y, mask):
return (outs[mask].argmax(dim=1) == y[mask]).sum().float() / mask.sum()
tt = {
'alpha': [],
'acc_val': [],
'acc_test': [],
'loss': [],
'acc_train': []
}
best_acc_val = -1
best_acc_test = 0
for epoch in range(num_epochs):
if (variable_lrs is not None) and epoch in variable_lrs:
for i in [0, 1]:
opt.param_groups[i]["lr"] = variable_lrs[epoch][i]
if print_reports:
print(f"Changed lrs to {variable_lrs[epoch]}")
if epoch == noise_off_ep:
model.noise_mult = 0
data.x = data.x.to(device)
data.y = data.y.to(device)
data.edge_index = data.edge_index.to(device)
try:
data.edge_attr = data.edge_attr.to(device)
except AttributeError:
data.edge_attr = None
try:
data.edge_attr_matrix = data.edge_attr_matrix.to(device)
except AttributeError:
data.edge_attr_matrix = None
opt.zero_grad()
model.train()
outs = model(data)
loss = loss_fn(outs[data.train_mask], data.y[data.train_mask])
loss.backward()
opt.step()
if epoch % 10 == 0:
model.eval()
outs = model(data).detach()
model.train()
acc_val = get_acc(outs, data.y, data.val_mask)
acc_test = get_acc(outs, data.y, data.test_mask)
acc_train = get_acc(outs, data.y, data.train_mask)
tt['loss'].append(loss.item())
tt['acc_val'].append(acc_val.item())
tt['alpha'].append([float(f"{i:.3f}") for i in model.alpha.tolist()])
tt['acc_train'].append(acc_train.item())
if acc_val >= acc_val:
best_acc_val = acc_val
best_acc_test = acc_test
if print_reports:
print(f'[Epoch {epoch + 1}/{num_epochs}] Loss: {loss} | Train: {acc_train:.3f} | Val: {acc_val:.3f} | '
f'Test: {acc_test:.3f}')
return best_acc_val, best_acc_test, tt