-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
300 lines (254 loc) · 11.4 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import argparse
import smtplib
from email.message import EmailMessage
from src.utils.email_sender.email_sender import email_sender
from src.utils.all_utils import read_yaml
from src.utils.KThread import KThread
from src.training.stage_01_data_loader import get_data
from src.training.stage_02_data_preprocessing import preprocessing
from src.training.stage_03_model_training import ModelTraining
from src.prediction.stage_01_data_loader import get_data as prediction_get_data
from src.prediction.stage_02_data_preprocessing import preprocessing as prediction_preprocessing
from src.prediction.stage_03_model_predictor import Predictor
from wsgiref import simple_server
from flask import Flask, request, render_template
from flask import Response
import os
from flask_cors import CORS, cross_origin
import flask_monitoringdashboard as dashboard
from src.utils.DbOperations_Logs import DBOperations
import threading
import schedule
import pandas as pd
import json
os.putenv('LANG', 'en_US.UTF-8')
os.putenv('LC_ALL', 'en_US.UTF-8')
from flask import Flask, jsonify, request
import json, os, signal
app = Flask(__name__)
dashboard.bind(app)
CORS(app)
isAlive=False
global t1
def stopServer():
os.kill(os.getpid(), signal.SIGINT)
return jsonify({ "success": True, "message": "Server is shutting down..." })
@app.route("/prediction_page", methods=['GET'])
@cross_origin()
def prediction_page():
return render_template('prediction_page.html')
@app.route("/", methods=['GET'])
@cross_origin()
def home():
return render_template('homepage.html')
@app.route("/scheduler_manager", methods=['GET'])
@cross_origin()
def scheduler_manager():
return render_template('scheduler_manager.html')
@app.route("/show_training_logs", methods=['GET','POST'])
@cross_origin()
def show_training_logs():
'''This function shall be used to Show Training Logs'''
config = read_yaml("config/config.yaml")
params = read_yaml("config/params.yaml")
database_name = params['logs_database']['database_name']
training_table_name = params['logs_database']['training_table_name']
user_name = config['database']['user_name']
password = config['database']['password']
db_logs = DBOperations(database_name)
db_logs.establish_connection(user_name, password)
stage_name = []
time = []
method_name = []
Logs = []
for i in db_logs.show_logs(training_table_name):
stage_name.append(i[0])
time.append(i[1])
method_name.append(i[2])
Logs.append(i[3])
return render_template("show_training_logs.html", len = len(Logs), stage_name=stage_name,time=time,method_name=method_name,Logs = Logs)
@app.route("/show_prediction_logs", methods=['GET','POST'])
@cross_origin()
def prediction_logs():
'''This function shall be used to show prediction logs'''
config = read_yaml("config/config.yaml")
params = read_yaml("config/params.yaml")
database_name = params['logs_database']['database_name']
prediction_table_name = params['logs_database']['prediction_table_name']
user_name = config['database']['user_name']
password = config['database']['password']
db_logs = DBOperations(database_name)
db_logs.establish_connection(user_name, password)
stage_name = []
time = []
method_name = []
Logs = []
for i in db_logs.show_logs(prediction_table_name):
stage_name.append(i[0])
time.append(i[1])
method_name.append(i[2])
Logs.append(i[3])
return render_template("show_prediction_logs.html", len = len(Logs), stage_name=stage_name,time=time,method_name=method_name,Logs = Logs)
@app.route("/predict", methods=['GET','POST'])
@cross_origin()
def prediction():
try:
args = argparse.ArgumentParser()
args.add_argument("--params", "-p", default="config/params.yaml")
args.add_argument("--config", default="config/config.yaml")
args.add_argument("--model", "-m", default="config/model.yaml")
parsed_args = args.parse_args()
predictor=Predictor(config_path=parsed_args.config, params_path=parsed_args.params,
model_path=parsed_args.model)
prediction_file_location, df = predictor.predict()
return render_template('prediction.html',prediction_file_location=prediction_file_location,sample_output=df,len=(df.shape[0]),df_columns=df.columns)
except ValueError:
return Response("Error Occurred! %s" % ValueError)
except KeyError:
return Response("Error Occurred! %s" % KeyError)
except Exception as e:
return Response("Error Occurred! %s" % e)
@app.route("/start_training_again", methods=['GET','POST'])
@cross_origin()
def training_status():
"""
This function shall be used to show training status on UI and also to kill the running thread if user demands to start the training again
:return:
"""
config = read_yaml("config/config.yaml")
params = read_yaml("config/params.yaml")
args = argparse.ArgumentParser()
args.add_argument("--params", "-p", default="config/params.yaml")
args.add_argument("--config", default="config/config.yaml")
args.add_argument("--model", "-m", default="config/model.yaml")
parsed_args = args.parse_args()
database_name = params['logs_database']['database_name']
training_table_name = params['logs_database']['training_table_name']
model_training_thread_table_name = params['model_training_thread']['model_training_thread_table_name']
user_name = config['database']['user_name']
password = config['database']['password']
db_logs = DBOperations(database_name)
db_logs.establish_connection(user_name, password)
db_logs.model_training_thread(model_training_thread_table_name)
if isAlive:
if t1.is_alive():
t1.kill()
print('Updated Status to NS in is_alive block')
globals()['isAlive'] = False
db_logs.update_model_training_thread_status('NS')
return render_template("model_training.html")
else:
print('Updated Status to NS in else block')
db_logs.update_model_training_thread_status('NS')
return render_template("model_training.html")
def trainRouteClient(recievers_email):
try:
print("Train Route Client",type(recievers_email))
config = read_yaml("config/config.yaml")
params = read_yaml("config/params.yaml")
args = argparse.ArgumentParser()
args.add_argument("--params", "-p", default="config/params.yaml")
args.add_argument("--config", default="config/config.yaml")
args.add_argument("--model", "-m", default="config/model.yaml")
parsed_args = args.parse_args()
database_name = params['logs_database']['database_name']
training_table_name = params['logs_database']['training_table_name']
model_training_thread_table_name=params['model_training_thread']['model_training_thread_table_name']
user_name = config['database']['user_name']
password = config['database']['password']
db_logs = DBOperations(database_name)
db_logs.establish_connection(user_name, password)
db_logs.model_training_thread(model_training_thread_table_name)
db_logs.update_model_training_thread_status('R')
print('Updated Status to Running')
db_logs.update_model_training_thread_status('R')
model_training = ModelTraining(config_path=parsed_args.config, params_path=parsed_args.params,
model_path=parsed_args.model)
mail_text=model_training.start_model_training()
email_sender.send_email(mail_text=mail_text, TO=recievers_email)
print("email sent",recievers_email)
stopServer()
except ValueError:
return Response("Error Occurred! %s" % ValueError)
except KeyError:
return Response("Error Occurred! %s" % KeyError)
except Exception as e:
return Response("Error Occurred! %s" % e)
return Response("Training successful!!")
@app.route("/train", methods=['GET','POST'])
@cross_origin()
def start_training():
if len(request.form["email"]) == 0:
return render_template("model_training.html")
else:
es = email_sender()
email_address = request.form["email"]
es.set_reciever_mail(email_address)
print("Reciever's mail",es.get_reciever_mail())
if es.validate_email(email_address):
es.notify_email(email_address)
scheduler(email_address)
return render_template("send_email.html",email_address=email_address)
else:
return render_template("email_address_validator.html")
@app.route("/start_training", methods=['GET','POST'])
@cross_origin()
def training():
config = read_yaml("config/config.yaml")
params = read_yaml("config/params.yaml")
args = argparse.ArgumentParser()
args.add_argument("--params", "-p", default="config/params.yaml")
args.add_argument("--config", default="config/config.yaml")
args.add_argument("--model", "-m", default="config/model.yaml")
parsed_args = args.parse_args()
database_name = params['logs_database']['database_name']
training_table_name = params['logs_database']['training_table_name']
model_training_thread_table_name = params['model_training_thread']['model_training_thread_table_name']
user_name = config['database']['user_name']
password = config['database']['password']
db_logs = DBOperations(database_name)
db_logs.establish_connection(user_name, password)
db_logs.model_training_thread(model_training_thread_table_name)
if ('R') in list(db_logs.model_training_thread_status()):
return render_template("training_status.html")
else:
return render_template("model_training.html")
@app.route("/training_page", methods=['GET'])
@cross_origin()
def training_page():
return render_template('training.html')
def scheduler(email_address):
config = read_yaml("config/config.yaml")
params = read_yaml("config/params.yaml")
args = argparse.ArgumentParser()
args.add_argument("--params", "-p", default="config/params.yaml")
args.add_argument("--config", default="config/config.yaml")
args.add_argument("--model", "-m", default="config/model.yaml")
parsed_args = args.parse_args()
database_name = params['logs_database']['database_name']
training_table_name = params['logs_database']['training_table_name']
model_training_thread_table_name = params['model_training_thread']['model_training_thread_table_name']
user_name = config['database']['user_name']
password = config['database']['password']
db_logs = DBOperations(database_name)
db_logs.establish_connection(user_name, password)
db_logs.model_training_thread(model_training_thread_table_name)
print(db_logs.model_training_thread_status())
if ('R') in list(db_logs.model_training_thread_status()):
return Response("Model Training in Progress, Please try later")
else:
print(email_address)
globals()['t1'] = KThread(target=trainRouteClient, args=[email_address])
print(t1.is_alive())
t1.start()
print("Thread_status", t1.is_alive())
globals()['isAlive'] = t1.is_alive()
t1.join(3)
print(request.json)
return render_template("model_training.html")
port = int(os.getenv("PORT",5000))
if __name__ == "__main__":
host = '0.0.0.0'
httpd = simple_server.make_server(host, port, app)
# print("Serving on %s %d" % (host, port))
httpd.serve_forever()