-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweek2_plots.py
149 lines (122 loc) · 5.42 KB
/
week2_plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import plotly.express as px
import plotly.graph_objects as go
import pandas as pd
import numpy as np
import constants
from lib import gc_skew_iter
def get_counts_ecoli(nucleotide):
if nucleotide not in ['A', 'T', 'G', 'C']:
raise ValueError(f"Invalid nucleotide {nucleotide}")
NUM_FRAGMENTS = 46
with open(constants.DATASETS['e_coli']) as f: ecoli = f.read().strip()
npecoli = np.array(list(ecoli))
fragments = np.array_split(npecoli,NUM_FRAGMENTS)
fragments_untyp = np.array(fragments, dtype=object)
fragments = np.roll(fragments_untyp, -16, axis=0)
counts = [np.count_nonzero(fragment == nucleotide) for fragment in fragments]
return fragments, counts
#Graph methods should return a tuple of a figure, and a markdown description of the graph
def graph_counts_raw(nucleotide):
fragments, counts = get_counts_ecoli(nucleotide)
num_fragments = len(counts)
fig = px.bar(x=list(range(num_fragments)), y=counts)
descr = f"""
## These are the raw counts of the number of {nucleotide}'s in each fragment.
There are {num_fragments} fragments, of size {len(fragments[-1])}-{len(fragments[0])} each"""
return (fig,descr)
def graph_counts_pct(nucleotide):
fragments, counts = get_counts_ecoli(nucleotide)
pct_counts = [count/len(fragments[0]) * 100 for count in counts]
num_fragments = len(counts)
fig = px.bar(x=list(range(num_fragments)), y=pct_counts)
fig.update_layout(yaxis_range=[20, 30], barmode='relative', bargap=0.1, bargroupgap=0.1)
descr = f"""
## These are the percentage of {nucleotide}'s in each fragment.
There are {num_fragments} fragments, of size {len(fragments[-1])}-{len(fragments[0])} each"""
return (fig,descr)
#This is called a bidirectional bar chart
def graph_counts_pct_shifted(nucleotide, shift_base=25):
fragments, counts = get_counts_ecoli(nucleotide)
pct_counts = [count/len(fragments[0]) * 100 for count in counts]
pct_counts_shifted = [pct - shift_base for pct in pct_counts]
num_fragments = len(counts)
fig = go.Figure()
fig.add_trace(go.Bar(
base=shift_base,
y=pct_counts_shifted,
x=list(range(num_fragments)),
orientation='v',
))
fig.update_layout(
barmode='relative',
title=f'Variation in frequency of {nucleotide} with position along genome (E. coli)',
yaxis=dict(title=f'Frequency of {nucleotide} (%)', range=(shift_base-5,shift_base+5)),
xaxis=dict(title='Chunk', tickvals=np.linspace(1,num_fragments,10)),
)
# MUST USE <img .. /> instead of <img..></img>
# MUST USE ../static/.. for static paths
descr = f"""These are the percentage of {nucleotide}'s in each fragment.
There are {num_fragments} fragments, of size {len(fragments[-1])}-{len(fragments[0])} each.
"""
img = ""
if nucleotide == 'C':
img = """This graph should roughly match up with the below graph from [here](https://cogniterra.org/lesson/30277/step/1?unit=22352) <br/>
<img src='../static/ecoli_cytosine_frequency.png' width='750' height='495'/>"""
elif nucleotide == 'G':
img = """This graph should roughly match up with the below graph from [here](https://cogniterra.org/lesson/30277/step/1?unit=22352) <br/>
<img src='../static/ecoli_guanine_frequency.png' width='750' height='495'/>"""
descr += img
return (fig, descr)
def graph_diff_counts_pct(b1,b2):
fragments1, counts1 = get_counts_ecoli(b1)
fragments2, counts2 = get_counts_ecoli(b2)
pct_counts1 = [count/len(fragments1[0]) * 100 for count in counts1]
pct_counts2 = [count/len(fragments2[0]) * 100 for count in counts2]
pct_diff = [pct_counts1[i] - pct_counts2[i] for i in range(len(counts1))]
num_fragments = len(counts1)
fig = go.Figure()
fig.add_trace(go.Bar(
y=pct_diff,
x=list(range(num_fragments)),
orientation='v',
))
fig.update_layout(
barmode='relative',
yaxis=dict(title=f'% frequency of {b1} - % frequency of {b2}', range=(-5,5)),
xaxis=dict(title='Chunk', tickvals=np.linspace(1,num_fragments,10)),
)
# MUST USE <img .. /> instead of <img..></img>
# MUST USE ../static/.. for static paths
descr = f"""This is the difference between the % of {b1} and the % of {b2} in each fragment.
There are {num_fragments} fragments, of size {len(fragments1[-1])}-{len(fragments1[0])} each.
"""
img = ""
if b1 == 'G' and b2 == 'C':
img = """This graph should roughly match up with the below graph from [here](https://cogniterra.org/lesson/30277/step/3?unit=22352) <br/>
<img src='../static/ecoli_frequency_difference.png' width='750' height='495'/>"""
descr += img
return (fig, descr)
def graph_skew_diagram(genome_dataset, sample_freq=100):
skewg = gc_skew_iter(constants.dataset(genome_dataset))
# Dont plot every point, sample uniformly
skew_pts = []
for i, val in enumerate(skewg):
if i%sample_freq == 0:
skew_pts.append(val)
fig = go.Figure()
fig.add_trace(go.Scatter(
x=sample_freq * np.arange(0, len(skew_pts)),
y=skew_pts,
mode='lines',
name='Skew',
line=dict(color='blue')
))
fig.update_layout(
title=f'Skew Diagram for {genome_dataset}',
xaxis=dict(title='Position'),
yaxis=dict(title='Skew'),
)
descr = """This is the skew diagram, showing the cumulative `(# of G's - # of C's)` along the positions of the genome.
Since the difference is negative on the reverse half-strand and positive on the forward half-strand, the **minimum** corresponds to the position of *Ori* and the **maximum** corresponds to the position of *Ter*
"""
return (fig, descr)