-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_transform.py
79 lines (55 loc) · 2.27 KB
/
data_transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
################################################
#
# Author: Chris Zhang
# Date : 2019/1/10
# Function: Used to pre-process some data-sets
#
#################################################
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST,FashionMNIST
import torchvision.transforms as transform
import torch.nn.functional as F
from data_read import ImageFolder_L
from config import BatchSize
### invert transform
class DeNormalize(object):
def __init__(self,mean,std):
self.mean = mean
self.std = std
def __call__(self, tensor):
for t,m,s in zip(tensor,self.mean,self.std):
t.mul_(s).add_(m)
return tensor
class Normalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, tensor):
return F.normalize(tensor, self.mean, self.std)
############## MNIST
data_transform = transform.Compose([
transform.Pad(padding=2,fill=0),
transform.ToTensor(),
transform.Normalize(mean=[0.5],std=[0.5])
])
inver_transform_MNIST = transform.Compose([
DeNormalize([0.5],[0.5]),
lambda x: x.cpu().numpy()*255.,
])
############## Read from Standard API
MNIST_root = r"./data/mnist"
MNIST_train_set = MNIST(MNIST_root,train=True,transform=data_transform,download=True)
MNIST_test_set = MNIST(MNIST_root,train=False,transform=data_transform)
MNIST_train_data = DataLoader(MNIST_train_set,batch_size = BatchSize,shuffle = True)
MNIST_test_data = DataLoader(MNIST_test_set,batch_size = BatchSize,shuffle = False)
MNIST_test_data_shuffle=DataLoader(MNIST_test_set,batch_size = BatchSize,shuffle = True)
############## Fashion-MNIST
fashionMNIST_root=r"./data/fashionMNIST"
fashionMNIST_train_set=FashionMNIST(fashionMNIST_root,train=True,transform=data_transform,download=True)
fashionMNIST_test_set=FashionMNIST(fashionMNIST_root,train=False,transform=data_transform)
fashionMNIST_train_data=DataLoader(fashionMNIST_train_set,batch_size=BatchSize,shuffle=True)
fashionMNIST_test_data = DataLoader(fashionMNIST_test_set,batch_size=BatchSize,shuffle=True)
############## Subset of EMNIST
LETTER_root = r"./data/letter"
L_test = ImageFolder_L(LETTER_root,transform=data_transform)
letter_test_data = DataLoader(L_test,batch_size=BatchSize,shuffle=True)