-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathstructured_pruning_experiments.py
395 lines (340 loc) · 11.5 KB
/
structured_pruning_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
"""
Script for verifying the structured pruning with NNI framework.
"""
import argparse
import torch
from torch import nn
from torchvision import datasets, transforms
from tqdm import tqdm
from pathlib import Path
import nni # noqa: F401
from nni.compression.pytorch.pruning import ActivationAPoZRankPruner # noqa: F401, E501
from nni.compression.pytorch import ModelSpeedup # noqa: F401
import shutil
import time
from onnx_tf.backend import prepare # noqa: F401
import onnx # noqa: F401
import tempfile # noqa: F401
import tensorflow as tf # noqa: F401
# For training use 'cuda', for evaluation purposes use 'cpu'
DEVICE = "cpu"
# Initial learning rate for Adam optimizer
TRAINING_LEARNING_RATE = 0.001
FINETUNE_LEARNING_RATE = 0.0001
# Training/fine-tuning batch size
BATCH_SIZE = 32
# Target sparsity of the model
SPARSITY = 0.5
# Number of training epochs
TRAIN_EPOCHS = 20
# Number of epochs for computing pruner masks
MEASUREMENTS_EPOCHS = 1
# Number of fine-tuning epochs
FINE_TUNE_EPOCHS = 5
class FashionClassifier(nn.Module):
"""
PyTorch module containing a simple classifier for
Fashion MNIST dataset.
"""
def __init__(self):
"""
Creates all model layers and structures.
"""
super().__init__()
self.device = torch.device(DEVICE)
self.conv1 = nn.Conv2d(1, 8, 3)
self.relu1 = nn.ReLU()
self.conv2 = nn.Conv2d(8, 16, 3)
self.relu2 = nn.ReLU()
self.conv3 = nn.Conv2d(16, 32, 3)
self.relu3 = nn.ReLU()
self.fc1 = nn.Linear(32 * 22 * 22, 1024)
self.relu3 = nn.ReLU()
self.fc2 = nn.Linear(1024, 10)
self.softmax = nn.Softmax(dim=1)
self.to(self.device)
def forward(self, x):
"""
Runs inference on given sample.
"""
x = self.relu1(self.conv1(x))
x = self.relu2(self.conv2(x))
x = self.relu3(self.conv3(x))
x = x.view(-1, x.size()[1:].numel())
x = self.relu3(self.fc1(x))
x = self.softmax(self.fc2(x))
return x
def train_model(
self,
optimizer,
criterion,
epochs,
trainloader,
valloader=None,
lastbestmodelpath=None,
evaluate_model=True,
):
"""
Trains the model on given training dataset.
Parameters
----------
optimizer: torch.optim.optimizer.Optimizer
Optimizer to use (tested with Adam optimizer)
criterion: torch.nn.modules.module.Module
Criterion/loss function (tested with CrossEntropyLoss)
epochs: int
Number of epochs to train for
trainloader: torch.utils.data.DataLoader
DataLoader providing training samples
valloader: Optional[torch.utils.data.DataLoader]
DataLoader providing validation samples
lastbestmodelpath: Optional[Path]
Path where the last best model should be saved
evaluate_model: bool
Tells if the model should be evaluated after each epoch
"""
best_acc = 0
losssum = torch.zeros(1).to(self.device)
losscount = 0
for epoch in range(epochs):
self.train()
bar = tqdm(trainloader)
for i, (images, labels) in enumerate(bar):
images = images.to(self.device)
labels = labels.to(self.device)
optimizer.zero_grad()
outputs = self.forward(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
losssum += loss
losscount += 1
bar.set_description(f"train epoch: {epoch:3}")
print(
f"Mean loss for epoch {epoch}: {losssum.data.cpu().numpy() / losscount}"
) # noqa: E501
if evaluate_model:
acc = self.evaluate(valloader)
print(f"Val accuracy for epoch {epoch}: {acc}")
if acc > best_acc:
print(
f"ACCURACY improved for epoch {epoch}: prev={best_acc}, curr={acc}"
) # noqa: E501
best_acc = acc
if lastbestmodelpath:
torch.save(self.state_dict(), lastbestmodelpath)
def evaluate(self, dataloader):
"""
Evaluates the model using given DataLoader.
It prints accuracy and inference speed, and
returns accuracy.
Parameters
----------
dataloader: torch.utils.data.DataLoader
DataLoader providing data for validation
Returns
-------
float:
Accuracy of the model
"""
self.eval()
total = 0
correct = 0
inferencetimesum = 0
numinferences = 0
with torch.no_grad():
bar = tqdm(dataloader)
for images, labels in bar:
images = images.to(self.device)
labels = labels.to(self.device)
start = time.perf_counter()
outputs = self.forward(images)
inferencetimesum += time.perf_counter() - start
numinferences += 1
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
bar.set_description(f"valid [correct={correct}, total={total}")
acc = 100 * correct / total
meaninference = 1000.0 * inferencetimesum / numinferences
print(f"Achieved accuracy: {acc} %")
print(f"Mean inference time: {meaninference} ms")
return acc
def convert_to_onnx(self, outputpath):
"""
Converts model to ONNX format.
Parameters
----------
outputpath: Path
Path to the output ONNX file
"""
# TODO implement
pass
def convert_onnx_to_tflite(onnx_file, tflite_file):
"""
Converts the ONNX model to TFLite format.
Parameters
----------
onnx_file: Path
Path to the input ONNX file
tflite_file: Path
Path to the output TFLite file
"""
# TODO implement
pass
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--input-model", type=Path, help="Path to the PyTorch model", required=True
)
parser.add_argument(
"--backup-model",
type=Path,
help="Path where the best current model will be saved",
required=True,
)
parser.add_argument(
"--final-model",
type=Path,
help="Path where the final model will be saved",
required=True,
)
parser.add_argument("--onnx-model", type=Path, help="Path to ONNX file with model")
parser.add_argument(
"--tflite-model", type=Path, help="Path to TFLite file with model"
)
parser.add_argument(
"--dataset-path",
type=Path,
help="Path where train and test dataset should be stored",
required=True,
)
parser.add_argument(
"--train-model",
action="store_true",
help="Trains the model from scratch and saves it to input_model path",
)
args = parser.parse_args()
# create train/test dataset paths
traindatasetpath = args.dataset_path / "train"
testdatasetpath = args.dataset_path / "test"
traindatasetpath.mkdir(parents=True, exist_ok=True)
testdatasetpath.mkdir(parents=True, exist_ok=True)
# create the model
model = FashionClassifier()
# define FashionMNIST dataset using PyTorch API
dataset = datasets.FashionMNIST(
traindatasetpath,
train=True,
download=True,
transform=transforms.Compose([transforms.ToTensor()]),
)
# compute mean/std for the train dataset
imgs = torch.stack([img for img, _ in dataset], dim=3)
mean = imgs.view(1, -1).mean(dim=1)
std = imgs.view(1, -1).std(dim=1)
# add transforms for dataset data
# introduce basic data augmentations
dataset.transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.RandomHorizontalFlip(),
transforms.RandomAffine(5, scale=(0.95, 1.05)),
transforms.Normalize(mean, std),
]
)
# split training dataset into training and validation dataset
trainset, valset = torch.utils.data.random_split(dataset, [40000, 20000])
# introduce test dataset
tdataset = datasets.FashionMNIST(
testdatasetpath,
train=False,
download=True,
transform=transforms.Compose(
[transforms.ToTensor(), transforms.Normalize(mean, std)]
),
)
print(
f"No. of samples: train={len(trainset)}, val={len(valset)}, test={len(tdataset)}"
) # noqa: E501
# define dataloaders for each dataset
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=BATCH_SIZE, num_workers=0, shuffle=True
)
valloader = torch.utils.data.DataLoader(
valset, batch_size=1, num_workers=0, shuffle=False
)
testloader = torch.utils.data.DataLoader(
tdataset, batch_size=1, num_workers=0, shuffle=False
)
# define loss
criterion = torch.nn.CrossEntropyLoss()
# train the model or load from file
if args.train_model:
toptimizer = torch.optim.Adam(model.parameters(), lr=TRAINING_LEARNING_RATE)
model.train_model(
toptimizer,
criterion,
TRAIN_EPOCHS,
trainloader,
valloader,
args.backup_model,
True,
)
# use the model with the highest accuracy
shutil.copy(str(args.backup_model), str(args.input_model))
# load the model
input_data = torch.load(args.input_model, map_location=torch.device(DEVICE))
model.load_state_dict(input_data, strict=False)
# print the model
print("ORIGINAL MODEL")
print(model)
print("ORIGINAL MODEL QUALITY")
model.evaluate(testloader)
# create a NNI-traced optimizer using the Adam optimizer
# TODO add traced_optimizer
traced_optimizer = None # noqa: F841
# define the configuration of pruning algorithm
# TODO fill config_list
config_list = [] # noqa: F841
def trainer(mod, opt, crit):
model.train_model(
opt, crit, MEASUREMENTS_EPOCHS, trainloader, valloader, None, False
)
# define APoZRankPruner
# TODO create ActivationAPoZRankPruner using
# model, config_list, trainer, traced optimizer, ...
pruner = None
# compute pruning mask
_, masks = pruner.compress()
# show pruned weights
print("Pruned weights:")
pruner.show_pruned_weights()
print("Unwrapping the model...")
pruner._unwrap_model()
print("Unwrapped model")
# TODO create ModelSpeedup object with model, masks
# dummy_input and run speedup_model
print("MODEL AFTER PRUNING")
print(model)
print("PRUNED MODEL QUALITY BEFORE FINE-TUNING")
model.evaluate(testloader)
# TODO define fine-tune optimizer
optimizer = None
model.train_model(
optimizer,
criterion,
FINE_TUNE_EPOCHS,
trainloader,
valloader,
args.backup_model,
)
torch.save(model.state_dict(), args.final_model)
print("PRUNED MODEL QUALITY AFTER FINE-TUNING")
model.evaluate(testloader)
if args.onnx_model:
model.convert_to_onnx(args.onnx_model)
if args.onnx_model and args.tflite_model:
convert_onnx_to_tflite(args.onnx_model, args.tflite_model)
if __name__ == "__main__":
main()