-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathloss.py
39 lines (35 loc) · 1.43 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from __future__ import absolute_import
from __future__ import division
from __future__ import unicode_literals
from __future__ import print_function
import torch.nn.functional as F
import torch as th
import numpy as np
class MaxMarginRankingLoss(th.nn.Module):
def __init__(self,
margin=1.0,
negative_weighting=False,
batch_size=1,
n_pair=1,
hard_negative_rate=0.5,
):
super(MaxMarginRankingLoss, self).__init__()
self.margin = margin
self.n_pair = n_pair
self.batch_size = batch_size
easy_negative_rate = 1 - hard_negative_rate
self.easy_negative_rate = easy_negative_rate
self.negative_weighting = negative_weighting
if n_pair > 1:
alpha = easy_negative_rate / ((batch_size - 1) * (1 - easy_negative_rate))
mm_mask = (1 - alpha) * np.eye(self.batch_size) + alpha
mm_mask = np.kron(mm_mask, np.ones((n_pair, n_pair)))
mm_mask = th.tensor(mm_mask) * (batch_size * (1 - easy_negative_rate))
self.mm_mask = mm_mask.float().cuda()
def forward(self, x):
d = th.diag(x)
max_margin = F.relu(self.margin + x - d.view(-1, 1)) + \
F.relu(self.margin + x - d.view(1, -1))
if self.negative_weighting and self.n_pair > 1:
max_margin = max_margin * self.mm_mask
return max_margin.mean()