-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathhash.rs
462 lines (408 loc) · 16.8 KB
/
hash.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Defines the execution plan for the hash aggregate operation
use std::sync::Arc;
use std::task::{Context, Poll};
use std::vec;
use ahash::RandomState;
use futures::{
ready,
stream::{Stream, StreamExt},
};
use crate::error::Result;
use crate::physical_plan::aggregates::{
evaluate_group_by, evaluate_many, AccumulatorItem, AggregateMode, PhysicalGroupBy,
};
use crate::physical_plan::hash_utils::create_hashes;
use crate::physical_plan::metrics::{BaselineMetrics, RecordOutput};
use crate::physical_plan::{aggregates, AggregateExpr, PhysicalExpr};
use crate::physical_plan::{RecordBatchStream, SendableRecordBatchStream};
use crate::scalar::ScalarValue;
use arrow::{array::ArrayRef, compute, compute::cast};
use arrow::{
array::{Array, UInt32Builder},
error::{ArrowError, Result as ArrowResult},
};
use arrow::{
datatypes::{Schema, SchemaRef},
record_batch::RecordBatch,
};
use hashbrown::raw::RawTable;
/*
The architecture is the following:
1. An accumulator has state that is updated on each batch.
2. At the end of the aggregation (e.g. end of batches in a partition), the accumulator converts its state to a RecordBatch of a single row
3. The RecordBatches of all accumulators are merged (`concatenate` in `rust/arrow`) together to a single RecordBatch.
4. The state's RecordBatch is `merge`d to a new state
5. The state is mapped to the final value
Why:
* Accumulators' state can be statically typed, but it is more efficient to transmit data from the accumulators via `Array`
* The `merge` operation must have access to the state of the aggregators because it uses it to correctly merge
* It uses Arrow's native dynamically typed object, `Array`.
* Arrow shines in batch operations and both `merge` and `concatenate` of uniform types are very performant.
Example: average
* the state is `n: u32` and `sum: f64`
* For every batch, we update them accordingly.
* At the end of the accumulation (of a partition), we convert `n` and `sum` to a RecordBatch of 1 row and two columns: `[n, sum]`
* The RecordBatch is (sent back / transmitted over network)
* Once all N record batches arrive, `merge` is performed, which builds a RecordBatch with N rows and 2 columns.
* Finally, `get_value` returns an array with one entry computed from the state
*/
pub(crate) struct GroupedHashAggregateStream {
schema: SchemaRef,
input: SendableRecordBatchStream,
mode: AggregateMode,
accumulators: Accumulators,
aggregate_expressions: Vec<Vec<Arc<dyn PhysicalExpr>>>,
aggr_expr: Vec<Arc<dyn AggregateExpr>>,
group_by: PhysicalGroupBy,
baseline_metrics: BaselineMetrics,
random_state: RandomState,
finished: bool,
}
impl GroupedHashAggregateStream {
/// Create a new GroupedHashAggregateStream
pub fn new(
mode: AggregateMode,
schema: SchemaRef,
group_by: PhysicalGroupBy,
aggr_expr: Vec<Arc<dyn AggregateExpr>>,
input: SendableRecordBatchStream,
baseline_metrics: BaselineMetrics,
) -> Result<Self> {
let timer = baseline_metrics.elapsed_compute().timer();
// The expressions to evaluate the batch, one vec of expressions per aggregation.
// Assume create_schema() always put group columns in front of aggr columns, we set
// col_idx_base to group expression count.
let aggregate_expressions =
aggregates::aggregate_expressions(&aggr_expr, &mode, group_by.expr.len())?;
timer.done();
Ok(Self {
schema,
mode,
input,
aggr_expr,
group_by,
baseline_metrics,
aggregate_expressions,
accumulators: Default::default(),
random_state: Default::default(),
finished: false,
})
}
}
impl Stream for GroupedHashAggregateStream {
type Item = ArrowResult<RecordBatch>;
fn poll_next(
mut self: std::pin::Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Option<Self::Item>> {
let this = &mut *self;
if this.finished {
return Poll::Ready(None);
}
let elapsed_compute = this.baseline_metrics.elapsed_compute();
loop {
let result = match ready!(this.input.poll_next_unpin(cx)) {
Some(Ok(batch)) => {
let timer = elapsed_compute.timer();
let result = group_aggregate_batch(
&this.mode,
&this.random_state,
&this.group_by,
&this.aggr_expr,
batch,
&mut this.accumulators,
&this.aggregate_expressions,
);
timer.done();
match result {
Ok(_) => continue,
Err(e) => Err(ArrowError::ExternalError(Box::new(e))),
}
}
Some(Err(e)) => Err(e),
None => {
this.finished = true;
let timer = this.baseline_metrics.elapsed_compute().timer();
let result = create_batch_from_map(
&this.mode,
&this.accumulators,
this.group_by.expr.len(),
&this.schema,
)
.record_output(&this.baseline_metrics);
timer.done();
result
}
};
this.finished = true;
return Poll::Ready(Some(result));
}
}
}
impl RecordBatchStream for GroupedHashAggregateStream {
fn schema(&self) -> SchemaRef {
self.schema.clone()
}
}
/// TODO: Make this a member function of [`GroupedHashAggregateStream`]
fn group_aggregate_batch(
mode: &AggregateMode,
random_state: &RandomState,
group_by: &PhysicalGroupBy,
aggr_expr: &[Arc<dyn AggregateExpr>],
batch: RecordBatch,
accumulators: &mut Accumulators,
aggregate_expressions: &[Vec<Arc<dyn PhysicalExpr>>],
) -> Result<()> {
// evaluate the grouping expressions
let group_by_values = evaluate_group_by(group_by, &batch)?;
// evaluate the aggregation expressions.
// We could evaluate them after the `take`, but since we need to evaluate all
// of them anyways, it is more performant to do it while they are together.
let aggr_input_values = evaluate_many(aggregate_expressions, &batch)?;
for grouping_set_values in group_by_values {
// 1.1 construct the key from the group values
// 1.2 construct the mapping key if it does not exist
// 1.3 add the row' index to `indices`
// track which entries in `accumulators` have rows in this batch to aggregate
let mut groups_with_rows = vec![];
// 1.1 Calculate the group keys for the group values
let mut batch_hashes = vec![0; batch.num_rows()];
create_hashes(&grouping_set_values, random_state, &mut batch_hashes)?;
for (row, hash) in batch_hashes.into_iter().enumerate() {
let Accumulators { map, group_states } = accumulators;
let entry = map.get_mut(hash, |(_hash, group_idx)| {
// verify that a group that we are inserting with hash is
// actually the same key value as the group in
// existing_idx (aka group_values @ row)
let group_state = &group_states[*group_idx];
grouping_set_values
.iter()
.zip(group_state.group_by_values.iter())
.all(|(array, scalar)| scalar.eq_array(array, row))
});
match entry {
// Existing entry for this group value
Some((_hash, group_idx)) => {
let group_state = &mut group_states[*group_idx];
// 1.3
if group_state.indices.is_empty() {
groups_with_rows.push(*group_idx);
};
group_state.indices.push(row as u32); // remember this row
}
// 1.2 Need to create new entry
None => {
let accumulator_set = aggregates::create_accumulators(aggr_expr)?;
// Copy group values out of arrays into `ScalarValue`s
let group_by_values = grouping_set_values
.iter()
.map(|col| ScalarValue::try_from_array(col, row))
.collect::<Result<Vec<_>>>()?;
// Add new entry to group_states and save newly created index
let group_state = GroupState {
group_by_values: group_by_values.into_boxed_slice(),
accumulator_set,
indices: vec![row as u32], // 1.3
};
let group_idx = group_states.len();
group_states.push(group_state);
groups_with_rows.push(group_idx);
// for hasher function, use precomputed hash value
map.insert(hash, (hash, group_idx), |(hash, _group_idx)| *hash);
}
};
}
// Collect all indices + offsets based on keys in this vec
let mut batch_indices: UInt32Builder = UInt32Builder::with_capacity(0);
let mut offsets = vec![0];
let mut offset_so_far = 0;
for group_idx in groups_with_rows.iter() {
let indices = &accumulators.group_states[*group_idx].indices;
batch_indices.append_slice(indices);
offset_so_far += indices.len();
offsets.push(offset_so_far);
}
let batch_indices = batch_indices.finish();
// `Take` all values based on indices into Arrays
let values: Vec<Vec<Arc<dyn Array>>> = aggr_input_values
.iter()
.map(|array| {
array
.iter()
.map(|array| {
compute::take(
array.as_ref(),
&batch_indices,
None, // None: no index check
)
.unwrap()
})
.collect()
// 2.3
})
.collect();
// 2.1 for each key in this batch
// 2.2 for each aggregation
// 2.3 `slice` from each of its arrays the keys' values
// 2.4 update / merge the accumulator with the values
// 2.5 clear indices
groups_with_rows
.iter()
.zip(offsets.windows(2))
.try_for_each(|(group_idx, offsets)| {
let group_state = &mut accumulators.group_states[*group_idx];
// 2.2
group_state
.accumulator_set
.iter_mut()
.zip(values.iter())
.map(|(accumulator, aggr_array)| {
(
accumulator,
aggr_array
.iter()
.map(|array| {
// 2.3
array.slice(offsets[0], offsets[1] - offsets[0])
})
.collect::<Vec<ArrayRef>>(),
)
})
.try_for_each(|(accumulator, values)| match mode {
AggregateMode::Partial => accumulator.update_batch(&values),
AggregateMode::FinalPartitioned | AggregateMode::Final => {
// note: the aggregation here is over states, not values, thus the merge
accumulator.merge_batch(&values)
}
})
// 2.5
.and({
group_state.indices.clear();
Ok(())
})
})?;
}
Ok(())
}
/// The state that is built for each output group.
#[derive(Debug)]
struct GroupState {
/// The actual group by values, one for each group column
group_by_values: Box<[ScalarValue]>,
// Accumulator state, one for each aggregate
accumulator_set: Vec<AccumulatorItem>,
/// scratch space used to collect indices for input rows in a
/// bach that have values to aggregate. Reset on each batch
indices: Vec<u32>,
}
/// The state of all the groups
#[derive(Default)]
struct Accumulators {
/// Logically maps group values to an index in `group_states`
///
/// Uses the raw API of hashbrown to avoid actually storing the
/// keys in the table
///
/// keys: u64 hashes of the GroupValue
/// values: (hash, index into `group_states`)
map: RawTable<(u64, usize)>,
/// State for each group
group_states: Vec<GroupState>,
}
impl std::fmt::Debug for Accumulators {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
// hashes are not store inline, so could only get values
let map_string = "RawTable";
f.debug_struct("Accumulators")
.field("map", &map_string)
.field("group_states", &self.group_states)
.finish()
}
}
/// Create a RecordBatch with all group keys and accumulator' states or values.
fn create_batch_from_map(
mode: &AggregateMode,
accumulators: &Accumulators,
num_group_expr: usize,
output_schema: &Schema,
) -> ArrowResult<RecordBatch> {
if accumulators.group_states.is_empty() {
return Ok(RecordBatch::new_empty(Arc::new(output_schema.to_owned())));
}
let accs = &accumulators.group_states[0].accumulator_set;
let mut acc_data_types: Vec<usize> = vec![];
// Calculate number/shape of state arrays
match mode {
AggregateMode::Partial => {
for acc in accs.iter() {
let state = acc.state()?;
acc_data_types.push(state.len());
}
}
AggregateMode::Final | AggregateMode::FinalPartitioned => {
acc_data_types = vec![1; accs.len()];
}
}
let mut columns = (0..num_group_expr)
.map(|i| {
ScalarValue::iter_to_array(
accumulators
.group_states
.iter()
.map(|group_state| group_state.group_by_values[i].clone()),
)
})
.collect::<Result<Vec<_>>>()?;
// add state / evaluated arrays
for (x, &state_len) in acc_data_types.iter().enumerate() {
for y in 0..state_len {
match mode {
AggregateMode::Partial => {
let res = ScalarValue::iter_to_array(
accumulators.group_states.iter().map(|group_state| {
group_state.accumulator_set[x]
.state()
.and_then(|x| x[y].as_scalar().map(|v| v.clone()))
.expect("unexpected accumulator state in hash aggregate")
}),
)?;
columns.push(res);
}
AggregateMode::Final | AggregateMode::FinalPartitioned => {
let res = ScalarValue::iter_to_array(
accumulators.group_states.iter().map(|group_state| {
group_state.accumulator_set[x].evaluate().unwrap()
}),
)?;
columns.push(res);
}
}
}
}
// cast output if needed (e.g. for types like Dictionary where
// the intermediate GroupByScalar type was not the same as the
// output
let columns = columns
.iter()
.zip(output_schema.fields().iter())
.map(|(col, desired_field)| cast(col, desired_field.data_type()))
.collect::<ArrowResult<Vec<_>>>()?;
RecordBatch::try_new(Arc::new(output_schema.to_owned()), columns)
}