-
Notifications
You must be signed in to change notification settings - Fork 847
/
Copy pathmod.rs
3459 lines (3082 loc) · 126 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Contains column writer API.
use bytes::Bytes;
use half::f16;
use crate::bloom_filter::Sbbf;
use crate::format::{BoundaryOrder, ColumnIndex, OffsetIndex};
use std::collections::{BTreeSet, VecDeque};
use std::str;
use crate::basic::{Compression, ConvertedType, Encoding, LogicalType, PageType, Type};
use crate::column::page::{CompressedPage, Page, PageWriteSpec, PageWriter};
use crate::column::writer::encoder::{ColumnValueEncoder, ColumnValueEncoderImpl, ColumnValues};
use crate::compression::{create_codec, Codec, CodecOptionsBuilder};
use crate::data_type::private::ParquetValueType;
use crate::data_type::*;
use crate::encodings::levels::LevelEncoder;
use crate::errors::{ParquetError, Result};
use crate::file::metadata::{ColumnIndexBuilder, OffsetIndexBuilder};
use crate::file::properties::EnabledStatistics;
use crate::file::statistics::{Statistics, ValueStatistics};
use crate::file::{
metadata::ColumnChunkMetaData,
properties::{WriterProperties, WriterPropertiesPtr, WriterVersion},
};
use crate::schema::types::{ColumnDescPtr, ColumnDescriptor};
pub(crate) mod encoder;
macro_rules! downcast_writer {
($e:expr, $i:ident, $b:expr) => {
match $e {
Self::BoolColumnWriter($i) => $b,
Self::Int32ColumnWriter($i) => $b,
Self::Int64ColumnWriter($i) => $b,
Self::Int96ColumnWriter($i) => $b,
Self::FloatColumnWriter($i) => $b,
Self::DoubleColumnWriter($i) => $b,
Self::ByteArrayColumnWriter($i) => $b,
Self::FixedLenByteArrayColumnWriter($i) => $b,
}
};
}
/// Column writer for a Parquet type.
pub enum ColumnWriter<'a> {
BoolColumnWriter(ColumnWriterImpl<'a, BoolType>),
Int32ColumnWriter(ColumnWriterImpl<'a, Int32Type>),
Int64ColumnWriter(ColumnWriterImpl<'a, Int64Type>),
Int96ColumnWriter(ColumnWriterImpl<'a, Int96Type>),
FloatColumnWriter(ColumnWriterImpl<'a, FloatType>),
DoubleColumnWriter(ColumnWriterImpl<'a, DoubleType>),
ByteArrayColumnWriter(ColumnWriterImpl<'a, ByteArrayType>),
FixedLenByteArrayColumnWriter(ColumnWriterImpl<'a, FixedLenByteArrayType>),
}
impl<'a> ColumnWriter<'a> {
/// Returns the estimated total bytes for this column writer
#[cfg(feature = "arrow")]
pub(crate) fn get_estimated_total_bytes(&self) -> u64 {
downcast_writer!(self, typed, typed.get_estimated_total_bytes())
}
/// Close this [`ColumnWriter`]
pub fn close(self) -> Result<ColumnCloseResult> {
downcast_writer!(self, typed, typed.close())
}
}
pub enum Level {
Page,
Column,
}
/// Gets a specific column writer corresponding to column descriptor `descr`.
pub fn get_column_writer<'a>(
descr: ColumnDescPtr,
props: WriterPropertiesPtr,
page_writer: Box<dyn PageWriter + 'a>,
) -> ColumnWriter<'a> {
match descr.physical_type() {
Type::BOOLEAN => {
ColumnWriter::BoolColumnWriter(ColumnWriterImpl::new(descr, props, page_writer))
}
Type::INT32 => {
ColumnWriter::Int32ColumnWriter(ColumnWriterImpl::new(descr, props, page_writer))
}
Type::INT64 => {
ColumnWriter::Int64ColumnWriter(ColumnWriterImpl::new(descr, props, page_writer))
}
Type::INT96 => {
ColumnWriter::Int96ColumnWriter(ColumnWriterImpl::new(descr, props, page_writer))
}
Type::FLOAT => {
ColumnWriter::FloatColumnWriter(ColumnWriterImpl::new(descr, props, page_writer))
}
Type::DOUBLE => {
ColumnWriter::DoubleColumnWriter(ColumnWriterImpl::new(descr, props, page_writer))
}
Type::BYTE_ARRAY => {
ColumnWriter::ByteArrayColumnWriter(ColumnWriterImpl::new(descr, props, page_writer))
}
Type::FIXED_LEN_BYTE_ARRAY => ColumnWriter::FixedLenByteArrayColumnWriter(
ColumnWriterImpl::new(descr, props, page_writer),
),
}
}
/// Gets a typed column writer for the specific type `T`, by "up-casting" `col_writer` of
/// non-generic type to a generic column writer type `ColumnWriterImpl`.
///
/// Panics if actual enum value for `col_writer` does not match the type `T`.
pub fn get_typed_column_writer<T: DataType>(col_writer: ColumnWriter) -> ColumnWriterImpl<T> {
T::get_column_writer(col_writer).unwrap_or_else(|| {
panic!(
"Failed to convert column writer into a typed column writer for `{}` type",
T::get_physical_type()
)
})
}
/// Similar to `get_typed_column_writer` but returns a reference.
pub fn get_typed_column_writer_ref<'a, 'b: 'a, T: DataType>(
col_writer: &'b ColumnWriter<'a>,
) -> &'b ColumnWriterImpl<'a, T> {
T::get_column_writer_ref(col_writer).unwrap_or_else(|| {
panic!(
"Failed to convert column writer into a typed column writer for `{}` type",
T::get_physical_type()
)
})
}
/// Similar to `get_typed_column_writer` but returns a reference.
pub fn get_typed_column_writer_mut<'a, 'b: 'a, T: DataType>(
col_writer: &'a mut ColumnWriter<'b>,
) -> &'a mut ColumnWriterImpl<'b, T> {
T::get_column_writer_mut(col_writer).unwrap_or_else(|| {
panic!(
"Failed to convert column writer into a typed column writer for `{}` type",
T::get_physical_type()
)
})
}
/// Metadata returned by [`GenericColumnWriter::close`]
#[derive(Debug, Clone)]
pub struct ColumnCloseResult {
/// The total number of bytes written
pub bytes_written: u64,
/// The total number of rows written
pub rows_written: u64,
/// Metadata for this column chunk
pub metadata: ColumnChunkMetaData,
/// Optional bloom filter for this column
pub bloom_filter: Option<Sbbf>,
/// Optional column index, for filtering
pub column_index: Option<ColumnIndex>,
/// Optional offset index, identifying page locations
pub offset_index: Option<OffsetIndex>,
}
// Metrics per page
#[derive(Default)]
struct PageMetrics {
num_buffered_values: u32,
num_buffered_rows: u32,
num_page_nulls: u64,
}
// Metrics per column writer
struct ColumnMetrics<T> {
total_bytes_written: u64,
total_rows_written: u64,
total_uncompressed_size: u64,
total_compressed_size: u64,
total_num_values: u64,
dictionary_page_offset: Option<u64>,
data_page_offset: Option<u64>,
min_column_value: Option<T>,
max_column_value: Option<T>,
num_column_nulls: u64,
column_distinct_count: Option<u64>,
}
/// Typed column writer for a primitive column.
pub type ColumnWriterImpl<'a, T> = GenericColumnWriter<'a, ColumnValueEncoderImpl<T>>;
pub struct GenericColumnWriter<'a, E: ColumnValueEncoder> {
// Column writer properties
descr: ColumnDescPtr,
props: WriterPropertiesPtr,
statistics_enabled: EnabledStatistics,
page_writer: Box<dyn PageWriter + 'a>,
codec: Compression,
compressor: Option<Box<dyn Codec>>,
encoder: E,
page_metrics: PageMetrics,
// Metrics per column writer
column_metrics: ColumnMetrics<E::T>,
/// The order of encodings within the generated metadata does not impact its meaning,
/// but we use a BTreeSet so that the output is deterministic
encodings: BTreeSet<Encoding>,
// Reused buffers
def_levels_sink: Vec<i16>,
rep_levels_sink: Vec<i16>,
data_pages: VecDeque<CompressedPage>,
// column index and offset index
column_index_builder: ColumnIndexBuilder,
offset_index_builder: OffsetIndexBuilder,
// Below fields used to incrementally check boundary order across data pages.
// We assume they are ascending/descending until proven wrong.
data_page_boundary_ascending: bool,
data_page_boundary_descending: bool,
/// (min, max)
last_non_null_data_page_min_max: Option<(E::T, E::T)>,
}
impl<'a, E: ColumnValueEncoder> GenericColumnWriter<'a, E> {
pub fn new(
descr: ColumnDescPtr,
props: WriterPropertiesPtr,
page_writer: Box<dyn PageWriter + 'a>,
) -> Self {
let codec = props.compression(descr.path());
let codec_options = CodecOptionsBuilder::default().build();
let compressor = create_codec(codec, &codec_options).unwrap();
let encoder = E::try_new(&descr, props.as_ref()).unwrap();
let statistics_enabled = props.statistics_enabled(descr.path());
let mut encodings = BTreeSet::new();
// Used for level information
encodings.insert(Encoding::RLE);
Self {
descr,
props,
statistics_enabled,
page_writer,
codec,
compressor,
encoder,
def_levels_sink: vec![],
rep_levels_sink: vec![],
data_pages: VecDeque::new(),
page_metrics: PageMetrics {
num_buffered_values: 0,
num_buffered_rows: 0,
num_page_nulls: 0,
},
column_metrics: ColumnMetrics {
total_bytes_written: 0,
total_rows_written: 0,
total_uncompressed_size: 0,
total_compressed_size: 0,
total_num_values: 0,
dictionary_page_offset: None,
data_page_offset: None,
min_column_value: None,
max_column_value: None,
num_column_nulls: 0,
column_distinct_count: None,
},
column_index_builder: ColumnIndexBuilder::new(),
offset_index_builder: OffsetIndexBuilder::new(),
encodings,
data_page_boundary_ascending: true,
data_page_boundary_descending: true,
last_non_null_data_page_min_max: None,
}
}
#[allow(clippy::too_many_arguments)]
pub(crate) fn write_batch_internal(
&mut self,
values: &E::Values,
value_indices: Option<&[usize]>,
def_levels: Option<&[i16]>,
rep_levels: Option<&[i16]>,
min: Option<&E::T>,
max: Option<&E::T>,
distinct_count: Option<u64>,
) -> Result<usize> {
// Check if number of definition levels is the same as number of repetition levels.
if let (Some(def), Some(rep)) = (def_levels, rep_levels) {
if def.len() != rep.len() {
return Err(general_err!(
"Inconsistent length of definition and repetition levels: {} != {}",
def.len(),
rep.len()
));
}
}
// We check for DataPage limits only after we have inserted the values. If a user
// writes a large number of values, the DataPage size can be well above the limit.
//
// The purpose of this chunking is to bound this. Even if a user writes large
// number of values, the chunking will ensure that we add data page at a
// reasonable pagesize limit.
// TODO: find out why we don't account for size of levels when we estimate page
// size.
let num_levels = match def_levels {
Some(def_levels) => def_levels.len(),
None => values.len(),
};
// If only computing chunk-level statistics compute them here, page-level statistics
// are computed in [`Self::write_mini_batch`] and used to update chunk statistics in
// [`Self::add_data_page`]
if self.statistics_enabled == EnabledStatistics::Chunk {
match (min, max) {
(Some(min), Some(max)) => {
update_min(&self.descr, min, &mut self.column_metrics.min_column_value);
update_max(&self.descr, max, &mut self.column_metrics.max_column_value);
}
(None, Some(_)) | (Some(_), None) => {
panic!("min/max should be both set or both None")
}
(None, None) => {
if let Some((min, max)) = self.encoder.min_max(values, value_indices) {
update_min(&self.descr, &min, &mut self.column_metrics.min_column_value);
update_max(&self.descr, &max, &mut self.column_metrics.max_column_value);
}
}
};
}
// We can only set the distinct count if there are no other writes
if self.encoder.num_values() == 0 {
self.column_metrics.column_distinct_count = distinct_count;
} else {
self.column_metrics.column_distinct_count = None;
}
let mut values_offset = 0;
let mut levels_offset = 0;
let base_batch_size = self.props.write_batch_size();
while levels_offset < num_levels {
let mut end_offset = num_levels.min(levels_offset + base_batch_size);
// Split at record boundary
if let Some(r) = rep_levels {
while end_offset < r.len() && r[end_offset] != 0 {
end_offset += 1;
}
}
values_offset += self.write_mini_batch(
values,
values_offset,
value_indices,
end_offset - levels_offset,
def_levels.map(|lv| &lv[levels_offset..end_offset]),
rep_levels.map(|lv| &lv[levels_offset..end_offset]),
)?;
levels_offset = end_offset;
}
// Return total number of values processed.
Ok(values_offset)
}
/// Writes batch of values, definition levels and repetition levels.
/// Returns number of values processed (written).
///
/// If definition and repetition levels are provided, we write fully those levels and
/// select how many values to write (this number will be returned), since number of
/// actual written values may be smaller than provided values.
///
/// If only values are provided, then all values are written and the length of
/// of the values buffer is returned.
///
/// Definition and/or repetition levels can be omitted, if values are
/// non-nullable and/or non-repeated.
pub fn write_batch(
&mut self,
values: &E::Values,
def_levels: Option<&[i16]>,
rep_levels: Option<&[i16]>,
) -> Result<usize> {
self.write_batch_internal(values, None, def_levels, rep_levels, None, None, None)
}
/// Writer may optionally provide pre-calculated statistics for use when computing
/// chunk-level statistics
///
/// NB: [`WriterProperties::statistics_enabled`] must be set to [`EnabledStatistics::Chunk`]
/// for these statistics to take effect. If [`EnabledStatistics::None`] they will be ignored,
/// and if [`EnabledStatistics::Page`] the chunk statistics will instead be computed from the
/// computed page statistics
pub fn write_batch_with_statistics(
&mut self,
values: &E::Values,
def_levels: Option<&[i16]>,
rep_levels: Option<&[i16]>,
min: Option<&E::T>,
max: Option<&E::T>,
distinct_count: Option<u64>,
) -> Result<usize> {
self.write_batch_internal(
values,
None,
def_levels,
rep_levels,
min,
max,
distinct_count,
)
}
/// Returns total number of bytes written by this column writer so far.
/// This value is also returned when column writer is closed.
///
/// Note: this value does not include any buffered data that has not
/// yet been flushed to a page.
pub fn get_total_bytes_written(&self) -> u64 {
self.column_metrics.total_bytes_written
}
/// Returns the estimated total bytes for this column writer
///
/// Unlike [`Self::get_total_bytes_written`] this includes an estimate
/// of any data that has not yet been flushed to a page
#[cfg(feature = "arrow")]
pub(crate) fn get_estimated_total_bytes(&self) -> u64 {
self.column_metrics.total_bytes_written
+ self.encoder.estimated_data_page_size() as u64
+ self.encoder.estimated_dict_page_size().unwrap_or_default() as u64
}
/// Returns total number of rows written by this column writer so far.
/// This value is also returned when column writer is closed.
pub fn get_total_rows_written(&self) -> u64 {
self.column_metrics.total_rows_written
}
/// Returns a reference to a [`ColumnDescPtr`]
pub fn get_descriptor(&self) -> &ColumnDescPtr {
&self.descr
}
/// Finalizes writes and closes the column writer.
/// Returns total bytes written, total rows written and column chunk metadata.
pub fn close(mut self) -> Result<ColumnCloseResult> {
if self.page_metrics.num_buffered_values > 0 {
self.add_data_page()?;
}
if self.encoder.has_dictionary() {
self.write_dictionary_page()?;
}
self.flush_data_pages()?;
let metadata = self.write_column_metadata()?;
self.page_writer.close()?;
let boundary_order = match (
self.data_page_boundary_ascending,
self.data_page_boundary_descending,
) {
// If the lists are composed of equal elements then will be marked as ascending
// (Also the case if all pages are null pages)
(true, _) => BoundaryOrder::ASCENDING,
(false, true) => BoundaryOrder::DESCENDING,
(false, false) => BoundaryOrder::UNORDERED,
};
self.column_index_builder.set_boundary_order(boundary_order);
let column_index = self
.column_index_builder
.valid()
.then(|| self.column_index_builder.build_to_thrift());
let offset_index = Some(self.offset_index_builder.build_to_thrift());
Ok(ColumnCloseResult {
bytes_written: self.column_metrics.total_bytes_written,
rows_written: self.column_metrics.total_rows_written,
bloom_filter: self.encoder.flush_bloom_filter(),
metadata,
column_index,
offset_index,
})
}
/// Writes mini batch of values, definition and repetition levels.
/// This allows fine-grained processing of values and maintaining a reasonable
/// page size.
fn write_mini_batch(
&mut self,
values: &E::Values,
values_offset: usize,
value_indices: Option<&[usize]>,
num_levels: usize,
def_levels: Option<&[i16]>,
rep_levels: Option<&[i16]>,
) -> Result<usize> {
// Process definition levels and determine how many values to write.
let values_to_write = if self.descr.max_def_level() > 0 {
let levels = def_levels.ok_or_else(|| {
general_err!(
"Definition levels are required, because max definition level = {}",
self.descr.max_def_level()
)
})?;
let mut values_to_write = 0;
for &level in levels {
if level == self.descr.max_def_level() {
values_to_write += 1;
} else {
// We must always compute this as it is used to populate v2 pages
self.page_metrics.num_page_nulls += 1
}
}
self.def_levels_sink.extend_from_slice(levels);
values_to_write
} else {
num_levels
};
// Process repetition levels and determine how many rows we are about to process.
if self.descr.max_rep_level() > 0 {
// A row could contain more than one value.
let levels = rep_levels.ok_or_else(|| {
general_err!(
"Repetition levels are required, because max repetition level = {}",
self.descr.max_rep_level()
)
})?;
if !levels.is_empty() && levels[0] != 0 {
return Err(general_err!(
"Write must start at a record boundary, got non-zero repetition level of {}",
levels[0]
));
}
// Count the occasions where we start a new row
for &level in levels {
self.page_metrics.num_buffered_rows += (level == 0) as u32
}
self.rep_levels_sink.extend_from_slice(levels);
} else {
// Each value is exactly one row.
// Equals to the number of values, we count nulls as well.
self.page_metrics.num_buffered_rows += num_levels as u32;
}
match value_indices {
Some(indices) => {
let indices = &indices[values_offset..values_offset + values_to_write];
self.encoder.write_gather(values, indices)?;
}
None => self.encoder.write(values, values_offset, values_to_write)?,
}
self.page_metrics.num_buffered_values += num_levels as u32;
if self.should_add_data_page() {
self.add_data_page()?;
}
if self.should_dict_fallback() {
self.dict_fallback()?;
}
Ok(values_to_write)
}
/// Returns true if we need to fall back to non-dictionary encoding.
///
/// We can only fall back if dictionary encoder is set and we have exceeded dictionary
/// size.
#[inline]
fn should_dict_fallback(&self) -> bool {
match self.encoder.estimated_dict_page_size() {
Some(size) => size >= self.props.dictionary_page_size_limit(),
None => false,
}
}
/// Returns true if there is enough data for a data page, false otherwise.
#[inline]
fn should_add_data_page(&self) -> bool {
// This is necessary in the event of a much larger dictionary size than page size
//
// In such a scenario the dictionary decoder may return an estimated encoded
// size in excess of the page size limit, even when there are no buffered values
if self.page_metrics.num_buffered_values == 0 {
return false;
}
self.page_metrics.num_buffered_rows as usize >= self.props.data_page_row_count_limit()
|| self.encoder.estimated_data_page_size() >= self.props.data_page_size_limit()
}
/// Performs dictionary fallback.
/// Prepares and writes dictionary and all data pages into page writer.
fn dict_fallback(&mut self) -> Result<()> {
// At this point we know that we need to fall back.
if self.page_metrics.num_buffered_values > 0 {
self.add_data_page()?;
}
self.write_dictionary_page()?;
self.flush_data_pages()?;
Ok(())
}
/// Update the column index and offset index when adding the data page
fn update_column_offset_index(&mut self, page_statistics: Option<&ValueStatistics<E::T>>) {
// update the column index
let null_page =
(self.page_metrics.num_buffered_rows as u64) == self.page_metrics.num_page_nulls;
// a page contains only null values,
// and writers have to set the corresponding entries in min_values and max_values to byte[0]
if null_page && self.column_index_builder.valid() {
self.column_index_builder.append(
null_page,
vec![0; 1],
vec![0; 1],
self.page_metrics.num_page_nulls as i64,
);
} else if self.column_index_builder.valid() {
// from page statistics
// If can't get the page statistics, ignore this column/offset index for this column chunk
match &page_statistics {
None => {
self.column_index_builder.to_invalid();
}
Some(stat) => {
// Check if min/max are still ascending/descending across pages
let new_min = stat.min();
let new_max = stat.max();
if let Some((last_min, last_max)) = &self.last_non_null_data_page_min_max {
if self.data_page_boundary_ascending {
// If last min/max are greater than new min/max then not ascending anymore
let not_ascending = compare_greater(&self.descr, last_min, new_min)
|| compare_greater(&self.descr, last_max, new_max);
if not_ascending {
self.data_page_boundary_ascending = false;
}
}
if self.data_page_boundary_descending {
// If new min/max are greater than last min/max then not descending anymore
let not_descending = compare_greater(&self.descr, new_min, last_min)
|| compare_greater(&self.descr, new_max, last_max);
if not_descending {
self.data_page_boundary_descending = false;
}
}
}
self.last_non_null_data_page_min_max = Some((new_min.clone(), new_max.clone()));
// We only truncate if the data is represented as binary
match self.descr.physical_type() {
Type::BYTE_ARRAY | Type::FIXED_LEN_BYTE_ARRAY => {
self.column_index_builder.append(
null_page,
self.truncate_min_value(
self.props.column_index_truncate_length(),
stat.min_bytes(),
)
.0,
self.truncate_max_value(
self.props.column_index_truncate_length(),
stat.max_bytes(),
)
.0,
self.page_metrics.num_page_nulls as i64,
);
}
_ => {
self.column_index_builder.append(
null_page,
stat.min_bytes().to_vec(),
stat.max_bytes().to_vec(),
self.page_metrics.num_page_nulls as i64,
);
}
}
}
}
}
// update the offset index
self.offset_index_builder
.append_row_count(self.page_metrics.num_buffered_rows as i64);
}
fn truncate_min_value(&self, truncation_length: Option<usize>, data: &[u8]) -> (Vec<u8>, bool) {
truncation_length
.filter(|l| data.len() > *l)
.and_then(|l| match str::from_utf8(data) {
Ok(str_data) => truncate_utf8(str_data, l),
Err(_) => Some(data[..l].to_vec()),
})
.map(|truncated| (truncated, true))
.unwrap_or_else(|| (data.to_vec(), false))
}
fn truncate_max_value(&self, truncation_length: Option<usize>, data: &[u8]) -> (Vec<u8>, bool) {
truncation_length
.filter(|l| data.len() > *l)
.and_then(|l| match str::from_utf8(data) {
Ok(str_data) => truncate_utf8(str_data, l).and_then(increment_utf8),
Err(_) => increment(data[..l].to_vec()),
})
.map(|truncated| (truncated, true))
.unwrap_or_else(|| (data.to_vec(), false))
}
/// Adds data page.
/// Data page is either buffered in case of dictionary encoding or written directly.
fn add_data_page(&mut self) -> Result<()> {
// Extract encoded values
let values_data = self.encoder.flush_data_page()?;
let max_def_level = self.descr.max_def_level();
let max_rep_level = self.descr.max_rep_level();
self.column_metrics.num_column_nulls += self.page_metrics.num_page_nulls;
let page_statistics = match (values_data.min_value, values_data.max_value) {
(Some(min), Some(max)) => {
update_min(&self.descr, &min, &mut self.column_metrics.min_column_value);
update_max(&self.descr, &max, &mut self.column_metrics.max_column_value);
Some(ValueStatistics::new(
Some(min),
Some(max),
None,
self.page_metrics.num_page_nulls,
false,
))
}
_ => None,
};
// update column and offset index
self.update_column_offset_index(page_statistics.as_ref());
let page_statistics = page_statistics.map(Statistics::from);
let compressed_page = match self.props.writer_version() {
WriterVersion::PARQUET_1_0 => {
let mut buffer = vec![];
if max_rep_level > 0 {
buffer.extend_from_slice(
&self.encode_levels_v1(
Encoding::RLE,
&self.rep_levels_sink[..],
max_rep_level,
)[..],
);
}
if max_def_level > 0 {
buffer.extend_from_slice(
&self.encode_levels_v1(
Encoding::RLE,
&self.def_levels_sink[..],
max_def_level,
)[..],
);
}
buffer.extend_from_slice(&values_data.buf);
let uncompressed_size = buffer.len();
if let Some(ref mut cmpr) = self.compressor {
let mut compressed_buf = Vec::with_capacity(uncompressed_size);
cmpr.compress(&buffer[..], &mut compressed_buf)?;
buffer = compressed_buf;
}
let data_page = Page::DataPage {
buf: buffer.into(),
num_values: self.page_metrics.num_buffered_values,
encoding: values_data.encoding,
def_level_encoding: Encoding::RLE,
rep_level_encoding: Encoding::RLE,
statistics: page_statistics,
};
CompressedPage::new(data_page, uncompressed_size)
}
WriterVersion::PARQUET_2_0 => {
let mut rep_levels_byte_len = 0;
let mut def_levels_byte_len = 0;
let mut buffer = vec![];
if max_rep_level > 0 {
let levels = self.encode_levels_v2(&self.rep_levels_sink[..], max_rep_level);
rep_levels_byte_len = levels.len();
buffer.extend_from_slice(&levels[..]);
}
if max_def_level > 0 {
let levels = self.encode_levels_v2(&self.def_levels_sink[..], max_def_level);
def_levels_byte_len = levels.len();
buffer.extend_from_slice(&levels[..]);
}
let uncompressed_size =
rep_levels_byte_len + def_levels_byte_len + values_data.buf.len();
// Data Page v2 compresses values only.
match self.compressor {
Some(ref mut cmpr) => {
cmpr.compress(&values_data.buf, &mut buffer)?;
}
None => buffer.extend_from_slice(&values_data.buf),
}
let data_page = Page::DataPageV2 {
buf: buffer.into(),
num_values: self.page_metrics.num_buffered_values,
encoding: values_data.encoding,
num_nulls: self.page_metrics.num_page_nulls as u32,
num_rows: self.page_metrics.num_buffered_rows,
def_levels_byte_len: def_levels_byte_len as u32,
rep_levels_byte_len: rep_levels_byte_len as u32,
is_compressed: self.compressor.is_some(),
statistics: page_statistics,
};
CompressedPage::new(data_page, uncompressed_size)
}
};
// Check if we need to buffer data page or flush it to the sink directly.
if self.encoder.has_dictionary() {
self.data_pages.push_back(compressed_page);
} else {
self.write_data_page(compressed_page)?;
}
// Update total number of rows.
self.column_metrics.total_rows_written += self.page_metrics.num_buffered_rows as u64;
// Reset state.
self.rep_levels_sink.clear();
self.def_levels_sink.clear();
self.page_metrics = PageMetrics::default();
Ok(())
}
/// Finalises any outstanding data pages and flushes buffered data pages from
/// dictionary encoding into underlying sink.
#[inline]
fn flush_data_pages(&mut self) -> Result<()> {
// Write all outstanding data to a new page.
if self.page_metrics.num_buffered_values > 0 {
self.add_data_page()?;
}
while let Some(page) = self.data_pages.pop_front() {
self.write_data_page(page)?;
}
Ok(())
}
/// Assembles and writes column chunk metadata.
fn write_column_metadata(&mut self) -> Result<ColumnChunkMetaData> {
let total_compressed_size = self.column_metrics.total_compressed_size as i64;
let total_uncompressed_size = self.column_metrics.total_uncompressed_size as i64;
let num_values = self.column_metrics.total_num_values as i64;
let dict_page_offset = self.column_metrics.dictionary_page_offset.map(|v| v as i64);
// If data page offset is not set, then no pages have been written
let data_page_offset = self.column_metrics.data_page_offset.unwrap_or(0) as i64;
let file_offset = match dict_page_offset {
Some(dict_offset) => dict_offset + total_compressed_size,
None => data_page_offset + total_compressed_size,
};
let mut builder = ColumnChunkMetaData::builder(self.descr.clone())
.set_compression(self.codec)
.set_encodings(self.encodings.iter().cloned().collect())
.set_file_offset(file_offset)
.set_total_compressed_size(total_compressed_size)
.set_total_uncompressed_size(total_uncompressed_size)
.set_num_values(num_values)
.set_data_page_offset(data_page_offset)
.set_dictionary_page_offset(dict_page_offset);
if self.statistics_enabled != EnabledStatistics::None {
let backwards_compatible_min_max = self.descr.sort_order().is_signed();
let statistics = ValueStatistics::<E::T>::new(
self.column_metrics.min_column_value.clone(),
self.column_metrics.max_column_value.clone(),
self.column_metrics.column_distinct_count,
self.column_metrics.num_column_nulls,
false,
)
.with_backwards_compatible_min_max(backwards_compatible_min_max)
.into();
let statistics = match statistics {
Statistics::ByteArray(stats) if stats.has_min_max_set() => {
let (min, did_truncate_min) = self.truncate_min_value(
self.props.statistics_truncate_length(),
stats.min_bytes(),
);
let (max, did_truncate_max) = self.truncate_max_value(
self.props.statistics_truncate_length(),
stats.max_bytes(),
);
Statistics::ByteArray(
ValueStatistics::new(
Some(min.into()),
Some(max.into()),
stats.distinct_count(),
stats.null_count(),
backwards_compatible_min_max,
)
.with_max_is_exact(!did_truncate_max)
.with_min_is_exact(!did_truncate_min),
)
}
Statistics::FixedLenByteArray(stats) if stats.has_min_max_set() => {
let (min, did_truncate_min) = self.truncate_min_value(
self.props.statistics_truncate_length(),
stats.min_bytes(),
);
let (max, did_truncate_max) = self.truncate_max_value(
self.props.statistics_truncate_length(),
stats.max_bytes(),
);
Statistics::FixedLenByteArray(
ValueStatistics::new(
Some(min.into()),
Some(max.into()),
stats.distinct_count(),
stats.null_count(),
backwards_compatible_min_max,
)
.with_max_is_exact(!did_truncate_max)
.with_min_is_exact(!did_truncate_min),
)
}
stats => stats,
};
builder = builder.set_statistics(statistics);
}
let metadata = builder.build()?;
self.page_writer.write_metadata(&metadata)?;
Ok(metadata)
}
/// Encodes definition or repetition levels for Data Page v1.
#[inline]
fn encode_levels_v1(&self, encoding: Encoding, levels: &[i16], max_level: i16) -> Vec<u8> {
let mut encoder = LevelEncoder::v1(encoding, max_level, levels.len());
encoder.put(levels);
encoder.consume()
}
/// Encodes definition or repetition levels for Data Page v2.
/// Encoding is always RLE.
#[inline]
fn encode_levels_v2(&self, levels: &[i16], max_level: i16) -> Vec<u8> {
let mut encoder = LevelEncoder::v2(max_level, levels.len());
encoder.put(levels);
encoder.consume()
}
/// Writes compressed data page into underlying sink and updates global metrics.
#[inline]
fn write_data_page(&mut self, page: CompressedPage) -> Result<()> {