-
Notifications
You must be signed in to change notification settings - Fork 847
/
Copy pathdata_type.rs
1364 lines (1173 loc) · 42 KB
/
data_type.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Data types that connect Parquet physical types with their Rust-specific
//! representations.
use bytes::Bytes;
use half::f16;
use std::cmp::Ordering;
use std::fmt;
use std::mem;
use std::ops::{Deref, DerefMut};
use std::str::from_utf8;
use crate::basic::Type;
use crate::column::reader::{ColumnReader, ColumnReaderImpl};
use crate::column::writer::{ColumnWriter, ColumnWriterImpl};
use crate::errors::{ParquetError, Result};
use crate::util::bit_util::FromBytes;
/// Rust representation for logical type INT96, value is backed by an array of `u32`.
/// The type only takes 12 bytes, without extra padding.
#[derive(Clone, Copy, Debug, PartialOrd, Default, PartialEq, Eq)]
pub struct Int96 {
value: [u32; 3],
}
impl Int96 {
/// Creates new INT96 type struct with no data set.
pub fn new() -> Self {
Self { value: [0; 3] }
}
/// Returns underlying data as slice of [`u32`].
#[inline]
pub fn data(&self) -> &[u32] {
&self.value
}
/// Sets data for this INT96 type.
#[inline]
pub fn set_data(&mut self, elem0: u32, elem1: u32, elem2: u32) {
self.value = [elem0, elem1, elem2];
}
/// Converts this INT96 into an i64 representing the number of MILLISECONDS since Epoch
pub fn to_i64(&self) -> i64 {
let (seconds, nanoseconds) = self.to_seconds_and_nanos();
seconds * 1_000 + nanoseconds / 1_000_000
}
/// Converts this INT96 into an i64 representing the number of NANOSECONDS since EPOCH
///
/// Will wrap around on overflow
pub fn to_nanos(&self) -> i64 {
let (seconds, nanoseconds) = self.to_seconds_and_nanos();
seconds
.wrapping_mul(1_000_000_000)
.wrapping_add(nanoseconds)
}
/// Converts this INT96 to a number of seconds and nanoseconds since EPOCH
pub fn to_seconds_and_nanos(&self) -> (i64, i64) {
const JULIAN_DAY_OF_EPOCH: i64 = 2_440_588;
const SECONDS_PER_DAY: i64 = 86_400;
let day = self.data()[2] as i64;
let nanoseconds = ((self.data()[1] as i64) << 32) + self.data()[0] as i64;
let seconds = (day - JULIAN_DAY_OF_EPOCH) * SECONDS_PER_DAY;
(seconds, nanoseconds)
}
}
impl From<Vec<u32>> for Int96 {
fn from(buf: Vec<u32>) -> Self {
assert_eq!(buf.len(), 3);
let mut result = Self::new();
result.set_data(buf[0], buf[1], buf[2]);
result
}
}
impl fmt::Display for Int96 {
#[cold]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:?}", self.data())
}
}
/// Rust representation for BYTE_ARRAY and FIXED_LEN_BYTE_ARRAY Parquet physical types.
/// Value is backed by a byte buffer.
#[derive(Clone, Default)]
pub struct ByteArray {
data: Option<Bytes>,
}
// Special case Debug that prints out byte arrays that are valid utf8 as &str's
impl std::fmt::Debug for ByteArray {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut debug_struct = f.debug_struct("ByteArray");
match self.as_utf8() {
Ok(s) => debug_struct.field("data", &s),
Err(_) => debug_struct.field("data", &self.data),
};
debug_struct.finish()
}
}
impl PartialOrd for ByteArray {
fn partial_cmp(&self, other: &ByteArray) -> Option<Ordering> {
// sort nulls first (consistent with PartialCmp on Option)
//
// Since ByteBuffer doesn't implement PartialOrd, so can't
// derive an implementation
match (&self.data, &other.data) {
(None, None) => Some(Ordering::Equal),
(None, Some(_)) => Some(Ordering::Less),
(Some(_), None) => Some(Ordering::Greater),
(Some(self_data), Some(other_data)) => {
// compare slices directly
self_data.partial_cmp(&other_data)
}
}
}
}
impl ByteArray {
/// Creates new byte array with no data set.
#[inline]
pub fn new() -> Self {
ByteArray { data: None }
}
/// Gets length of the underlying byte buffer.
#[inline]
pub fn len(&self) -> usize {
assert!(self.data.is_some());
self.data.as_ref().unwrap().len()
}
/// Checks if the underlying buffer is empty.
#[inline]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Returns slice of data.
#[inline]
pub fn data(&self) -> &[u8] {
self.data
.as_ref()
.expect("set_data should have been called")
.as_ref()
}
/// Set data from another byte buffer.
#[inline]
pub fn set_data(&mut self, data: Bytes) {
self.data = Some(data);
}
/// Returns `ByteArray` instance with slice of values for a data.
#[inline]
pub fn slice(&self, start: usize, len: usize) -> Self {
Self::from(
self.data
.as_ref()
.expect("set_data should have been called")
.slice(start..start + len),
)
}
/// Try to convert the byte array to a utf8 slice
pub fn as_utf8(&self) -> Result<&str> {
self.data
.as_ref()
.map(|ptr| ptr.as_ref())
.ok_or_else(|| general_err!("Can't convert empty byte array to utf8"))
.and_then(|bytes| from_utf8(bytes).map_err(|e| e.into()))
}
}
impl From<Vec<u8>> for ByteArray {
fn from(buf: Vec<u8>) -> ByteArray {
Self {
data: Some(buf.into()),
}
}
}
impl<'a> From<&'a [u8]> for ByteArray {
fn from(b: &'a [u8]) -> ByteArray {
let mut v = Vec::new();
v.extend_from_slice(b);
Self {
data: Some(v.into()),
}
}
}
impl<'a> From<&'a str> for ByteArray {
fn from(s: &'a str) -> ByteArray {
let mut v = Vec::new();
v.extend_from_slice(s.as_bytes());
Self {
data: Some(v.into()),
}
}
}
impl From<Bytes> for ByteArray {
fn from(value: Bytes) -> Self {
Self { data: Some(value) }
}
}
impl From<f16> for ByteArray {
fn from(value: f16) -> Self {
Self::from(value.to_le_bytes().as_slice())
}
}
impl PartialEq for ByteArray {
fn eq(&self, other: &ByteArray) -> bool {
match (&self.data, &other.data) {
(Some(d1), Some(d2)) => d1.as_ref() == d2.as_ref(),
(None, None) => true,
_ => false,
}
}
}
impl fmt::Display for ByteArray {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:?}", self.data())
}
}
/// Wrapper type for performance reasons, this represents `FIXED_LEN_BYTE_ARRAY` but in all other
/// considerations behaves the same as `ByteArray`
///
/// # Performance notes:
/// This type is a little unfortunate, without it the compiler generates code that takes quite a
/// big hit on the CPU pipeline. Essentially the previous version stalls awaiting the result of
/// `T::get_physical_type() == Type::FIXED_LEN_BYTE_ARRAY`.
///
/// Its debatable if this is wanted, it is out of spec for what parquet documents as its base
/// types, although there are code paths in the Rust (and potentially the C++) versions that
/// warrant this.
///
/// With this wrapper type the compiler generates more targeted code paths matching the higher
/// level logical types, removing the data-hazard from all decoding and encoding paths.
#[repr(transparent)]
#[derive(Clone, Debug, Default)]
pub struct FixedLenByteArray(ByteArray);
impl PartialEq for FixedLenByteArray {
fn eq(&self, other: &FixedLenByteArray) -> bool {
self.0.eq(&other.0)
}
}
impl PartialEq<ByteArray> for FixedLenByteArray {
fn eq(&self, other: &ByteArray) -> bool {
self.0.eq(other)
}
}
impl PartialEq<FixedLenByteArray> for ByteArray {
fn eq(&self, other: &FixedLenByteArray) -> bool {
self.eq(&other.0)
}
}
impl fmt::Display for FixedLenByteArray {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.0.fmt(f)
}
}
impl PartialOrd for FixedLenByteArray {
fn partial_cmp(&self, other: &FixedLenByteArray) -> Option<Ordering> {
self.0.partial_cmp(&other.0)
}
}
impl PartialOrd<FixedLenByteArray> for ByteArray {
fn partial_cmp(&self, other: &FixedLenByteArray) -> Option<Ordering> {
self.partial_cmp(&other.0)
}
}
impl PartialOrd<ByteArray> for FixedLenByteArray {
fn partial_cmp(&self, other: &ByteArray) -> Option<Ordering> {
self.0.partial_cmp(other)
}
}
impl Deref for FixedLenByteArray {
type Target = ByteArray;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl DerefMut for FixedLenByteArray {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
impl From<ByteArray> for FixedLenByteArray {
fn from(other: ByteArray) -> Self {
Self(other)
}
}
impl From<Vec<u8>> for FixedLenByteArray {
fn from(buf: Vec<u8>) -> FixedLenByteArray {
FixedLenByteArray(ByteArray::from(buf))
}
}
impl From<FixedLenByteArray> for ByteArray {
fn from(other: FixedLenByteArray) -> Self {
other.0
}
}
/// Rust representation for Decimal values.
///
/// This is not a representation of Parquet physical type, but rather a wrapper for
/// DECIMAL logical type, and serves as container for raw parts of decimal values:
/// unscaled value in bytes, precision and scale.
#[derive(Clone, Debug)]
pub enum Decimal {
/// Decimal backed by `i32`.
Int32 {
/// The underlying value
value: [u8; 4],
/// The total number of digits in the number
precision: i32,
/// The number of digits to the right of the decimal point
scale: i32,
},
/// Decimal backed by `i64`.
Int64 {
/// The underlying value
value: [u8; 8],
/// The total number of digits in the number
precision: i32,
/// The number of digits to the right of the decimal point
scale: i32,
},
/// Decimal backed by byte array.
Bytes {
/// The underlying value
value: ByteArray,
/// The total number of digits in the number
precision: i32,
/// The number of digits to the right of the decimal point
scale: i32,
},
}
impl Decimal {
/// Creates new decimal value from `i32`.
pub fn from_i32(value: i32, precision: i32, scale: i32) -> Self {
let bytes = value.to_be_bytes();
Decimal::Int32 {
value: bytes,
precision,
scale,
}
}
/// Creates new decimal value from `i64`.
pub fn from_i64(value: i64, precision: i32, scale: i32) -> Self {
let bytes = value.to_be_bytes();
Decimal::Int64 {
value: bytes,
precision,
scale,
}
}
/// Creates new decimal value from `ByteArray`.
pub fn from_bytes(value: ByteArray, precision: i32, scale: i32) -> Self {
Decimal::Bytes {
value,
precision,
scale,
}
}
/// Returns bytes of unscaled value.
pub fn data(&self) -> &[u8] {
match *self {
Decimal::Int32 { ref value, .. } => value,
Decimal::Int64 { ref value, .. } => value,
Decimal::Bytes { ref value, .. } => value.data(),
}
}
/// Returns decimal precision.
pub fn precision(&self) -> i32 {
match *self {
Decimal::Int32 { precision, .. } => precision,
Decimal::Int64 { precision, .. } => precision,
Decimal::Bytes { precision, .. } => precision,
}
}
/// Returns decimal scale.
pub fn scale(&self) -> i32 {
match *self {
Decimal::Int32 { scale, .. } => scale,
Decimal::Int64 { scale, .. } => scale,
Decimal::Bytes { scale, .. } => scale,
}
}
}
impl Default for Decimal {
fn default() -> Self {
Self::from_i32(0, 0, 0)
}
}
impl PartialEq for Decimal {
fn eq(&self, other: &Decimal) -> bool {
self.precision() == other.precision()
&& self.scale() == other.scale()
&& self.data() == other.data()
}
}
/// Converts an instance of data type to a slice of bytes as `u8`.
pub trait AsBytes {
/// Returns slice of bytes for this data type.
fn as_bytes(&self) -> &[u8];
}
/// Converts an slice of a data type to a slice of bytes.
pub trait SliceAsBytes: Sized {
/// Returns slice of bytes for a slice of this data type.
fn slice_as_bytes(self_: &[Self]) -> &[u8];
/// Return the internal representation as a mutable slice
///
/// # Safety
/// If modified you are _required_ to ensure the internal representation
/// is valid and correct for the actual raw data
unsafe fn slice_as_bytes_mut(self_: &mut [Self]) -> &mut [u8];
}
impl AsBytes for [u8] {
fn as_bytes(&self) -> &[u8] {
self
}
}
macro_rules! gen_as_bytes {
($source_ty:ident) => {
impl AsBytes for $source_ty {
#[allow(clippy::size_of_in_element_count)]
fn as_bytes(&self) -> &[u8] {
// SAFETY: macro is only used with primitive types that have no padding, so the
// resulting slice always refers to initialized memory.
unsafe {
std::slice::from_raw_parts(
self as *const $source_ty as *const u8,
std::mem::size_of::<$source_ty>(),
)
}
}
}
impl SliceAsBytes for $source_ty {
#[inline]
#[allow(clippy::size_of_in_element_count)]
fn slice_as_bytes(self_: &[Self]) -> &[u8] {
// SAFETY: macro is only used with primitive types that have no padding, so the
// resulting slice always refers to initialized memory.
unsafe {
std::slice::from_raw_parts(
self_.as_ptr() as *const u8,
std::mem::size_of_val(self_),
)
}
}
#[inline]
#[allow(clippy::size_of_in_element_count)]
unsafe fn slice_as_bytes_mut(self_: &mut [Self]) -> &mut [u8] {
// SAFETY: macro is only used with primitive types that have no padding, so the
// resulting slice always refers to initialized memory. Moreover, self has no
// invalid bit patterns, so all writes to the resulting slice will be valid.
unsafe {
std::slice::from_raw_parts_mut(
self_.as_mut_ptr() as *mut u8,
std::mem::size_of_val(self_),
)
}
}
}
};
}
gen_as_bytes!(i8);
gen_as_bytes!(i16);
gen_as_bytes!(i32);
gen_as_bytes!(i64);
gen_as_bytes!(u8);
gen_as_bytes!(u16);
gen_as_bytes!(u32);
gen_as_bytes!(u64);
gen_as_bytes!(f32);
gen_as_bytes!(f64);
macro_rules! unimplemented_slice_as_bytes {
($ty: ty) => {
impl SliceAsBytes for $ty {
fn slice_as_bytes(_self: &[Self]) -> &[u8] {
unimplemented!()
}
unsafe fn slice_as_bytes_mut(_self: &mut [Self]) -> &mut [u8] {
unimplemented!()
}
}
};
}
// TODO - Can Int96 and bool be implemented in these terms?
unimplemented_slice_as_bytes!(Int96);
unimplemented_slice_as_bytes!(bool);
unimplemented_slice_as_bytes!(ByteArray);
unimplemented_slice_as_bytes!(FixedLenByteArray);
impl AsBytes for bool {
fn as_bytes(&self) -> &[u8] {
// SAFETY: a bool is guaranteed to be either 0x00 or 0x01 in memory, so the memory is
// valid.
unsafe { std::slice::from_raw_parts(self as *const bool as *const u8, 1) }
}
}
impl AsBytes for Int96 {
fn as_bytes(&self) -> &[u8] {
// SAFETY: Int96::data is a &[u32; 3].
unsafe { std::slice::from_raw_parts(self.data() as *const [u32] as *const u8, 12) }
}
}
impl AsBytes for ByteArray {
fn as_bytes(&self) -> &[u8] {
self.data()
}
}
impl AsBytes for FixedLenByteArray {
fn as_bytes(&self) -> &[u8] {
self.data()
}
}
impl AsBytes for Decimal {
fn as_bytes(&self) -> &[u8] {
self.data()
}
}
impl AsBytes for Vec<u8> {
fn as_bytes(&self) -> &[u8] {
self.as_slice()
}
}
impl AsBytes for &str {
fn as_bytes(&self) -> &[u8] {
(self as &str).as_bytes()
}
}
impl AsBytes for str {
fn as_bytes(&self) -> &[u8] {
(self as &str).as_bytes()
}
}
pub(crate) mod private {
use bytes::Bytes;
use crate::encodings::decoding::PlainDecoderDetails;
use crate::util::bit_util::{read_num_bytes, BitReader, BitWriter};
use super::{ParquetError, Result, SliceAsBytes};
use crate::basic::Type;
use crate::file::metadata::HeapSize;
/// Sealed trait to start to remove specialisation from implementations
///
/// This is done to force the associated value type to be unimplementable outside of this
/// crate, and thus hint to the type system (and end user) traits are public for the contract
/// and not for extension.
pub trait ParquetValueType:
PartialEq
+ std::fmt::Debug
+ std::fmt::Display
+ Default
+ Clone
+ super::AsBytes
+ super::FromBytes
+ SliceAsBytes
+ PartialOrd
+ Send
+ HeapSize
+ crate::encodings::decoding::private::GetDecoder
+ crate::file::statistics::private::MakeStatistics
{
const PHYSICAL_TYPE: Type;
/// Encode the value directly from a higher level encoder
fn encode<W: std::io::Write>(
values: &[Self],
writer: &mut W,
bit_writer: &mut BitWriter,
) -> Result<()>;
/// Establish the data that will be decoded in a buffer
fn set_data(decoder: &mut PlainDecoderDetails, data: Bytes, num_values: usize);
/// Decode the value from a given buffer for a higher level decoder
fn decode(buffer: &mut [Self], decoder: &mut PlainDecoderDetails) -> Result<usize>;
fn skip(decoder: &mut PlainDecoderDetails, num_values: usize) -> Result<usize>;
/// Return the encoded size for a type
fn dict_encoding_size(&self) -> (usize, usize) {
(std::mem::size_of::<Self>(), 1)
}
/// Return the number of variable length bytes in a given slice of data
///
/// Returns the sum of lengths for BYTE_ARRAY data, and None for all other data types
fn variable_length_bytes(_: &[Self]) -> Option<i64> {
None
}
/// Return the value as i64 if possible
///
/// This is essentially the same as `std::convert::TryInto<i64>` but can't be
/// implemented for `f32` and `f64`, types that would fail orphan rules
fn as_i64(&self) -> Result<i64> {
Err(general_err!("Type cannot be converted to i64"))
}
/// Return the value as u64 if possible
///
/// This is essentially the same as `std::convert::TryInto<u64>` but can't be
/// implemented for `f32` and `f64`, types that would fail orphan rules
fn as_u64(&self) -> Result<u64> {
self.as_i64()
.map_err(|_| general_err!("Type cannot be converted to u64"))
.map(|x| x as u64)
}
/// Return the value as an Any to allow for downcasts without transmutation
fn as_any(&self) -> &dyn std::any::Any;
/// Return the value as an mutable Any to allow for downcasts without transmutation
fn as_mut_any(&mut self) -> &mut dyn std::any::Any;
/// Sets the value of this object from the provided [`Bytes`]
///
/// Only implemented for `ByteArray` and `FixedLenByteArray`. Will panic for other types.
fn set_from_bytes(&mut self, _data: Bytes) {
unimplemented!();
}
}
impl ParquetValueType for bool {
const PHYSICAL_TYPE: Type = Type::BOOLEAN;
#[inline]
fn encode<W: std::io::Write>(
values: &[Self],
_: &mut W,
bit_writer: &mut BitWriter,
) -> Result<()> {
for value in values {
bit_writer.put_value(*value as u64, 1)
}
Ok(())
}
#[inline]
fn set_data(decoder: &mut PlainDecoderDetails, data: Bytes, num_values: usize) {
decoder.bit_reader.replace(BitReader::new(data));
decoder.num_values = num_values;
}
#[inline]
fn decode(buffer: &mut [Self], decoder: &mut PlainDecoderDetails) -> Result<usize> {
let bit_reader = decoder.bit_reader.as_mut().unwrap();
let num_values = std::cmp::min(buffer.len(), decoder.num_values);
let values_read = bit_reader.get_batch(&mut buffer[..num_values], 1);
decoder.num_values -= values_read;
Ok(values_read)
}
fn skip(decoder: &mut PlainDecoderDetails, num_values: usize) -> Result<usize> {
let bit_reader = decoder.bit_reader.as_mut().unwrap();
let num_values = std::cmp::min(num_values, decoder.num_values);
let values_read = bit_reader.skip(num_values, 1);
decoder.num_values -= values_read;
Ok(values_read)
}
#[inline]
fn as_i64(&self) -> Result<i64> {
Ok(*self as i64)
}
#[inline]
fn as_any(&self) -> &dyn std::any::Any {
self
}
#[inline]
fn as_mut_any(&mut self) -> &mut dyn std::any::Any {
self
}
}
macro_rules! impl_from_raw {
($ty: ty, $physical_ty: expr, $self: ident => $as_i64: block) => {
impl ParquetValueType for $ty {
const PHYSICAL_TYPE: Type = $physical_ty;
#[inline]
fn encode<W: std::io::Write>(values: &[Self], writer: &mut W, _: &mut BitWriter) -> Result<()> {
// SAFETY: Self is one of i32, i64, f32, f64, which have no padding.
let raw = unsafe {
std::slice::from_raw_parts(
values.as_ptr() as *const u8,
std::mem::size_of_val(values),
)
};
writer.write_all(raw)?;
Ok(())
}
#[inline]
fn set_data(decoder: &mut PlainDecoderDetails, data: Bytes, num_values: usize) {
decoder.data.replace(data);
decoder.start = 0;
decoder.num_values = num_values;
}
#[inline]
fn decode(buffer: &mut [Self], decoder: &mut PlainDecoderDetails) -> Result<usize> {
let data = decoder.data.as_ref().expect("set_data should have been called");
let num_values = std::cmp::min(buffer.len(), decoder.num_values);
let bytes_left = data.len() - decoder.start;
let bytes_to_decode = std::mem::size_of::<Self>() * num_values;
if bytes_left < bytes_to_decode {
return Err(eof_err!("Not enough bytes to decode"));
}
{
// SAFETY: Self has no invalid bit patterns, so writing to the slice
// obtained with slice_as_bytes_mut is always safe.
let raw_buffer = &mut unsafe { Self::slice_as_bytes_mut(buffer) }[..bytes_to_decode];
raw_buffer.copy_from_slice(data.slice(
decoder.start..decoder.start + bytes_to_decode
).as_ref());
};
decoder.start += bytes_to_decode;
decoder.num_values -= num_values;
Ok(num_values)
}
#[inline]
fn skip(decoder: &mut PlainDecoderDetails, num_values: usize) -> Result<usize> {
let data = decoder.data.as_ref().expect("set_data should have been called");
let num_values = num_values.min(decoder.num_values);
let bytes_left = data.len() - decoder.start;
let bytes_to_skip = std::mem::size_of::<Self>() * num_values;
if bytes_left < bytes_to_skip {
return Err(eof_err!("Not enough bytes to skip"));
}
decoder.start += bytes_to_skip;
decoder.num_values -= num_values;
Ok(num_values)
}
#[inline]
fn as_i64(&$self) -> Result<i64> {
$as_i64
}
#[inline]
fn as_any(&self) -> &dyn std::any::Any {
self
}
#[inline]
fn as_mut_any(&mut self) -> &mut dyn std::any::Any {
self
}
}
}
}
impl_from_raw!(i32, Type::INT32, self => { Ok(*self as i64) });
impl_from_raw!(i64, Type::INT64, self => { Ok(*self) });
impl_from_raw!(f32, Type::FLOAT, self => { Err(general_err!("Type cannot be converted to i64")) });
impl_from_raw!(f64, Type::DOUBLE, self => { Err(general_err!("Type cannot be converted to i64")) });
impl ParquetValueType for super::Int96 {
const PHYSICAL_TYPE: Type = Type::INT96;
#[inline]
fn encode<W: std::io::Write>(
values: &[Self],
writer: &mut W,
_: &mut BitWriter,
) -> Result<()> {
for value in values {
let raw = SliceAsBytes::slice_as_bytes(value.data());
writer.write_all(raw)?;
}
Ok(())
}
#[inline]
fn set_data(decoder: &mut PlainDecoderDetails, data: Bytes, num_values: usize) {
decoder.data.replace(data);
decoder.start = 0;
decoder.num_values = num_values;
}
#[inline]
fn decode(buffer: &mut [Self], decoder: &mut PlainDecoderDetails) -> Result<usize> {
// TODO - Remove the duplication between this and the general slice method
let data = decoder
.data
.as_ref()
.expect("set_data should have been called");
let num_values = std::cmp::min(buffer.len(), decoder.num_values);
let bytes_left = data.len() - decoder.start;
let bytes_to_decode = 12 * num_values;
if bytes_left < bytes_to_decode {
return Err(eof_err!("Not enough bytes to decode"));
}
let data_range = data.slice(decoder.start..decoder.start + bytes_to_decode);
let bytes: &[u8] = &data_range;
decoder.start += bytes_to_decode;
let mut pos = 0; // position in byte array
for item in buffer.iter_mut().take(num_values) {
let elem0 = u32::from_le_bytes(bytes[pos..pos + 4].try_into().unwrap());
let elem1 = u32::from_le_bytes(bytes[pos + 4..pos + 8].try_into().unwrap());
let elem2 = u32::from_le_bytes(bytes[pos + 8..pos + 12].try_into().unwrap());
item.set_data(elem0, elem1, elem2);
pos += 12;
}
decoder.num_values -= num_values;
Ok(num_values)
}
fn skip(decoder: &mut PlainDecoderDetails, num_values: usize) -> Result<usize> {
let data = decoder
.data
.as_ref()
.expect("set_data should have been called");
let num_values = std::cmp::min(num_values, decoder.num_values);
let bytes_left = data.len() - decoder.start;
let bytes_to_skip = 12 * num_values;
if bytes_left < bytes_to_skip {
return Err(eof_err!("Not enough bytes to skip"));
}
decoder.start += bytes_to_skip;
decoder.num_values -= num_values;
Ok(num_values)
}
#[inline]
fn as_any(&self) -> &dyn std::any::Any {
self
}
#[inline]
fn as_mut_any(&mut self) -> &mut dyn std::any::Any {
self
}
}
impl HeapSize for super::Int96 {
fn heap_size(&self) -> usize {
0 // no heap allocations
}
}
impl ParquetValueType for super::ByteArray {
const PHYSICAL_TYPE: Type = Type::BYTE_ARRAY;
#[inline]
fn encode<W: std::io::Write>(
values: &[Self],
writer: &mut W,
_: &mut BitWriter,
) -> Result<()> {
for value in values {
let len: u32 = value.len().try_into().unwrap();
writer.write_all(&len.to_ne_bytes())?;
let raw = value.data();
writer.write_all(raw)?;
}
Ok(())
}
#[inline]
fn set_data(decoder: &mut PlainDecoderDetails, data: Bytes, num_values: usize) {
decoder.data.replace(data);
decoder.start = 0;
decoder.num_values = num_values;
}
#[inline]
fn decode(buffer: &mut [Self], decoder: &mut PlainDecoderDetails) -> Result<usize> {
let data = decoder
.data
.as_mut()
.expect("set_data should have been called");
let num_values = std::cmp::min(buffer.len(), decoder.num_values);
for val_array in buffer.iter_mut().take(num_values) {
let len: usize =
read_num_bytes::<u32>(4, data.slice(decoder.start..).as_ref()) as usize;
decoder.start += std::mem::size_of::<u32>();
if data.len() < decoder.start + len {
return Err(eof_err!("Not enough bytes to decode"));
}
val_array.set_data(data.slice(decoder.start..decoder.start + len));
decoder.start += len;
}
decoder.num_values -= num_values;
Ok(num_values)
}
fn variable_length_bytes(values: &[Self]) -> Option<i64> {
Some(values.iter().map(|x| x.len() as i64).sum())
}
fn skip(decoder: &mut PlainDecoderDetails, num_values: usize) -> Result<usize> {
let data = decoder
.data
.as_mut()
.expect("set_data should have been called");
let num_values = num_values.min(decoder.num_values);
for _ in 0..num_values {
let len: usize =
read_num_bytes::<u32>(4, data.slice(decoder.start..).as_ref()) as usize;
decoder.start += std::mem::size_of::<u32>() + len;
}
decoder.num_values -= num_values;
Ok(num_values)
}