-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathexpr_api.rs
302 lines (254 loc) · 11.4 KB
/
expr_api.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use std::collections::HashMap;
use std::sync::Arc;
use arrow::array::{BooleanArray, Int32Array};
use arrow::record_batch::RecordBatch;
use datafusion::arrow::datatypes::{DataType, Field, Schema, TimeUnit};
use datafusion::common::DFSchema;
use datafusion::error::Result;
use datafusion::optimizer::simplify_expressions::ExprSimplifier;
use datafusion::physical_expr::{
analyze, create_physical_expr, AnalysisContext, ExprBoundaries, PhysicalExpr,
};
use datafusion::prelude::*;
use datafusion_common::{ScalarValue, ToDFSchema};
use datafusion_expr::execution_props::ExecutionProps;
use datafusion_expr::expr::BinaryExpr;
use datafusion_expr::interval_arithmetic::Interval;
use datafusion_expr::simplify::SimplifyContext;
use datafusion_expr::{ColumnarValue, ExprSchemable, Operator};
/// This example demonstrates the DataFusion [`Expr`] API.
///
/// DataFusion comes with a powerful and extensive system for
/// representing and manipulating expressions such as `A + 5` and `X
/// IN ('foo', 'bar', 'baz')`.
///
/// In addition to building and manipulating [`Expr`]s, DataFusion
/// also comes with APIs for evaluation, simplification, and analysis.
///
/// The code in this example shows how to:
/// 1. Create [`Exprs`] using different APIs: [`main`]`
/// 2. Evaluate [`Exprs`] against data: [`evaluate_demo`]
/// 3. Simplify expressions: [`simplify_demo`]
/// 4. Analyze predicates for boundary ranges: [`range_analysis_demo`]
/// 5. Get the types of the expressions: [`expression_type_demo`]
#[tokio::main]
async fn main() -> Result<()> {
// The easiest way to do create expressions is to use the
// "fluent"-style API:
let expr = col("a") + lit(5);
// The same same expression can be created directly, with much more code:
let expr2 = Expr::BinaryExpr(BinaryExpr::new(
Box::new(col("a")),
Operator::Plus,
Box::new(Expr::Literal(ScalarValue::Int32(Some(5)))),
));
assert_eq!(expr, expr2);
// See how to evaluate expressions
evaluate_demo()?;
// See how to simplify expressions
simplify_demo()?;
// See how to analyze ranges in expressions
range_analysis_demo()?;
// See how to determine the data types of expressions
expression_type_demo()?;
Ok(())
}
/// DataFusion can also evaluate arbitrary expressions on Arrow arrays.
fn evaluate_demo() -> Result<()> {
// For example, let's say you have some integers in an array
let batch = RecordBatch::try_from_iter([(
"a",
Arc::new(Int32Array::from(vec![4, 5, 6, 7, 8, 7, 4])) as _,
)])?;
// If you want to find all rows where the expression `a < 5 OR a = 8` is true
let expr = col("a").lt(lit(5)).or(col("a").eq(lit(8)));
// First, you make a "physical expression" from the logical `Expr`
let physical_expr = physical_expr(&batch.schema(), expr)?;
// Now, you can evaluate the expression against the RecordBatch
let result = physical_expr.evaluate(&batch)?;
// The result contain an array that is true only for where `a < 5 OR a = 8`
let expected_result = Arc::new(BooleanArray::from(vec![
true, false, false, false, true, false, true,
])) as _;
assert!(
matches!(&result, ColumnarValue::Array(r) if r == &expected_result),
"result: {:?}",
result
);
Ok(())
}
/// In addition to easy construction, DataFusion exposes APIs for simplifying
/// such expression so they are more efficient to evaluate. This code is also
/// used by the query engine to optimize queries.
fn simplify_demo() -> Result<()> {
// For example, lets say you have has created an expression such
// ts = to_timestamp("2020-09-08T12:00:00+00:00")
let expr = col("ts").eq(to_timestamp(vec![lit("2020-09-08T12:00:00+00:00")]));
// Naively evaluating such an expression against a large number of
// rows would involve re-converting "2020-09-08T12:00:00+00:00" to a
// timestamp for each row which gets expensive
//
// However, DataFusion's simplification logic can do this for you
// you need to tell DataFusion the type of column "ts":
let schema = Schema::new(vec![make_ts_field("ts")]).to_dfschema_ref()?;
// And then build a simplifier
// the ExecutionProps carries information needed to simplify
// expressions, such as the current time (to evaluate `now()`
// correctly)
let props = ExecutionProps::new();
let context = SimplifyContext::new(&props).with_schema(schema);
let simplifier = ExprSimplifier::new(context);
// And then call the simplify_expr function:
let expr = simplifier.simplify(expr)?;
// DataFusion has simplified the expression to a comparison with a constant
// ts = 1599566400000000000; Tada!
assert_eq!(
expr,
col("ts").eq(lit_timestamp_nano(1599566400000000000i64))
);
// here are some other examples of what DataFusion is capable of
let schema = Schema::new(vec![
make_field("i", DataType::Int64),
make_field("b", DataType::Boolean),
])
.to_dfschema_ref()?;
let context = SimplifyContext::new(&props).with_schema(schema.clone());
let simplifier = ExprSimplifier::new(context);
// basic arithmetic simplification
// i + 1 + 2 => a + 3
// (note this is not done if the expr is (col("i") + (lit(1) + lit(2))))
assert_eq!(
simplifier.simplify(col("i") + (lit(1) + lit(2)))?,
col("i") + lit(3)
);
// (i * 0) > 5 --> false (only if null)
assert_eq!(
simplifier.simplify((col("i") * lit(0)).gt(lit(5)))?,
lit(false)
);
// Logical simplification
// ((i > 5) AND FALSE) OR (i < 10) --> i < 10
assert_eq!(
simplifier
.simplify(col("i").gt(lit(5)).and(lit(false)).or(col("i").lt(lit(10))))?,
col("i").lt(lit(10))
);
// String --> Date simplification
// `cast('2020-09-01' as date)` --> 18500
assert_eq!(
simplifier.simplify(lit("2020-09-01").cast_to(&DataType::Date32, &schema)?)?,
lit(ScalarValue::Date32(Some(18506)))
);
Ok(())
}
/// DataFusion also has APIs for analyzing predicates (boolean expressions) to
/// determine any ranges restrictions on the inputs required for the predicate
/// evaluate to true.
fn range_analysis_demo() -> Result<()> {
// For example, let's say you are interested in finding data for all days
// in the month of September, 2020
let september_1 = ScalarValue::Date32(Some(18506)); // 2020-09-01
let october_1 = ScalarValue::Date32(Some(18536)); // 2020-10-01
// The predicate to find all such days could be
// `date > '2020-09-01' AND date < '2020-10-01'`
let expr = col("date")
.gt(lit(september_1.clone()))
.and(col("date").lt(lit(october_1.clone())));
// Using the analysis API, DataFusion can determine that the value of `date`
// must be in the range `['2020-09-01', '2020-10-01']`. If your data is
// organized in files according to day, this information permits skipping
// entire files without reading them.
//
// While this simple example could be handled with a special case, the
// DataFusion API handles arbitrary expressions (so for example, you don't
// have to handle the case where the predicate clauses are reversed such as
// `date < '2020-10-01' AND date > '2020-09-01'`
// As always, we need to tell DataFusion the type of column "date"
let schema = Schema::new(vec![make_field("date", DataType::Date32)]);
// You can provide DataFusion any known boundaries on the values of `date`
// (for example, maybe you know you only have data up to `2020-09-15`), but
// in this case, let's say we don't know any boundaries beforehand so we use
// `try_new_unknown`
let boundaries = ExprBoundaries::try_new_unbounded(&schema)?;
// Now, we invoke the analysis code to perform the range analysis
let physical_expr = physical_expr(&schema, expr)?;
let analysis_result =
analyze(&physical_expr, AnalysisContext::new(boundaries), &schema)?;
// The results of the analysis is an range, encoded as an `Interval`, for
// each column in the schema, that must be true in order for the predicate
// to be true.
//
// In this case, we can see that, as expected, `analyze` has figured out
// that in this case, `date` must be in the range `['2020-09-01', '2020-10-01']`
let expected_range = Interval::try_new(september_1, october_1)?;
assert_eq!(analysis_result.boundaries[0].interval, expected_range);
Ok(())
}
fn make_field(name: &str, data_type: DataType) -> Field {
let nullable = false;
Field::new(name, data_type, nullable)
}
fn make_ts_field(name: &str) -> Field {
let tz = None;
make_field(name, DataType::Timestamp(TimeUnit::Nanosecond, tz))
}
/// Build a physical expression from a logical one, after applying simplification and type coercion
pub fn physical_expr(schema: &Schema, expr: Expr) -> Result<Arc<dyn PhysicalExpr>> {
let df_schema = schema.clone().to_dfschema_ref()?;
// Simplify
let props = ExecutionProps::new();
let simplifier =
ExprSimplifier::new(SimplifyContext::new(&props).with_schema(df_schema.clone()));
// apply type coercion here to ensure types match
let expr = simplifier.coerce(expr, df_schema.clone())?;
create_physical_expr(&expr, df_schema.as_ref(), &props)
}
/// This function shows how to use `Expr::get_type` to retrieve the DataType
/// of an expression
fn expression_type_demo() -> Result<()> {
let expr = col("c");
// To determine the DataType of an expression, DataFusion must know the
// types of the input expressions. You can provide this information using
// a schema. In this case we create a schema where the column `c` is of
// type Utf8 (a String / VARCHAR)
let schema = DFSchema::from_unqualifed_fields(
vec![Field::new("c", DataType::Utf8, true)].into(),
HashMap::new(),
)?;
assert_eq!("Utf8", format!("{}", expr.get_type(&schema).unwrap()));
// Using a schema where the column `foo` is of type Int32
let schema = DFSchema::from_unqualifed_fields(
vec![Field::new("c", DataType::Int32, true)].into(),
HashMap::new(),
)?;
assert_eq!("Int32", format!("{}", expr.get_type(&schema).unwrap()));
// Get the type of an expression that adds 2 columns. Adding an Int32
// and Float32 results in Float32 type
let expr = col("c1") + col("c2");
let schema = DFSchema::from_unqualifed_fields(
vec![
Field::new("c1", DataType::Int32, true),
Field::new("c2", DataType::Float32, true),
]
.into(),
HashMap::new(),
)?;
assert_eq!("Float32", format!("{}", expr.get_type(&schema).unwrap()));
Ok(())
}