-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathparquet_index.rs
703 lines (628 loc) · 24.9 KB
/
parquet_index.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use arrow::array::{
Array, ArrayRef, AsArray, BooleanArray, Int32Array, RecordBatch, StringArray,
UInt64Array,
};
use arrow::datatypes::Int32Type;
use arrow::util::pretty::pretty_format_batches;
use arrow_schema::SchemaRef;
use async_trait::async_trait;
use datafusion::catalog::Session;
use datafusion::datasource::listing::PartitionedFile;
use datafusion::datasource::physical_plan::{FileScanConfig, ParquetExec};
use datafusion::datasource::TableProvider;
use datafusion::execution::object_store::ObjectStoreUrl;
use datafusion::parquet::arrow::arrow_reader::statistics::StatisticsConverter;
use datafusion::parquet::arrow::{
arrow_reader::ParquetRecordBatchReaderBuilder, ArrowWriter,
};
use datafusion::physical_optimizer::pruning::{PruningPredicate, PruningStatistics};
use datafusion::physical_plan::ExecutionPlan;
use datafusion::prelude::*;
use datafusion_common::{
internal_datafusion_err, DFSchema, DataFusionError, Result, ScalarValue,
};
use datafusion_expr::{utils::conjunction, TableProviderFilterPushDown, TableType};
use datafusion_physical_expr::PhysicalExpr;
use std::any::Any;
use std::collections::HashSet;
use std::fmt::Display;
use std::fs::{self, DirEntry, File};
use std::ops::Range;
use std::path::{Path, PathBuf};
use std::sync::{
atomic::{AtomicUsize, Ordering},
Arc,
};
use tempfile::TempDir;
use url::Url;
/// This example demonstrates building a secondary index over multiple Parquet
/// files and using that index during query to skip ("prune") files that do not
/// contain relevant data.
///
/// This example rules out relevant data using min/max values of a column
/// extracted from the Parquet metadata. In a real system, the index could be
/// more sophisticated, e.g. using inverted indices, bloom filters or other
/// techniques.
///
/// Note this is a low level example for people who want to build their own
/// custom indexes. To read a directory of parquet files as a table, you can use
/// a higher level API such as [`SessionContext::read_parquet`] or
/// [`ListingTable`], which also do file pruning based on parquet statistics
/// (using the same underlying APIs)
///
/// For a more advanced example of using an index to prune row groups within a
/// file, see the (forthcoming) `advanced_parquet_index` example.
///
/// # Diagram
///
/// ```text
/// ┏━━━━━━━━━━━━━━━━━━━━━━━━┓
/// ┃ Index ┃
/// ┃ ┃
/// step 1: predicate is ┌ ─ ─ ─ ─▶┃ (sometimes referred to ┃
/// evaluated against ┃ as a "catalog" or ┃
/// data in the index │ ┃ "metastore") ┃
/// (using ┗━━━━━━━━━━━━━━━━━━━━━━━━┛
/// PruningPredicate) │ │
///
/// │ │
/// ┌──────────────┐
/// │ value = 150 │─ ─ ─ ─ ┘ │
/// └──────────────┘ ┌─────────────┐
/// Predicate from query │ │ │
/// └─────────────┘
/// │ ┌─────────────┐
/// step 2: Index returns only ─ ▶│ │
/// parquet files that might have └─────────────┘
/// matching data. ...
/// ┌─────────────┐
/// Thus some parquet files are │ │
/// "pruned" and thus are not └─────────────┘
/// scanned at all Parquet Files
///
/// ```
///
/// [`ListingTable`]: datafusion::datasource::listing::ListingTable
#[tokio::main]
async fn main() -> Result<()> {
// Demo data has three files, each with schema
// * file_name (string)
// * value (int32)
//
// The files are as follows:
// * file1.parquet (value: 0..100)
// * file2.parquet (value: 100..200)
// * file3.parquet (value: 200..3000)
let data = DemoData::try_new()?;
// Create a table provider with and our special index.
let provider = Arc::new(IndexTableProvider::try_new(data.path())?);
println!("** Table Provider:");
println!("{provider}\n");
// Create a SessionContext for running queries that has the table provider
// registered as "index_table"
let ctx = SessionContext::new();
ctx.register_table("index_table", Arc::clone(&provider) as _)?;
// register object store provider for urls like `file://` work
let url = Url::try_from("file://").unwrap();
let object_store = object_store::local::LocalFileSystem::new();
ctx.register_object_store(&url, Arc::new(object_store));
// Select data from the table without any predicates (and thus no pruning)
println!("** Select data, no predicates:");
ctx.sql("SELECT file_name, value FROM index_table LIMIT 10")
.await?
.show()
.await?;
println!("Files pruned: {}\n", provider.index().last_num_pruned());
// Run a query that uses the index to prune files.
//
// Using the predicate "value = 150", the IndexTable can skip reading file 1
// (max value 100) and file 3 (min value of 200)
println!("** Select data, predicate `value = 150`");
ctx.sql("SELECT file_name, value FROM index_table WHERE value = 150")
.await?
.show()
.await?;
println!("Files pruned: {}\n", provider.index().last_num_pruned());
// likewise, we can use a more complicated predicate like
// "value < 20 OR value > 500" to read only file 1 and file 3
println!("** Select data, predicate `value < 20 OR value > 500`");
ctx.sql(
"SELECT file_name, count(value) FROM index_table \
WHERE value < 20 OR value > 500 GROUP BY file_name",
)
.await?
.show()
.await?;
println!("Files pruned: {}\n", provider.index().last_num_pruned());
Ok(())
}
/// DataFusion `TableProvider` that uses [`IndexTableProvider`], a secondary
/// index to decide which Parquet files to read.
#[derive(Debug)]
pub struct IndexTableProvider {
/// The index of the parquet files in the directory
index: ParquetMetadataIndex,
/// the directory in which the files are stored
dir: PathBuf,
}
impl Display for IndexTableProvider {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
writeln!(f, "IndexTableProvider")?;
writeln!(f, "---- Index ----")?;
write!(f, "{}", self.index)
}
}
impl IndexTableProvider {
/// Create a new IndexTableProvider
pub fn try_new(dir: impl Into<PathBuf>) -> Result<Self> {
let dir = dir.into();
// Create an index of the parquet files in the directory as we see them.
let mut index_builder = ParquetMetadataIndexBuilder::new();
let files = read_dir(&dir)?;
for file in &files {
index_builder.add_file(&file.path())?;
}
let index = index_builder.build()?;
Ok(Self { index, dir })
}
/// return a reference to the underlying index
fn index(&self) -> &ParquetMetadataIndex {
&self.index
}
}
#[async_trait]
impl TableProvider for IndexTableProvider {
fn as_any(&self) -> &dyn Any {
self
}
fn schema(&self) -> SchemaRef {
self.index.schema().clone()
}
fn table_type(&self) -> TableType {
TableType::Base
}
async fn scan(
&self,
state: &dyn Session,
projection: Option<&Vec<usize>>,
filters: &[Expr],
limit: Option<usize>,
) -> Result<Arc<dyn ExecutionPlan>> {
let df_schema = DFSchema::try_from(self.schema())?;
// convert filters like [`a = 1`, `b = 2`] to a single filter like `a = 1 AND b = 2`
let predicate = conjunction(filters.to_vec());
let predicate = predicate
.map(|predicate| state.create_physical_expr(predicate, &df_schema))
.transpose()?
// if there are no filters, use a literal true to have a predicate
// that always evaluates to true we can pass to the index
.unwrap_or_else(|| datafusion_physical_expr::expressions::lit(true));
// Use the index to find the files that might have data that matches the
// predicate. Any file that can not have data that matches the predicate
// will not be returned.
let files = self.index.get_files(predicate.clone())?;
let object_store_url = ObjectStoreUrl::parse("file://")?;
let mut file_scan_config = FileScanConfig::new(object_store_url, self.schema())
.with_projection(projection.cloned())
.with_limit(limit);
// Transform to the format needed to pass to ParquetExec
// Create one file group per file (default to scanning them all in parallel)
for (file_name, file_size) in files {
let path = self.dir.join(file_name);
let canonical_path = fs::canonicalize(path)?;
file_scan_config = file_scan_config.with_file(PartitionedFile::new(
canonical_path.display().to_string(),
file_size,
));
}
let exec = ParquetExec::builder(file_scan_config)
.with_predicate(predicate)
.build_arc();
Ok(exec)
}
/// Tell DataFusion to push filters down to the scan method
fn supports_filters_pushdown(
&self,
filters: &[&Expr],
) -> Result<Vec<TableProviderFilterPushDown>> {
// Inexact because the pruning can't handle all expressions and pruning
// is not done at the row level -- there may be rows in returned files
// that do not pass the filter
Ok(vec![TableProviderFilterPushDown::Inexact; filters.len()])
}
}
/// Simple in memory secondary index for a set of parquet files
///
/// The index is represented as an arrow [`RecordBatch`] that can be passed
/// directly by the DataFusion [`PruningPredicate`] API
///
/// The `RecordBatch` looks as follows.
///
/// ```text
/// +---------------+-----------+-----------+------------------+------------------+
/// | file_name | file_size | row_count | value_column_min | value_column_max |
/// +---------------+-----------+-----------+------------------+------------------+
/// | file1.parquet | 6062 | 100 | 0 | 99 |
/// | file2.parquet | 6062 | 100 | 100 | 199 |
/// | file3.parquet | 163310 | 2800 | 200 | 2999 |
/// +---------------+-----------+-----------+------------------+------------------+
/// ```
///
/// It must store file_name and file_size to construct `PartitionedFile`.
///
/// Note a more advanced index might store finer grained information, such as information
/// about each row group within a file
#[derive(Debug)]
struct ParquetMetadataIndex {
file_schema: SchemaRef,
/// The index of the parquet files. See the struct level documentation for
/// the schema of this index.
index: RecordBatch,
/// The number of files that were pruned in the last query
last_num_pruned: AtomicUsize,
}
impl Display for ParquetMetadataIndex {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
writeln!(
f,
"ParquetMetadataIndex(last_num_pruned: {})",
self.last_num_pruned()
)?;
let batches = pretty_format_batches(&[self.index.clone()]).unwrap();
write!(f, "{batches}",)
}
}
impl ParquetMetadataIndex {
/// the schema of the *files* in the index (not the index's schema)
fn schema(&self) -> &SchemaRef {
&self.file_schema
}
/// number of files in the index
fn len(&self) -> usize {
self.index.num_rows()
}
/// Return a [`PartitionedFile`] for the specified file offset
///
/// For example, if the index batch contained data like
///
/// ```text
/// fileA
/// fileB
/// fileC
/// ```
///
/// `get_file(1)` would return `(fileB, size)`
fn get_file(&self, file_offset: usize) -> (&str, u64) {
// Filenames and sizes are always non null, so we don't have to check is_valid
let file_name = self.file_names().value(file_offset);
let file_size = self.file_size().value(file_offset);
(file_name, file_size)
}
/// Return the number of files that were pruned in the last query
pub fn last_num_pruned(&self) -> usize {
self.last_num_pruned.load(Ordering::SeqCst)
}
/// Set the number of files that were pruned in the last query
fn set_last_num_pruned(&self, num_pruned: usize) {
self.last_num_pruned.store(num_pruned, Ordering::SeqCst);
}
/// Return all the files matching the predicate
///
/// Returns a tuple `(file_name, file_size)`
pub fn get_files(
&self,
predicate: Arc<dyn PhysicalExpr>,
) -> Result<Vec<(&str, u64)>> {
// Use the PruningPredicate API to determine which files can not
// possibly have any relevant data.
let pruning_predicate =
PruningPredicate::try_new(predicate, self.schema().clone())?;
// Now evaluate the pruning predicate into a boolean mask, one element per
// file in the index. If the mask is true, the file may have rows that
// match the predicate. If the mask is false, we know the file can not have *any*
// rows that match the predicate and thus can be skipped.
let file_mask = pruning_predicate.prune(self)?;
let num_left = file_mask.iter().filter(|x| **x).count();
self.set_last_num_pruned(self.len() - num_left);
// Return only files that match the predicate from the index
let files_and_sizes: Vec<_> = file_mask
.into_iter()
.enumerate()
.filter_map(|(file, keep)| {
if keep {
Some(self.get_file(file))
} else {
None
}
})
.collect();
Ok(files_and_sizes)
}
/// Return the file_names column of this index
fn file_names(&self) -> &StringArray {
self.index
.column(0)
.as_any()
.downcast_ref::<StringArray>()
.unwrap()
}
/// Return the file_size column of this index
fn file_size(&self) -> &UInt64Array {
self.index
.column(1)
.as_any()
.downcast_ref::<UInt64Array>()
.unwrap()
}
/// Reference to the row count column
fn row_counts_ref(&self) -> &ArrayRef {
self.index.column(2)
}
/// Reference to the column minimum values
fn value_column_mins(&self) -> &ArrayRef {
self.index.column(3)
}
/// Reference to the column maximum values
fn value_column_maxes(&self) -> &ArrayRef {
self.index.column(4)
}
}
/// In order to use the PruningPredicate API, we need to provide DataFusion
/// the required statistics via the [`PruningStatistics`] trait
impl PruningStatistics for ParquetMetadataIndex {
/// return the minimum values for the value column
fn min_values(&self, column: &Column) -> Option<ArrayRef> {
if column.name.eq("value") {
Some(self.value_column_mins().clone())
} else {
None
}
}
/// return the maximum values for the value column
fn max_values(&self, column: &Column) -> Option<ArrayRef> {
if column.name.eq("value") {
Some(self.value_column_maxes().clone())
} else {
None
}
}
/// return the number of "containers". In this example, each "container" is
/// a file (aka a row in the index)
fn num_containers(&self) -> usize {
self.len()
}
/// Return `None` to signal we don't have any information about null
/// counts in the index,
fn null_counts(&self, _column: &Column) -> Option<ArrayRef> {
None
}
/// return the row counts for each file
fn row_counts(&self, _column: &Column) -> Option<ArrayRef> {
Some(self.row_counts_ref().clone())
}
/// The `contained` API can be used with structures such as Bloom filters,
/// but is not used in this example, so return `None`
fn contained(
&self,
_column: &Column,
_values: &HashSet<ScalarValue>,
) -> Option<BooleanArray> {
None
}
}
/// Builds a [`ParquetMetadataIndex`] from a set of parquet files
#[derive(Debug, Default)]
struct ParquetMetadataIndexBuilder {
file_schema: Option<SchemaRef>,
filenames: Vec<String>,
file_sizes: Vec<u64>,
row_counts: Vec<u64>,
/// Holds the min/max value of the value column for each file
value_column_mins: Vec<i32>,
value_column_maxs: Vec<i32>,
}
impl ParquetMetadataIndexBuilder {
fn new() -> Self {
Self::default()
}
/// Add a new file to the index
fn add_file(&mut self, file: &Path) -> Result<()> {
let file_name = file
.file_name()
.ok_or_else(|| internal_datafusion_err!("No filename"))?
.to_str()
.ok_or_else(|| internal_datafusion_err!("Invalid filename"))?;
let file_size = file.metadata()?.len();
let file = File::open(file).map_err(|e| {
DataFusionError::from(e).context(format!("Error opening file {file:?}"))
})?;
let reader = ParquetRecordBatchReaderBuilder::try_new(file)?;
// Get the schema of the file. A real system might have to handle the
// case where the schema of the file is not the same as the schema of
// the other files e.g. using SchemaAdapter.
if self.file_schema.is_none() {
self.file_schema = Some(reader.schema().clone());
}
// extract the parquet statistics from the file's footer
let metadata = reader.metadata();
let row_groups = metadata.row_groups();
// Extract the min/max values for each row group from the statistics
let converter = StatisticsConverter::try_new(
"value",
reader.schema(),
reader.parquet_schema(),
)?;
let row_counts = converter
.row_group_row_counts(row_groups.iter())?
.ok_or_else(|| {
internal_datafusion_err!("Row group row counts are missing")
})?;
let value_column_mins = converter.row_group_mins(row_groups.iter())?;
let value_column_maxes = converter.row_group_maxes(row_groups.iter())?;
// In a real system you would have to handle nulls, which represent
// unknown statistics. All statistics are known in this example
assert_eq!(row_counts.null_count(), 0);
assert_eq!(value_column_mins.null_count(), 0);
assert_eq!(value_column_maxes.null_count(), 0);
// The statistics gathered above are for each row group. We need to
// aggregate them together to compute the overall file row count,
// min and max.
let row_count = row_counts
.iter()
.flatten() // skip nulls (should be none)
.sum::<u64>();
let value_column_min = value_column_mins
.as_primitive::<Int32Type>()
.iter()
.flatten() // skip nulls (i.e. min is unknown)
.min()
.unwrap_or_default();
let value_column_max = value_column_maxes
.as_primitive::<Int32Type>()
.iter()
.flatten() // skip nulls (i.e. max is unknown)
.max()
.unwrap_or_default();
// sanity check the statistics
assert_eq!(row_count, metadata.file_metadata().num_rows() as u64);
self.add_row(
file_name,
file_size,
row_count,
value_column_min,
value_column_max,
);
Ok(())
}
/// Add an entry for a single new file to the in progress index
fn add_row(
&mut self,
file_name: impl Into<String>,
file_size: u64,
row_count: u64,
value_column_min: i32,
value_column_max: i32,
) {
self.filenames.push(file_name.into());
self.file_sizes.push(file_size);
self.row_counts.push(row_count);
self.value_column_mins.push(value_column_min);
self.value_column_maxs.push(value_column_max);
}
/// Build the index from the files added
fn build(self) -> Result<ParquetMetadataIndex> {
let Some(file_schema) = self.file_schema else {
return Err(internal_datafusion_err!("No files added to index"));
};
let file_name: ArrayRef = Arc::new(StringArray::from(self.filenames));
let file_size: ArrayRef = Arc::new(UInt64Array::from(self.file_sizes));
let row_count: ArrayRef = Arc::new(UInt64Array::from(self.row_counts));
let value_column_min: ArrayRef =
Arc::new(Int32Array::from(self.value_column_mins));
let value_column_max: ArrayRef =
Arc::new(Int32Array::from(self.value_column_maxs));
let index = RecordBatch::try_from_iter(vec![
("file_name", file_name),
("file_size", file_size),
("row_count", row_count),
("value_column_min", value_column_min),
("value_column_max", value_column_max),
])?;
Ok(ParquetMetadataIndex {
file_schema,
index,
last_num_pruned: AtomicUsize::new(0),
})
}
}
/// Return a list of the directory entries in the given directory, sorted by name
fn read_dir(dir: &Path) -> Result<Vec<DirEntry>> {
let mut files = dir
.read_dir()
.map_err(|e| {
DataFusionError::from(e).context(format!("Error reading directory {dir:?}"))
})?
.map(|entry| {
entry.map_err(|e| {
DataFusionError::from(e)
.context(format!("Error reading directory entry in {dir:?}"))
})
})
.collect::<Result<Vec<DirEntry>>>()?;
files.sort_by_key(|entry| entry.file_name());
Ok(files)
}
/// Demonstration Data
///
/// Makes a directory with three parquet files
///
/// The schema of the files is
/// * file_name (string)
/// * value (int32)
///
/// The files are as follows:
/// * file1.parquet (values 0..100)
/// * file2.parquet (values 100..200)
/// * file3.parquet (values 200..3000)
struct DemoData {
tmpdir: TempDir,
}
impl DemoData {
fn try_new() -> Result<Self> {
let tmpdir = TempDir::new()?;
make_demo_file(tmpdir.path().join("file1.parquet"), 0..100)?;
make_demo_file(tmpdir.path().join("file2.parquet"), 100..200)?;
make_demo_file(tmpdir.path().join("file3.parquet"), 200..3000)?;
Ok(Self { tmpdir })
}
fn path(&self) -> PathBuf {
self.tmpdir.path().into()
}
}
/// Creates a new parquet file at the specified path.
///
/// The `value` column increases sequentially from `min_value` to `max_value`
/// with the following schema:
///
/// * file_name: Utf8
/// * value: Int32
fn make_demo_file(path: impl AsRef<Path>, value_range: Range<i32>) -> Result<()> {
let path = path.as_ref();
let file = File::create(path)?;
let filename = path
.file_name()
.ok_or_else(|| internal_datafusion_err!("No filename"))?
.to_str()
.ok_or_else(|| internal_datafusion_err!("Invalid filename"))?;
let num_values = value_range.len();
let file_names =
StringArray::from_iter_values(std::iter::repeat(&filename).take(num_values));
let values = Int32Array::from_iter_values(value_range);
let batch = RecordBatch::try_from_iter(vec![
("file_name", Arc::new(file_names) as ArrayRef),
("value", Arc::new(values) as ArrayRef),
])?;
let schema = batch.schema();
// write the actual values to the file
let props = None;
let mut writer = ArrowWriter::try_new(file, schema, props)?;
writer.write(&batch)?;
writer.finish()?;
Ok(())
}